
1. Introduction

Traditional economic models failed to capture the complex, high dynamic features of financial 
markets. This highlighted the significant role of agent-based approach in modeling financial markets. 
Many proposed Agent-based Modelling (ABM) [c.f. (Langton, 1986; Arifovic, 1996; Derveeuw, 
2005; LeBaron & Tesfatsion, 2008; Bonabeau, 2002; Chen & Liao, 2005; Westerhoff, 2008; Feng 
et al., 2012; Lux, 2009; Farmer & Joshi, 2002) perform very well in replicating stylized facts of 
financial markets [c.f. (Mandelbrot, 1963; Fama, 1970; Cont, 2001)]. However, estimating model 
parameters remains a challenging process. 
Many studies were run to estimate ABM parameters (Gilli & Winker, 2003; Alfarano et al., 2005; 
Alfarano et al., 2006; Alfarano et al., 2007; Manzan & Westerhoff, 2007; Amilon, 2008; Franke & 
Westerhoff, 2012; Boswijk et al., 2007; Winker & Gilli, 2001). Agent-based models could be used as 
testbeds for the decision-making process. This would reduce the risk of applying different rules and 
regulations directly on financial markets. Additionally, these agent-based models could be used by 
researchers to test different theories and hypotheses. 
The main aim of this research is to estimate the parameters of the agent-based model proposed by 
Selim et al. (Selim et al., 2015). There are two agents in this model; (i) the market maker and (ii) 
traders. At each time step, traders decide on submitting an order or abstain from the market.
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A B S T R A C T

 An agent-based model under loss aversion behavioral bias is introduced in Selim et al. (2015),     
 however, without estimating its parameters. The proposed model proves great ability to replicate
 important stylized facts of real financial markets, such as random-walk prices, heavy-tailed returns
 distribution, clustered volatility, excess volatility, the absence of autocorrelation in raw returns, and
 the power-law autocorrelations in absolute returns, and fractal structure. However, the extent to which
 the model is able to predict the behavior of certain stock markets will be increased by estimating
 model parameters. In this article, the model parameters are estimated by conducting stability analysis
 and by indirect estimation. By this, policy makers can use this model as testbed to investigate the
 effect of any decision prior to applying it on the real stock market. Also, researchers can use this
model to predict traders’ behavior towards different hypotheses.0
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If the trader will participate, they can follow either technical (and becoming chartist traders) or 

fundamental (and becoming fundamentalist traders) trading strategy. The proposed model 

introduces loss-aversion behavioral bias to chartists to apply the prospect theory proposed by 

Tversky and Kahneman (Tversky & Kahneman, 1992; Tversky & Kahneman, 1991). The 

proposed model proves high ability to capture important stylized facts of financial markets, such 

as random-walk prices, volatility clustering, excess volatility heavy-tailed returns distribution 

and power-law tails. Thereafter, estimating model parameters is very important to enable using it 

by decision makers, investors, and researchers. 

The following content is divided to four sections. In Section 2, the model under estimation is 

presented. Section 3 is devoted for stability and bifurcation analysis to estimate the parameters. 

In Section 4, simulation design and main results are presented. Finally, Section 5 concludes the 

paper.   

2. The Model 

A log-linear price impact function is used to describe behavior of the market maker (2002). The 

price settlement function values the relation between the quantity ordered (demand/supply) and 

the price of the asset. Therefore, the log-price of the asset in period t+1 is given by; 

 

where  is a positive price settlement parameter, and are the orders submitted by chartists 

and fundamentalists; respectively, at time t and and are the weights of technical strategy 

and fundamental strategy; respectively, at time t. Noise terms  are added to represent random 

factors affecting the price settlement process.  are assumed to be IID normally 

distributed random variables with mean zero and constant standard deviation .  

Chartists follow technical analysis to exploit the price changes (Murphy, 1999). Orders utilizing 

technical trading rules at time t can be presented by; 

 

where b is a positive reaction parameter that captures the strength of agents’ sensitivity to price 

signals. In Eq. (2), the first term at the right-hand side of shows the difference between current 

and previous price, which represents the exploitation of price changes. The second term captures 

additional random orders of technical trading rules, where   are IID normally 

distributed random variables with mean zero and constant standard deviation . 
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On the other hand, fundamental analysis assumes that prices will return to their fundamental 

values in the long run (Graham & Dodd, 2009). Orders created by fundamental trading rules at 

time t can be presented as;  

 

where c is a reaction parameter for the sensitivity of fundamentalists' excess demand to 

differences of the price from the underlying fundamental value. are log-fundamental values 

(or simply fundamental values) (Day & Huang, 1990).  is added to depict additional random 

orders of fundamental tradings.  are IID normally distributed random variables 

with mean zero and constant standard deviation . 

