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ABSTRACT 

In a recent work [1], we developed and analyzed a classifier for multiple M-ary 
Frequency Shift Keying (MFSK) signals that traveled over a static frequency non-
selective Rayleigh fading channel and are contaminated with additive white Gaussian 
noise. In this paper, we extend the classifier to the case in which the MFSK signals 
traveled over a time varying flat correlated fading channel and contaminated with 
impulsive noise. Specifically, the considered impulsive noise is the Middelton's class 
A noise model. The classifier is based on approximating the likelihood function (LF) 
of the received signal. We use complex envelope representation of the signals and 
noise to derive the likelihood function. The Karhunen-Loeve expansion is used to 
have a more precise description of the fading process. Simulation experiments are 
illustrated to evaluate the performance of the classifier and to validate the theoretical 
developments. 
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I. INTRODUCTION 

Signal classification is an intermediate step between signal interception and 
demodulation. It plays an important role in both military and civilian applications due 
to its capability of placing several receivers in one universal receiver. Inimilitary 
applications, the foremost purpose of electronic surveillance is the threat recognition, 
by comparing the signal characteristics of intercepted emitters against a catalog of 
characteristics or signal sorting parameters. This is desirable for a number of reasons 
including signal confirmation, interference identification, suitable jamming signal 
selection, and proper demodulator selection (to prevent damage of the signal 
information content). In civilian application, the task of monitoring electromagnetic 
signal transmission in the RF spectrum has become a priority in broadcasting controi 
especially with the increasing demand for radio communications. Another task is the 
supervision of admitted wireless stations, to determine whether they obey the limits 
of their operation parameters, as well as to detect non-licensed transmitters. 

Literature includes various articles in the area of MFSK signal classification [1]441 
For example, El-Mandy and Namazi [1] developed and analyzed classifier for 
multiple additive MFSK signals traveled over a time invariant frequency non-selective 
fading channel. The classifier was derived for both synchronous and asynchronous 
waveforms. Two cases were considered in [1]; the first one was concerned with the 
signals that have identical modulation type (for example BFSK or QFSK). The 
second case deals with the signals with different modulation type. Bessel and 
Charles [21 explored a general framework that theoretically links the higher-order 
correlation domain with statistical decision theory. Then, they applied this technique 
to the problem of classification of MFSK signals when contaminated with additive 
white Gaussian noise. They presented two types of MFSK classifiers: channelized 
and non-channelized classifiers. It was claimed that the non-channelized classifiers 
are immune to imperfect knowledge of exact frequency locations. They extended 
their technique to the classification of asynchronous MFSK Signals [3] in which the 
signal arrival time is unknown. Nandi and Azzouz [4] presented two algorithms for 
classification of communication signals. The first one utilized the decision theoretic 
approach in which a global procedure for analog and digitally modulated signal 
recognition is proposed. The second algorithm was based on the artificial neural 
network. It was found that good performance is obtained by the algorithm when the 
signal to noise ratio (SNR) = 15 dB. 

As presented, the researchers have not focused on the problem of classification of 
MFSK signals traveled over a correlated fading channel. Moreover, they assumed 
that the received signal is contaminated with white Gaussian noise. Non of them 
focus on developing classifiers under non-Gaussian impulsive noise. In this paper, 
we develop a classifier for M-ary frequency shift keying signals received through a 
time varying flat correlated fading channel. The signal is assumed to be 
contaminated with impulsive non-Gaussian noise, specifically with Middelton's class 
A impulsive noise model is a more practical model, which arises, in digital 
communication systems. 

The general model of the MFSK signal considered in this study has the form [1] 
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S(t) = Ref FE7E exp{j(2gf (4)t + 0"}x p(t - n7;)e".'} 	(1) 

where E, is the signal energy, (9(")  is a set of random variables that is uniformly 
distributed over the interval [-g,n], n is the symbol number, p(t) is the standard unit 
pulse of duration T„ and f (" )  is a set of independent identically distributed (i.i.d) 
discrete random variables (r.v's), the elements of which are uniformly distributed on 
{-B/2, B/2], where B is the bandwidth of the MFSK signal. The considered MFSK 
signal arises in many digital communication systems. It represents the signal models 
in many applications such as radar and sonar of unknown Doppler returns and 
spread spectrum communications of fast frequency hopping kind. Also, this signal is 
useful for modeling phase-modulated signals, which tend to occupy few orthogonal 
dimensions at all time, under lack of the exact knowledge of the carrier frequency. It 
is required to classify these transmissions, that is to determine M for each received 
signal, where M indicates the modulation type (M=2 corresponds to BFSK, M=4 
corresponds to QFSK and so on). 

This paper is organized as follows. In section II, the model and the features of the 
class A impulsive noise model are summarized. In section III, we mathematically 
formulate the classification problem for MFSK signals. The mathematical derivation 
of the decision rule is presented in this section. In section IV, simulation experiments 
are presented to demonstrate the performance of the classification scheme. Finally 
we present the summary and conclusions in section V. 

