
Proceedings of the 10° ASAT Conference, 13-15 May 2003 	Paper ST-25 571 

Military Technical College 
Kobry EI-Kobbah 

Cairo, Egypt 

100 International Conference 
On Aerospace Sciences& 

Aviation Technology 

MATRIX FORMULATION OF CHEBYSHEV SOLUTION TO SHELL 
PROBLEMS 

A. OKASHA EL-NADY1  
HANI M. NEGM2  

ABSTRACT 

Any continuous function f(E) can be expanded in a Chebyshev series. The nth  
derivative of the function f(0 can be written in matrix form in terms of the expansion 
coefficients of the function. Also, the product of two functions f(E) and g(0 can be 
written in matrix form in terms of the expansion coefficients of the two functions. 
Therefore, any system of differential equations with variable coefficients can be 
written as a system of algebraic equations in terms of Chebyshev coefficients of the 
functions, which can be easily solved. The method is used to solve the problem of 
isotropic conical shell with different loads and boundary conditions. Results are 
computed and compared with the exact ones. Comparison proves convergence, 
accuracy and reliability of the proposed method. 
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E 	Young's modulus. 
Mx, Me 	longitudinal and tangential bending-stress couples. 
Nx, No 	longitudinal and tangential normal-stress resultants. 
ox, 00 	longitudinal and tangential shear-stress resultants. 
h 	shell thickness. 
kx, ko 	curvature change in the longitudinal and tangential directions 
u 	displacement of the middle surface in the longitudinal direction. 
w 	displacement in the direction normal to the middle surface. 
a 	semi-vertex angle. 
v 	Poisson's ratio. 
Ex, Co 	 normal strain in the longitudinal and tangential directions. 

non-dimensional longitudinal coordinate. 

INTRODUCTION 
Applications of shells or shell-like structures as load-bearing members are common 
in aerospace, automobile and other industries due to their efficiency as structural 
components [1]. A considerable amount of research has been done on the 
development of new shell theories as well as the solution of their equilibrium 
differential equations. The solution of differential equations has two different 
approaches: numerical and analytical. Analytical solutions are either exact or 
approximate. 

Exact solutions may be easily obtainable in case of shells with simple geometry and 
boundary conditions, and uniform thickness and elastic properties. In many 
circumstances, however, it is not possible to find suitable functions which satisfy both 
the shell governing differential equations and the geometric and natural boundary 
conditions [2]. 

Geckeler [3] suggested an approximate analytical method for the solution of 
boundary-value problems of thin bending-resistant shells. The Asymptotic Integration 
method [4] is another approximate analytical method for the solution of shell 
problems. 

Many approximate numerical techniques for the solution of boundary-value problems 
are available. The finite-difference method [5-7], the finite-element method [8, 9] and 
numerical-integration methods [10, 11] are examples of these numerical techniques. 

A suitable solution function that is able to satisfy many differential equations and 
boundary conditions is the Chebyshev polynomial. Alwar and Narasimhan [12, 13] 
used Chebyshev polynomials to solve the problem of spherical shell under 
axisymmetric and general loads. 

The objective of this paper is to reformulate the Chebyshev series technique in matrix 
form to make it easier, more reliable and less time consuming. Using matrix notation, 
the function derivatives and function products can be represented in Chebyshev 
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series in a straightforward and simple manner. This arrangement converts ordinary 
differential equations with variable coefficients into a simple system of algebraic 
equations. 

Two examples of conical shells with different boundary conditions are worked out in 
this paper to illustrate the application of the suggested matrix formulation of the 
Chebeyshev technique to shell problems. The first example deals with an isotropic 
complete cone fixed at its base under uniform internal pressure. The second example 
deals with an isotropic frusrtum hinged at its base under concentrated lateral and 
edge line loads. Results are compared to those obtained by other techniques to 
demonstrate the accuracy and reliability of the suggested technique. 

CHEBYSHEV SERIES REPRESENTATION 
Any continuous function f(t) in the interval 0 	1 can be written in Chebyshev 
series as follows [12, 13]: 

f() = 	a ,2",(0 	 (1) 
r=0 

where: 
+ sign means that the 1st  term must be halved, 
ar  ... are constants to be determined so as to obtain the best possible fit. 