The evolutionary switching behavior between trading strategies, proposed by Brock and 

Hommes (1998), illustrates how agents’ beliefs are evolved over time. The evolving behavior is 

mirrored in the weights , where  represents the fraction of inactive agents 

and  are as indicated in Eq. (1), thereafter, strategy weights add up to one. Weights are 

updated according to evolutionary fitness measure (or attractiveness of the trading rules) that 

could be presented as follows; 

 

 

 

where , , and  are the fitness measures of using chartist strategy, fundamental strategy, 

and no-trade strategy, respectively. Inactive traders submit zero orders, so they receive zero 

attractiveness of making such decision. Fitness measure of the other two agents; the chartists and 

the fundamentalists, relies on two components. The first term of the right-hand sides of (5) and 

(6) is the performance of the trading strategy in most recent time. Note that, orders submitted in 

period  are implemented at the price stated in period . The gains or losses depend on 

the price acknowledged in period t. The second term of the right-hand sides of (5) and (6) 

characterizes agents’ memory, where is the memory parameter that evaluates the 

speed of recognizing present myopic profits. For , agent has no memory, while for 

they calculate the fitness of the rule as a sum of all witnessed myopic profits.  

Westerhoff (2008) proposed that agents symmetrically recognize gains and losses in terms of 

fitness. However, in this model a realistic behavioral bias is proposed, so that; chartists follow a 

value function of gains and losses to evaluate their strategies. The suggested value function 

indicates that, chartists recognize losses more than twice their perception of gains. We follow the 

Tversky and Kahneman (1991) and Benartzi and Thaler (1993) piecewise linear value function 
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proposed by the prospect theory to apply the loss-aversion behavior. Consequently, the value of 

the fitness of technical strategy is provided by; 

 

where  is the parameter of loss aversion that measures the relative sensitivity to gains and 

losses. Nevertheless, setting  reduces the value function to; . This situation 

represents loss-neutral chartists. 

The market share of each trading strategy could be measured by the discrete choice model1 

(Manski and McFadden (1981)), as follows; 

 

 

 

The highest attractive strategy will be chosen by the more agents. The parameter , in (8), (9), 

and (10) is called the intensity of choice and measures the sensitivity of mass of agents selecting 

the trading strategy with higher fitness measure. In such adaptive scheme, financial market prices 

and fractions of trading strategies will coevolve over time.  

3. Stability and Bifurcation Analysis 

In this section, we analyze the underlying deterministic system by dropping all the random terms 

and we characterize the unique steady state of the model; we also derive analytical conditions for 

the local asymptotic stability of the steady state and highlight their dependence on the key 

parameters of the model (i.e., the reaction coefficients of chartists and fundamentalists and the 

price adjustment coefficient). Though the evolution of the prices is due to high-dimensional non-

                                           
1 A discrete choice model specifies probabilities  for each set of alternatives  among which the decision maker can 

choose. The exogenous variables z describe observable attributes and characteristics of the decision maker and available 

alternatives to her/him. The parameters  are to be estimated from the observed choices of a sample of decision makers. The 

choice probabilities are determined by the multinomial logit model as follows;  where M is the number 

of available alternatives. And  is a summary statistic measuring the attractiveness of alternative i. It has the linear form of  

 CITATION Man81 \l 1033  (Manski & McFadden, 1981)  
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linear laws of motion, it could be noticed that closed analysis is not prohibited due to the 

structure of the Jacobian of the deterministic system, evaluated at the steady state. 

3.1 Deterministic Skeleton 

Dropping the random terms from (1) – (3) and taking into account (4) – (10), we obtain a non-

linear dynamic model with a high number of equations, some of which are second-order 

difference equations. However, the model can be reduced to a 5-D discrete-time dynamical 

system through suitable changes of variables as follows. 

 

 

The orders by technical traders at time t can thus be expressed as 

 

Rewriting one time ahead of (3.20) and (3.22) result in 

 

And 

 

where  and  can be expressed by 

 

 

Therefore, we obtain the following 5-D system in the dynamic variables and . 