II. CLASS A IMPULSIVE NOISE MODEL 

In order to determine the classifier for the MFSK signals, a mathematical model for 
the impulsive noise is required. Middleton's canonical impulsive noise is often used 
as a statistical-physical model of the impulsive radio noise. In this model, according 
to the relation between the durations of the noise impulses and the spectral 
bandwidth at the receiver, the impulsive noise is classified into three general classes: 
class A, B, and C. Through some experimental measurements, the actual impulsive 
noise supports the Middleton's canonical class A model. The class A impulsive noise 
has a density function f (n) that consists of an infinite weighted sum of Gaussian 
densities with decreasing weights and increasing variances. Specifically, the 
probability density function of the normalized (unit power) noise is given by [5, pp. 
86]: 

e-A A. n2 
f (n)    exp[ 	2  

m=0 /71!1/2/r0-.2 	
20.. 

 (2) 

where the parameter A is called the impulsive index: it is the product of the received 
average number of impulses per unit time and the duration of an impulse. This 
parameter defines the impulsiveness of the noise. For small A, the noise becomes 
more impulsive and for larger A, the statistical characteristics of the class A impulsive 
noise approach those of Gaussian noise. The variances o 2  are related to the 
physical parameters and are given by: 
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2 	("1  / 	+  am   
1+U 

m = 0,1,2,... 
(3) 

where F is the ratio of the mean power of the Gaussian noise component to the non-
Gaussian impulsive noise component. An approximation to the model in (2) can be 
obtained by limiting the sum to the first Z terms only. Small value of Z is found to be 
sufficient to give excellent approximation to the noise probability density functions. 

III. MATHEMATICAL FORMULATION OF MFSK CLASSIFIER 

In this section, we derive the decision rule for the classification of MFSK signals that 
traveled over flat time varying correlated fading channel and contaminated with class 
A impulsive noise described in section II. Consider the complex envelope of a 
received observation, y(t) , which consists of the per-symbol complex envelope of 
MFSK signal received through time varying flat correlated fading channel plus the 
complex envelope of a white Gaussian noise: 

5-40. a (t) -(t) + 	 (3) 

where ITN is the complex envelope of the class A impulsive non-Gaussian noise 
process and :s.-(r) is the per-symbol complex envelope of the MFSK signal. In 
addition, a(r) is complex Gaussian process with autocorrelation function R.,(2-) . The 
fading rate is slow such that the fading complex parameter a(t) is practically 
constant over the signal symbol duration T.,. The per-symbol complex envelope of 
the signal 	is given by [3] 

= ,17e (28 f  '+ 8  ) 	 (4) 

where {f } is the frequency of the signal which is assumed to be a discrete random 
variable uniformly distributed on [-B/2, B/2], B is the bandwidth of the signal 

defined as B = — 
22; and 

0 is the phase of the signal which is uniformly distributed 

over the interval Hir,iri . The fading process a (t) may be expanded using the 
Karhunen-Loeve expansion [6, Ch. 9], [7, Ch. 3] as 

a -(r) =Zak  0, (t) 
	

t e [(7,1)] 	 (5) 
kr' 

where a, k =1,2,..,00 are zero-mean independent Gaussian complex variables with 

variances A, - 	laki 2  I and Oh  (r); k =1,2,..,00 are orthonormal eigen functions 
which solve the homogeneous integral equation 

R5  (t -i-)Ok(r)dr = 2k Ok(t), 	t e a, b] 	 (6) 
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:summation in (5) can be truncated to the first K terms. If we order the eigen 

functior.s sc That A,?.12 , then (5) can be written as 

(() = 	k vk(t), 	 E [a, b] 	 (7 ) 
k=1 

The relevant likelihood function (LF) of 'At) with respect to the random parameters 

a(t) nrid f is given by: 

4[,j(t);d(t), f ]=E' 	Am' 	T'S (1c7(t)s-(t)12 -2Reky (Oa—  (trs•  (Oldt 	(8) 
M!\/271-0-2,, 	20 „, 

where T is the symbol duration of the MFSK signal. By substitution of (7) and (4) into 

(8), we have: 

e -AAm 

64.1)(r);ak, f 1= 	 ex 
m=o mr.1/27rcr„,2  

2 

dt 
CT ,,, 	0 
1  2 (71 E:i 	(f ) .?(1)1 

(9) 

 

- 	 Re 13/(r) wii; e-i(2“  `.°) di)) 
k=1 

  

The first term inside °.ie exponential of (9) can be expanded as 

2 rir 	 K 1•1 	 T, 	, 

l a  k (bk (t) . ?(1) dl = 
0 k=1 	

E pakok (I k 
k=1 0 	

.(t)12dt - EE 
k loj  0 

fRetakok(t)soici;0,(03 -(0}* (10) 