	

T,(0 = Cos (r t) , 	Cos (t ) = 2 -1 , 	0 f: .5. 1 

The shifted Chebyshev polynomials satisfy the recurrence relations: 

	

(t) = 2 (2 - 1) Tr(t) 	 , 2 < r < cc 
	 (2) 

To = 1, 	T1 = 2 - 1 

And the orthogonality conditions: 

[ 0 for m n 

	

T.,(0T„(0  _ 	for  m=n~0  Ire,51--- 	2  
rr for m = n =0 

For any continuous function f(k) the series expansion (1) is fast converging, and a 
good approximation is obtained by taking a finite number of terms. Therefore, 
equation (1) is approximated by: 

	

= E a, Tr (4) 
	

(3) 
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where, for a known function f(0, the coefficients ay are given by:- 

a  = 2 i.fa)Tr(S)cg  
jo 

0 < r < N 	 (4) 

The first derivative f \ (0 is expressed in Chebyshev series as [12,13] : 

N -1 

(5) 
r.0 

The coefficients a;' )  satisfy the recursive relation: 

- a "), = 4ra 	 1 < r < N 	 (6) 

Similarly the higher derivatives can be written as: 

N -2 

f \\ O = E d,.21,. 

(7 ) 

N 

f m 	= E *a:"')T,(4) 
,„0 

where; 

	

- a (2+;  = Ora" )  , 	1 < r < N-1 

ar("? 	= 4rar("" ) , 	1 	r 	N-(m-1) 

MATRIX REPRESENTATION OF FUNCTION DERIVATIVES: 

The first-order-derivative coefficients {a(1) } in equation (6) can be written in terms of 
the original function coefficients (ail using matrix notation as follows: 

r=0,1,2, 	, N-I 
{a (; ) } = 4 [A] {a} 	 (8) 

i=1,2,3 	, N 

where [A] is an upper triangular matrix of order N x N. 

The elements of the matrix au  are defined as: 

0 i>j Or i+j odd 
at = 

{j 	j and i+ j even 
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1 0 3 0 5 

0 2 0 4 0 

The form of [A] for N=5 for example is: A= 0 0 3 0 5 

0 0 0 4 0 

0 0 0 0 5 

From equation (8), it is noted that the first-order-derivative coefficients are written in 
terms of the N coefficients {a} (i = 1, 2, ...., N) of the function f(k). To represent {a;1) } 

in terms of all function coefficients {a1}, i = 0, 1, 2, ....., N we add a new left column 
with zero entries in the matrix [A], and the new matrix is termed [A01]. Thus: 

(4)1 = 4 [A01] {a} 

where [A01] is of order N x N+1. 

For N=5: 	(A01] take the form: 

r=0,1,2, 	....... 

i=0,1,2,3 

[A01]= 

0 

0 

0 
0 
0 

1 

0 

0 
0 
0 

N-1 

,N 

0 	3 

2 	0 

0 	3 
0 	0 
0 	0 

0 

4 

0 
4 
0 

5 

0 

5 
0 
5 

(9) 

The second-order-derivative coefficients {a,.(2) } in equation (7) can be written in terms 

of the function coefficients {a} using matrix notation as follows: 

{a(,.2) } = 16 [A]_*, -1[A01] {a1} 	
r=0,1,2, ....... 	N-2 

{e} = 16 [A02] {a} 	 1=0,1,2, 	, N 

The third-order-derivative coefficients {d,”} can be written in terms of the function 

coefficients {a1} using matrix notation as follows: 

(e)  } = 64 [A].2,_2 -1[A02] {ai} 

{43) = 64 [A03] {a} 
r=0,1,2, ...... N-3 

' i=0,1,2, 	, N 

The general form of the nth-derivative coefficients {cl," ) } can be written in terms of the 

function coefficients {ai} using matrix notation as follows: 

{a;")} = (4)" [A]i-n, 1-n -1[A0(n-1 )] {a} 

{dr")} = (4)" [A0n] {a,} 
r=0,1,2, ...... N-n 

i= 0,1, 2, 	, N 
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where, 

[A]l-n,1-n • 
the order of derivative 
matrix [A] after deleting the last (n-1) rows and (n-1) 
columns.  
matrix [ ] after deleting the first row. 