                                (11) 

                                                                                             (12) 

                                                                                            (13) 

                            (14) 
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                              (15) 

Notice that the dynamical model (11) – (15) is driven by the iteration of a 5-D map, which gives 

the state of the system at time t+1; described by and  as a function of 

the state of the system 

at time t; i.e. and . Note that, the other variables (  and ) and quantities 

( ) which appear in the right-hand sides of (14) and (15), respectively, are 

functions of the state at time t according to 

 

 

and  

 

 

 

3.2 Steady State and Local Stability Analysis 

At steady state, the dynamic variables turn out to be 

 

and  

 

i.e. prices are at their fundamental levels and agents make no profits, so that the average realized 

profits (which measure the fitness of the rules) for each agent-type are zero in the long run. 

Therefore, 
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implying that the agents are uniformly distributed among the three strategies. The local stability 

analysis of the steady state is performed via the localization, in the complex plane, of the 

eigenvalues of the Jacobian (evaluated at the steady state) of the map associated with the 

dynamical system. As it is known, a sufficient condition for the local asymptotic stability is that 

all the (real or complex) eigenvalues of the Jacobian lie inside the ‘unit circle’ in the complex 

plane, i.e. they are all smaller than one in modulus. 

In the Appendix A it is shown that the Jacobian matrix evaluated at the steady state is block 

diagonal, which makes it possible to characterize analytically its eigenvalue structure, and that 

all of the eigenvalues are smaller than one in modulus if and only if the following set of 

inequalities is satisfied 

This appendix contains the derivation of the Jacobian matrix of the map whose iteration 

determines the time evolution of the dynamical system (16), as well as the analysis of the 

eigenvalues of the Jacobian evaluated at the steady state. Denoting by ‘ ’ the unit time 

advancement operator (that is; if x is the value of a variable at time t, then  is the value of the 

same variable at t+1), the dynamics of the system is obtained by iteration of the following 5-D 

map 

               (16) 

where 

 

 

 

 

 

(i) The partial derivatives of  with respect to the variables , , and  gives; 
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and 

 

which become at the steady state 

 

and  

 

and . 

(ii) Computing the partial derivatives of  with respect to the variables  and  reveals 

 

and 

 

Since at steady state , these two partial derivatives will vanish at the steady state. 

(iii) Calculating the partial derivatives of  and  with respect to the variables  and , 

which gives; 
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and 

 

Also, all these partial derivatives vanish at the steady state as  and . 

(iv) The partial derivatives of  and  with respect to the variables  and  reveal the 

following. 

 

 

and  

 

Taking the dynamic variables; and , one finds that the Jacobian matrix at the steady 

state (denoted by J) has the following block diagonal structure: 

 

where the matrix  
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And  is the 3-D identity matrix, so that 

 

Due to this particular structure, the eigenvalues can be obtained by computing separately the 

eigenvalues of each block  and . One gets immediately that two of the five eigenvalues are 

real and equal to m (and thus smaller than one in absolute value for ). Three of the 

eigenvalues are the ones of the block H. In turn, the 3-D matrix H is lower block triangular, with 

one of the eigenvalues equal to 0 (and thus smaller than one in modulus). The two further 

eigenvalues are the ones of the following 2-D block 

 

Denote by  and  the trace and the determinant of 

; respectively. The characteristic polynomial  is given by . A 

well-known necessary and sufficient condition (see e.g., Gandolfo, 1996) to have both 

eigenvalues smaller than one in modulus, which implies a locally attracting steady state, is the 

following: 

 

 

 

Conditions (17) could be rewritten in terms of the parameters as follows; 

 

                                                                             (17) 

 

Note that, stability features of the steady state do not depend on the other parameters. 

4. Results and Analyses 
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This section displays the dynamics of our model by simulation. Subsection 4.1 describes the 

simulation design. The extent to which our model can explain statistical properties of real 

financial markets is investigated in Subsection 4.2. In addition to this, we run a Monte Carlo 

analysis to check the robustness of illustrated results. 

4.1 Simulation Design 

To implement the proposed parameter estimates for artificial financial market, we develop an 

agent-based simulation model using Netlogo platform [43]. At initialization, all parameters of the 

model are equal to the values defined in Table 1, and values of all variables; , ,  , , 

,  ,  ,  , , , , , and  are set to zero. We investigate the 

performance of 5000 simulation runs; each containing 4000 daily observations. In the following 

subsection, simulation results are displayed. 

Table 1. Parameters for the simulation of the financial markets under loss aversion behavioural bias. 