Using the orthonormal property of the basis waveforms, the second term in (10) is 

vanished and (10) becomes 

Elak I 

7" ,  K 	 K 

EakO 	
2 

k (t)-At dt =Y., 	
2 

(11) 
P k=1 	 k.I 

where y, = E, T, is the per-symbol signal to noise ratio (since the noise is normalized 

to have unit power). it is clear that this term is a hypothesis independent term and 

can be dropped without affecting the decision of the classifier, then, the LF in (9) can 
be written as 

Ary-  (r);a , ft= ..o m! e 	A 	 exp{ 2F# 
112ga-  „,2 	 k=1 

,-; 
where Yk (f)= 1  7 .13;(t) Ok(f)e'm f  dr is the normalized Fourier transform of 

VT, c, 

y(t)¢k (t) within the symbol duration of the signal 7', and E, is the energy of the 

signal. For N independent and identically distributed (i.i.d) symbols, the LF, 

ji(r);Fik , f ] = riArs,(t);ak ,f]  , is given by 

lYk(f)liakicos(60) 	 (12) 



N K 
ZE In EI 
n.I 

/ 	 -- \ 2  

1+ Yz  

/ 

\ 
e - A  A"' 

A„ [At); 	, 	exp 
c–om!V27ro-,2,, ) 0-2 Ak  Yk(n1( f 

2 
(15) 
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LT(i);ak,f = 

\N 
e -A A s” 

\ ..o m!V2a-o-  2  ) (13) 

exp In EB,ak  , exp 	11/1,, (4)(f )lcos(8 ) 
O ,„ k.1 

   

1 	 1-' where },,.(" )(f)= —,T, 
4 
 J(r) 0k (1)e-' 

(„-1)1; 
dt is the normalized Fourier transform of 

y(t)0k (t) within the n-th symbol duration of the signal and EBa J  denotes the 
expectation with respect to the random variables 0, a, and f respectively. 
Expanding the inner exponentials using Taylor's series representation 
(e' = I + x +0.5x 2  + ); truncated to the third term, then taking the expectation with 
respect to B and a, , we have 

N 
"' „b7(t), f] 	e A A,,;  
	, 	 
m! \127to-  ,2„ 

    

(14) 

exp 
N K / 	r---\ 2 

ln Ef 1+ 	 AklYk(')  (f)1
2 

 

     

The 3rd  term truncation in the previous equation is performed to give a simple 
structure classification rule and also provide a good performance. Taking the average 
over the random variable a, we have 

By taking the average over f , the likelihood function becomes 

A„ Li)-(t)] 

N 
e - A  A' 

\ ,to m!V2iro- ,2„ 
exp 

N K Eln  
n-I k-I 

\2 i 
117 M/2  E  

1+ Af 0,2 
-M S. 	n' 	I= \ 2 

(16) 

     

• 

''7;  where 17::,'„)  =— J -y-  (t) 0, (t)e 	dt is the normalized Fourier transform of :1(1)0k  (t) T, 

at the m-th frequency location of the signal evaluated at the n-th symbol duration of 
that signal. For our assumption of small signal to noise ratio and using linear 
approximation of In(1+x), the log-likelihood function (LLF) finally becomes 



\ 2 
In 	 + 	 I

v  
\ m! 

f' A 

6a, 	6,a  

m ) 	K 	M / 2 	2  Is Vk 	(n)
2 L., L 'KA

a-

1  
k-11 	

f.4 
 

2 
(19) 6,:,[Y(t)]= 

n=1 
MAX m=°J.2 
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( 2 
e'  A"' 	(OF- ) 

A', [3(r)] N In(E 	 E12 mkFro-T cf,,,2  n=1 M -A4  
\ 2 

1 "T 
where Yk(" )  — j ;y-  (t) q5, (t) e 	27;  dt is the normalized Fourier transform of 

T, („Iyi;  

At) 0,(r) at the m-th frequency location of the signal evaluated at the n-th symbol 
duration of that signal. The proposed signal classifier under class A impulsive noise 
is derived using the LLF given by (17). But, designing a classifier based on this LLF 
has great complications. A simplification of this LLF can be performed under the 
condition that the impulsive index A is sufficiently small. Using this assumption, the 
infinite sum in (2) can be approximated by the maximum value of its first three terms 
[7]. According to this approximation, the pdf of the noise becomes: 

e" 	 p( n2  )1 f (n) = max 	ex - m=0,I, 2 rn!XT-7,2,,  (18) 

Then using (17) and (18), the simplified LLF can be written as 

(17) 

The developed classifier is derived using the resulted LLF given by (19). In this case, 
it is assumed that the symbol duration of the signal is known and the received 

observation contains Al,  FSK signal under the hypothesis H,  where I = 0, 1, 2,.... 