New Form of Chebyshev Series 

Any continuous function f(t) in the interval 	0 5_ E  5 1 and its derivatives can be 
written in the new matrix form of Chebyshev series as follows: 

f(i;) = 	[I] {al} 
r=0,1,2, 	 ,N 

i= 0,1,2 	. ,N 
(10) 

f n  (k) = (4)n  [Tr] [A0n]{at) 
r = 0,1,2, 	,N-n 

i= 0,1,2, 	 ,N 

where; [Tr] is a row matrix whose elements are Tr(t). Note that in the new formulation 
the first term of [Tr] must be halved. 

Now consider the general nonhomogenous differential equation of nth  order: 

After expanding each term in Chebyshev series the above differential equation can 
be written as: 

N-n 	 N-(n-1) 	 N-1 	 N 	 N 

E + ce )Tg)+ E.a;")7;(g) + ... +E *d11,g)+E + a,T,(D=I+ p,T,g) (12) 
r=0 	 r=0 	 r=0 	 r=0 	 r-0 

The forcing-function coefficients pr  can be evaluated using equation (4). Equating the 
coefficients of like Chebyshev polynomial terms on either side, the resulting N+1-n 
algebraic equations can be written in matrix form using equations (10) and (11) as: 

[4(n)  [A0n] + 4(n-1)  [A0(n-1)] + 	+ 4 [A01] + [I]] {ai} = (Pr) 
	

(13) 
r=0,1,2, .. 	 .,N +1- n 
i = 0,1,2, 	 

where all matrices in equation (13) are of the same order (N+1-n x N+1). For all 
derivatives lower than the highst derivative, the first N+1-n rows are chosen so as to 
satisfy equation (13). In order to be able to solve equation (13), n additional 
equations are needed. These additional equations are supplied by the problem 
boundary conditions. 
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MATRIX REPRESENTATION OF FUNCTION PRODUCTS 

If f(,) and g(4) are two continuous functions represented by truncated Chebysehev 
series as: 

,-;01  

g()_ Z 	(e) 
r=0 

Then the product of these functions can be written in a Chebyshev series as: 

.1.r5M+N 
; +r 	Vi 

The (Cr) coefficients can be written in terms of the (ai) coefficients only using matrix 
notation as follows: 

{or} = [Ft] (A) 	 (14) 

where 
r = 0, 1, 2, 	..... , N+M 
i = 0, 1, 2, ..........., N 
{Cr} ... is a column matrix of order N+M+1 x 1 
[H] ... is rectangular matrix of order N+M+1 x N+1 
(a4 ... is a column matrix of order N+1 x 1 

The coefficients {134 are obtained by forcing the function g(0 to take on its true values 
at a number of selected points in the interval 0 5_ k s 1. Hence hi can be written as: 

i=1,2, 	 N+M +1 
(b, , or 

4 0-J1
+b 4. ;1-2 ) f J =1 

1=1,2, 	,N +M +1 
—(b, ,+b 	) for 
2 11-', H-1-2 	j=2,3„N +1 

ii-j1 5-M  Vi, j 

g(E) f(4) = 	c (0 
r=0 

where 
/4+M 

CO = Z a,b, 
i=o

A1  + 1 N.  
= — E a;  (b,„ + b") 

2 „.0  
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Therefore, equation (14) takes the form: 

co 	bo  2b, 2b2  2b3 	a, 
c, 	k bo  + b, b1 +b, b2  + b, 	a, 
C2 
	b2  b, +b, bo  +b, b, +b, 	a, 

C3 	1 b3  b,+b, b, + b, 1)0  +b, 	a3  
2 

CN+M 
	 a 

N 

THE PROBLEM OF AXISYMMETRIC CONICAL SHELL WITH 
BENDING RESISTANCE: 

Equilibrium Equations 

The governing equations of a bending-resistant conical shell under normal pressure 
load q are given by [21: 

d:c 
1+-

1 (N —N
°  ) 
	=0 

x  
dQ' +—

I
(Q

4 
 — N, cota) =q 

dx x  

dA4 

 

'+1 (M x — Me) — Q„=0  x 

(15) 

The shell geometry and stress resultants are shown in Figs. (1) and (2). 