Param

eter 

Value 

Description of parameter 

 1 Price settlement parameter 

 0.04 Extrapolating parameter 

 0.04 Reverting parameter 

 0.975 Memory parameter 

 300 Intensity of choice parameter 

 0.01 Standard deviation of the random factors affecting the price settlement process 

 
0.05 Standard deviation of the additional random orders of technical trading  

 
0.01 Standard deviation of the additional random orders of fundamental trading  

 2.25 Loss aversion parameter 

 

4.2 Simulation Results 

In this subsection, important results are illustrated. Fig. 1. Depicts the price evolution, returns, 

and weights of one simulation run. Note that, prices are random walk, and they are fluctuating 

around the fundamental values. Returns possess the excess volatility and clustered volatility 

features. Finally, traders are fluctuating between the three trading strategies according to their 

payoffs.  

To check the scaling behaviour of the artificial market under the estimated parameters, we 

compute the scaling exponent using detrended fluctuation analysis. Fig. 2 displays the estimation 

of the scaling exponent for raw  returns. 

Note the linear relationship on a log-log scale between the average fluctuation , and the time 

scale, n indicates the presence of scaling in the time series at hand. The  yields a value of 0.43, 

which is close to that of the real financial markets. This result indicates white-noise processes. 
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Fig. 1. Price evolution, returns, and weights of a simulation run.  

Fig. 3 displays the estimation of the scaling exponent for absolute  returns. Note linear 

relationship on a log-log scale between the average fluctuation , and the time scale, n 

indicates the presence of scaling in all the time series at hand. 
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Fig. 2. Estimation of self-similarity parameter H for raw returns. To estimate the self-similarity parameter, we 

follow Peng et al. (1994) and perform a detrended fluctuation analysis (DFA). The slope of the line relating 

 to  is the estimated scaling exponent,  The scaling exponent  yields a value of 

0.43 0.054, which is close to the theoretically expected value of the white-noise process.  
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Fig. 3. Estimation of self-similarity parameter H for absolute returns. A linear relationship on a log-log scale 

plot indicates the presence of power-law scaling. The slope of the line relating  to  is the estimated 

scaling exponent,  The scaling exponent  reveals a value of 0.84 0.071, which indicates 

persistent long-range (power-law) autocorrelations in absolute returns for the time series under investigation. 
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The scaling exponent  reveals a value of 0.84, which is in line with those for real financial 

markets, showing long-range power-law autocorrelations in absolute returns. 

Now, we investigate the robustness of the scaling power-law. Table 2 reports the scaling 

exponent of raw returns , and the scaling exponent of absolute returns  for the estimates of 

the mean, the 5 percent, 25 percent, 50 percent, 75 percent, and 95 percent quantiles of these 

statistics.  

For instance,  equals to 0.44 and 0.51for the lower and upper quantile, which are close to the 

results obtained for real market (Mandelbrot, 1963). This is in good agreement with absence of 

long memory in empirical financial returns and implies a small degree for predicting price 

changes. Moreover, estimates of , for instance, hover between 0.80and 0.93 in 90 percent of 

the cases, which are close to the values reported for the financial (Mandelbrot, 1963). These 

values show persistent long-range autocorrelation in absolute return series.  
 

Table 2. The scaling exponent for the raw and absolute returns, respectively. The table 

reports the scaling exponent of raw returns , and the scaling exponent of absolute returns  

for the estimates of the mean, the 5 percent, 25 percent, 50 percent, 75 percent, and 95 percent 

quantiles of these statistics. Computations are based on 5000 time series, each containing 4000 

observations.  

Mean/ 

quantile   

Mean 0.49 0.87 

0.05 0.40 0.80 

0.25 0.44 0.84 

0.50 0.48 0.87 

0.75 0.52 0.90 

0.95 0.57 0.93 

To sum up, the results show that the simulation with the proposed parameter estimates exhibit 

the stylized facts of real financial markets, such as random-walk prices, excess volatility, 

clustered volatility, and power-law tails. 

5. Conclusion 

Agent-Based Models (ABM) are able to capture important stylized facts of financial markets, 

such as clustered volatility, excess volatility, random-walk prices, fat-tailed returns distribution, 

power-law tails, and fractal structure. Accordingly, ABM were rapidly used in last decade as 

traditional economic models failed to explain complex behavior especially during and after crisis 

periods. Many models were introduced to simulate real behavior such as agents’ irrational 

trading behavior. Selim et al. (Selim et al., 2015) proposed introducing loss-aversion behavior 

bias as an application of the prospect theory. The model performed very well in simulating the 
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trading behavior in real financial markets. Thereby, estimating the model parameters is important 

to use it as a testbed by investors, researchers, and decision makers. In this paper, stability and 

bifurcation analysis is run to estimate the model’s key parameters. Three conditions were 

reached to achieve the estimation process. 
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