The symbol duration of the signal under the hypothesis Hi is denoted by T ,
• In the 

general case, we have a multiple hypotheses testing problem. Here, the problem is 
solved by deriving the decision rule, which determines the best decision among 
them. The decision rule is derived from the LLF equation for each hypothesis, which 
is derived from (19). In the following we will consider a binary hypotheses testing 
problem; extension to more hypotheses testing is straightforward. Suppose that we 

have two equally likely hypotheses: H. and HI corresponding to Mo and M1, 
respectively with M1 < Mo. The binary test can be formulated as follows. Given Mo 
and M1, the intent is to identify whether Mo or M1 is the modulation type of the 
received signal. From (19) it follows that the optimal decision rule is to compare the 
following expression to a threshold 71  , that is, 
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(20)  
where 

(" 4-1 )71J 	 -.12 q  --I,k 1 y 	= 
T 	f Y(t) 0k (r)e 	2T" dt; 1 = 0,1 

(21)  
; (1=0,1) is the symbol duration of signal under hypothesis / and 77 is a threshold 

level. The receiver announces H, (or M1  FSK) when the threshold is exceeded and 
decides in favor of H,, (or Mp FSK) otherwise. 

IV. SIMULATION EXPERIMENTS 

In this section we present the results of the simulation experiments. Experimental 
evaluation of the performance of the MFSK classifier is performed for the two 
hypotheses test; namely, the QFSK modulation corresponding to MIFSK and the 8-
FSK modulation corresponding to MoFSK. The autocorrelation function of the 
correlated fading channel is chosen to be R,,(r) = .1„(27r far) where .1„(x) is the 
modified Bessel function of zero order. The parameters used in the simulation are: 
Me  = 8 (i.e. 8-FSK), M, = 4 (i.e. QFSK), L =500 kHz (carrier frequency) and the 
fading rate is considered: LT, =0.02. Extensive Monte carlo simulations are 
implemented to evaluate the performance of the classifier. The performance of the 
classifier is measured in terms of the probability of mis-classification (Pe ) as a 
function of the signal to noise ratio (SNR). The effect of the variation of the impulsive 
index (A) and the mean power ratio of Gaussian to impulsive noise (F ) on the 
performance of the classifier is studied. Also, the effect of the frequency offset on the 
performance of both classifiers is studied for different values of the parameters A and 
r. 

In Fig.1, the probability of mis-classification is evaluated by assuming that the 
mean power ratio of the Gaussian to the impulsive noise r =0.001 and varying the 
impulsive index A between the values 0.001, 0.01, and 0.1. The figure shows that as 
the impulsive index A becomes smaller, the noise impulsiveness becomes stronger, 
thus causing larger performance degradation. In Fig.2, the impulsive index is 
assumed to be 1, and the mean power ratio of the Gaussian to the impulsive noise 
varies in the range [0.01, 31. The results shows that when A =1 and r becomes 
larger, the performance of the system is enhanced. This is because when A =1, an 
the impulsive noise occurs continuously, thus the impulsiveness becomes weaker 
and weaker as F becomes larger. 
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To illustrate the performance of the synchronous decision rule against a carrier 
frequency offset between the transmitter and the classifier, we present Figure 3 
which plots the probability of mis-classification for QFSK/8-FSK as a function of the 
frequency offset for different values of the impulsive index A. The figure shows that 
the probability of mis-classification increases as the frequency offset increases. It is 
clear from this figure that the performance of the decision rule is invariant to 
frequency offset over a wide range of frequencies. This range is increased as the 
impulsive index A becomes larger, for example, at A=0.0001, this frequency range is 
up to 80 kHz while at A=1, this range is extended to 135 kHz. This is because as A 
increased, the impulsiveness become weaker and then this is implies increasing the 
classifier resistivety against frequency offset. When the carrier offset is large enough, 
part of the signal lies in the stop band of the noise limiting band pass filter, causing 
signal distortion. The probability of mis-classification gets worse as the signal 
distortion increases. 

V. CONCLUSIONS 

We developed a classifier for MFSK signals contaminated with class A 
impulsive noise and traveled over a time varying correlated flat fading channel. 
Karhunen-Loeve expansion has been used to expand the correlated fading channel 
random process. The approximated likelihood function of the MFSK is used to derive 
the decision rule for the classifier. The decision rule depends on the impulsive noise 
parameters. 
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Fig. 1 : Probability of mis-classification versus SNR for A= 0.001, 0.01, 0.1, and 
r =0.001. 
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Fig. 2 : Probability of mis-classification versus SNR for A=1 and r =0.1, =1, and 
r =2. 
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Fig. 3 : Probability of mis-classification Versus the frequency Offset for the 
synchronous classifier for different values of A and for r =0.01 and SNR=30 dB. 
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