Constitutive Relations 

The shell constitutive relations between stress resultants and stain and curvature 
components are given by [2): 

= C (cx + v 68) 	 No  = C (co + v ex) 
Mx = D (kx + v 	 Me=D(ke+v kx) 	 (16) 

Strain-Displacement Relations 

The shell strain-displacement relations for small displacements are given by [2): 



(17) 
dx2 
'd w = - 1 dw 

ke  = - 
x dx 
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du 
gx =— 	 so = -

1 (u + w cot a) 
dx 

Note that the stress resultants NA, Nox, M00, Mox, the stain components 8)(0,1(00 and 
the displacement component v in the tangential direction are all zero because of the 
axisymmetric nature of the problem. 
Substituting the strain displacement-relations (17) into the stress resultant-strain 
relations (16), and eliminating Qx  between the last two equations of (15) we end up 
with the following two equilibrium differential equations: 

C d2u 1 du 1 u) +C cota 
 (
v dw 1 w) (— + 

L2  de e 	
2 
	cg e 

C cota v du 1 	D crw 2 crw 1 dew 1 dw C cot2  a 1 

L2 -
( 

de+  e2  u 	
t 	

j de F.  de2  e3  de ±D r 2 w) =P 

Expanding u(i;) and w(a;) in (N+1)-term Chebyshev series we have a total of 2N+2 

unknown coefficients. The functions -
1 , -2 

 and-- 
1  appearing in the equilibrium 

equations are also expanded in Chebyshev series having M+1 terms. The M+1 

expansion coefficients can be computed easily by forcing the functions -
1 , —1 andi 
e 

to take on their actual values at a number of chosen points in the interval 0 s s 1. 
Using matrix notation for the functions and function derivatives, and applying the rule 
of matrix multiplications, the equilibrium equations can be written as a system of 
algebraic equations in the following matrix form: 

—[16[A02]+ 4 [HI 01]-[H2]1{u, } +
C cota-  [4v[H101] --[H2]]{ w, } 	={0} 

L2 	 L2  

Ccota  [4 v[H101] +[H2]]{u }+ P-f256M04]+128[H103] -16[H202]+ 4[H301] + 	(19) 
L2 	 e 

C L2  cot  a  
2fi 	= {P,} 

D 
where: 

[I-11] ...is the matrix of coefficients of the function -
1 

[H2] ... is the matrix of coefficients of the function —, 

[H3] ... is the matrix of coefficients of the function — 
e3 

=0 

(18) 
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[H101] = [H1] [A01] 
[H103] = [H1] [A03] 
[H202] = [H2] [A02] 
[H301] = [I-13] [A01] 

The highest derivative in the first of equations (19) is of order 2, so the number of 
algebraic equations is N-1 equations. The highest derivative in the second of 
equations (19) is of order 4, so the number of algebraic equations is N-3 equations. 
The total number of algebraic equations is 2N-4 along with 6 boundary conditions at 
=0 and t=1, leading to 2N+2 equations in 2N+2 unknowns, which can be easily 

solved. 

It is finally important to note that all matrices in the first of equations (19) are of order 
(N-1 x N+1), while all matrices in the second of equations (19) are of order (N-3 
xN+1). 

Boundary Conditions 

Fortunately, it is relatively easy to represent any shell boundary conditions for the 
functions expanded in Chebyshev series. 

Top-vertex conditions 

At the vertex ,=0: 
1. The displacement perpendicular to the axis of the shell is zero because of 

axisymmetry, which leads to: 
u sin a + \ne cos a = 0 

2. c dw =-0 for finite M, and Me 

3. The vertical displacement (-u cos a + w sin a) at the vertex is a maximum, 

which leads to: du  =0 
de 

Clamped-edge conditions Hinged-edge conditions: 

1.0 	=0 
2.w =0 

dw 3. — =0 

	

1.0 	=0 
2.w =0 

d ew 

	

3. 	M,, = 0 	i.e. v dw = 0  
e de 42  

The previous sets of boundary conditions can be written in matrix form by calculating 
the function or its derivatives at E=0 or t=1 as follow: 
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Vertex boundary conditions: 

At 4 = 0 

1. sin a [TRO] {1.4} + cos a [TRO] {w,} = 0 
2. 4 [TR01] [A01] {w,} = 4 [T0A01]{w,} = 0 
3. 4 [TR01] [A01] {u,} = 4 [T0A01]{u,} = 0 

where: 
[TRO] 	is a row matrix of N+1 Chebeychev terms at 4 = 0 
[TR01] 	is a row matrix of N Chebeychev terms at 4 = 0 
Note: the first term of Chebeyshev terms must be halved. 

Clamped-base boundary conditions: 

At 4 = 1 
1. [TR1] {u,} = 0 
2. [TR1] {w,} = 0 
3. 4 [TR11] [A01]) {w,} = 4 [T1A01]) {wa = 0 

where: 
[TR1] 	is a row matrix of N+1 Chebeychev terms at 4 = 1 
[TR11] 	is a row matrix of N Chebeychev terms at 4 = 1 
Note: the first term of Chebeyshev terms must be halved. 

Hinged-edge conditions:  

At = 1 
1. [TR1] {u,} 
2. [TR1]{w,} = 0 
3. (16 [TR12] [A02] + 4 [TR11] [A01]) {w,} = (16[T1A02]+4[T1A01]) {Wi} = 0 

where: 
[TR11] is a row matrix of N Chebeychev terms at 4 = 1 
[TR12] is a row matrix of N-1 Chebeychev terms at 4 = 1 
Note: the first term of Chebeyshev terms must be halved. 

RESULTS AND DISCUSSIONS 

Problem 1: 

A complete cone with clamped base under uniform internal pressure p, Fig.3. 

Material: 	 Geometry: 

E = 30 106  psi (206.85 GPa); 	v = .3 	L/h =50; 	a = 45 
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The functions -1, 
-2 

 and 	appearing in equation (18) are forced to take on their 

actual values at 10 points other than .=0. The system of equations(19), (20) and (21) 
are solved and the coefficients {u,} and {wi) are obtained. The strain and curvature 
components c0 and ko  are computed at =0.001 to avoid the singularity at 

Table 1 shows the results of a convergence study with regard to Nx(2Nx/p1 tan a) 
and NB (2 NO/p I tan a) along the generator. It can be seen that the solution 
convergence is good, and that fairly accurate results can be obtained with 20 terms in 
the Chebyshev series. Table 2 and Figs. 5-8 compare the computed results Nx , NB, 
Mx (200 Mx  /p L2  tan (a)) and MB (200 Me /p L2  tan (a)) using 18 terms with the exact 
results obtained in reference [2] using Kelvin functions. It is seen that the computed 
results are very close to the exact ones with an average error less than1.85 % 

Problem 2: 

A truncated frustum under a line load normal to the surface, and a horizontal line load 
at the base, Fig. 4. The upper edge is free, while the lower base is supported on 
rollers. 

Material: 

E=200 Gpa 	 v=.3 

Geometry: 

L=1 m 	L1 = 0.4226497 m 	Lp=0.5381198 m 	a=30° 

Applied load: 

P = 1000 N/m 	Fir = -100 N/m 	Mx  = 10 Nm/m 

A new non-dimensional parameter 	x -/ - 	 is used to make the upper edge lie at 

The system of equations (18) is applied except that the functions -1, 
-Z 

 and -1- 

become  1 1 
 " 

	

and 	1  	respectively. Matrices [H1], [H2] and [H3] 
\ 2 	+1-1 \3 

" L " L 	" L 
appearing in these equations are calculated for the new functions. The line load P is 
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distributed over g=t2  - to convert it into uniform pressure. Equation (4) is used to 

obtain the loading coefficients p, = 2  7f ('')Tr(kg ;0 r N. 
117--e 

Boundary conditions: 

Free-edge conditions: 	Roller-supported-edge conditions:  

At x = Li i.e. t =0 	At x = L2 i.e. = 1 

1- Nx  = 0 	 1- Vertical displacement (- u cos a + w sin a) =0 

2- Qx  = 0 	 2- Mx  = 0 
3- Mx  = 10 	 3- Horizontal force (Nx  sin a + Qx cos a) = -100 

The results are computed and compared with the exact solution obtained in 
reference [14] using Green's function. Table 3 and Figs. (9-12) compare the 
distributions of the normal displacement w and the stress resultants Nx, Mx, and Qx. 
The normal displacement w and the axial force Nx  are calculated using 20 
Chebebyshev terms, while the transverse shear Qx  and Longitudinal moment Mx  are 
calculated using 70 terms because of the discontinuity at the point of load 
application. The table and figures show good agreement between the results with 
small discrepancy around the singularity. 

CONCLUSION 

A technique is presented for the solution of boundary-value problems described by a 
system of simultaneous differential equations with variable coefficients by expressing 
the unknown functions in terms of Chebeyshev series. A new matrix formulation is 
presented for the technique, which systematically transforms the problem into a 
system of algebraic equations, which can be readily solved in a short time on the 
computer. 

The suggested technique is applied to two problems of thin, bending-resistant conical 
shells with different boundary conditions and external loads. Results are compared 
with the exact ones, and good agreement is found between the results. The 
applications prove that the suggested technique is accurate and easily applicable to 
difficult boundary-value problems. 
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Fig. 1 Conical Shell Geometry 	 Fig. 2 Shell Stress Resultants 

Fig. 3 Pressurized conical shell with 
	

Fig. 4 Truncated cone under line loads 
clamped edge 

Table 1 Convergence Study Of Conical Shell Clamped At Its Base. 
Nx 
k 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

16 0.1988 0.3034 0.399 0.5 0.602 0.715 0.815 0.857 0.823 
18 0.2037 0.2996 0.401 0.498 0.604 0.713 0.816 0.857 0.823 
20 0.2030 0.3014 0.399 0.499 0.603 0.714 0.817 0.857 0.823 

NO 
16 0.3850 0.617 0.777 1.012 1.252 1.491 1.471 0.857 0.246 
18 0.4025 0.5957 0.798 0.999 1.254 1.495 1.467 0.858 0.246 
20 0.3994 0.6004 0.794 1.002 1.252 1.496 1.467 0.858 0.246 
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4 
	

4 

Fig. 5 Axial-force distribution 	Fig. 6 Circumfrential-force distribution 

Fig 7 Axial-moment distribution 	Fig. 8 Circumfrential-moment distribution 

Table 2 Comparison of computed results (N=20) of complete cone with the exact 
ones. 

4 Nx NO Mx MB 

Present Exact Present Exact Present Exact Present Exact 

0.2 0.2031 0.2000 0.3995 0.4003 -0.0134 -0.0143 -0.0143 -0.0143 

0.3 0.3014 0.3001 0.6004 0.5995 -0.0132 -0.0134 -0.0138 -0.0139 

0.4 0.3999 0.3994 0.7941 0.7948 -0.0161 -0.0153 -0.0146 -0.0144 

0.5 0.4997 0.4987 1.0024 1.0020 -0.0246 -0.0255 -0.0183 -0.0185 

0.6 0.6034 0.6028 1.2525 1.2530 -0.0241 -0.0231 -0.0199 -0.0196 

0.7 0.7141 0.7143 1.4966 1.4964 0.0562 0.0565 0.0075 0.0076 

0.8 0.817 0.8149 1.4677 1.4635 0.2154 0.2146 0.0717 0.0717 

0.9 0.8573 0.8585 0.8589 0.8573 0.1341 0.1343 0.0685 0.0684 

1.0 0.8233 0.8207 0.2470 0.2462 -0.8936 -0.8968 -0.2681 -0.2690 
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Fig. 10 Axial force distribution (frustum) 

a (m) 

Proceedings of the 10m  ASAT Conference, 13-15 May 2003 	Paper ST-25 586 

D
is

pla
ce

m
en

t  w
  (m

)  

x (m) 

Fig. 9 Normal displacement w (frustum) 

Fig. 11 Bending-moment distribution (frustum) Fig 12 Shear-force distribution (frustum) 

Table 3 Comparison of computed results (N=70) of a frustum with the exact ones. 

4 
W x 10-6  Nx Mx Qx 

Present Exact Present Exact Present Exact Present Exact 
0.6 0.4921 0.3427 509.94 517.89 -2.1947 -2.096 -13.48 -13.92 
0.7 0.3017 0.3258 446.58 442.72 -0.1805 -0.149 1.34 1.41 
0.8 0.3462 0.3469 388.72 390.71 -0.1202 -0.181 2.91 2.764 
0.9 0.3384 0.3386 373.15 374.56 2.4440 2.453 49.07 50.84 
1.0 -0.9361 -0.937 182.149 182.99 -0.0000 0.001 -220.63 -221.15 
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