
Proceedings of the 10th  ASAT Conference, 13-15 May 2003 	Paper CT-11 867 

Military Technical College 
Kobry El•Kobbah 

Cairo, Egypt 

10th  International Conference 
On Aerospace Sciences& 

Aviation Technology 

A LOW LATENCY PROXY PREFETCHING CACHING 
ALGORITHM 

Fatma A. Omara* 
*Assoc. Prof, Computer Science Dept., Faculty of Computers and Information, Cairo 

University, IEEE Member, Fax 3350109. 
Abstract 
The Web proxy cache system was deployed to save network bandwidth, balance 
server load, and reduce network latency by storing copies of popular documents 
in the client and proxy caches for the Uniform Resource Locator (URL) 
requests. To solve the problem of the Web's slow end-user response time, a 
Web proxy caching and prefetching strategy has been developed and 
implemented by the auother to provide the users by the information they mostly 
likely want to browse in user profiles. This developed strategy uses the Reverse 
Aggressive technique for prefetching, which was proposed theortically. This 
developed strategy has been implemented with different cache sizes using a 
Web caching simulator. The tradional caching replacement policies such as 
Least-Recently-Used (LRU), Hybrid, and Size policies were already existed in 
this simultor. This simulator has been modified by the work in this paper such 
that the most recent replacement policies; Last-In-First-Out (LIFO), First-Try, 
Swapping and Place-Holder policies under infinite sized cache have been 
implemented. The performance measurements of the developed strategy have 
been studied using the tradional replacement policies, and the most recent 
replacement policies. Also, a comparative study has been done to clarify the 
benefits of the Reverse Aggressive caching prefetching algorithm with respect to 
the Fixed-Horizon caching prefetching algorithm with respect to the Reduced 
Latency (RL). According to the implementation results, it has been found that 
the average latency has been reduced at a higher degree by using the Reverse 
Aggressive cache prefetching strategy. 
Index Terms - Caching, Proxy caching, File Systems, and Operating Systems 
1. Introduction 
Rapid improvements in the processor and memory speeds have created a 
situation in which I/0, in particular file system I/0, has become the major 
bottleneck to the operating systems performance. Unfortunately, access latency 
is still a problem and is not likely to improve significantly due to the physical 
limitations of storage devices and network transfer latencies [1]. 



Proceedings of the 10th  ASAT Conference, 13-15 May 2003 	Paper CT-11 868 

During the last few years, using of the World Wide Web (WWW) is increased 
exponentially by increasing the number of users, both individuals and 
businesses, as well as increasing of servers, multimedia contents and real-time 
audio/video transmissions. In addition, the Internet pipes got bigger and bigger 
by using new technologies. This allows the users to access more data during the 
time they are connected to the Internet. In addition, the contents of the Web 
documents become more complicated where more multi-media capabilities have 
been included. These lead to increase the Hyper Text Transmission Protocol 
(HTTP) Traffic [2]. On the other hand, the HTTP traffic has the following 
Problems: 

- Increase in the network bandwidth usage. 
- Increase in the latency. 
- Increase in the load overhead on document servers. 

Therefore, caching at various points provides a natural way to overcome these 
Web problems. A common form of Web caching is at HTTP proxies. These 
HTTP proxies are intermediaries between browser processes (i.e., clients nodes) 
and Web servers on the Internet (see Fig. (1)). 

Client 

L4 Client 

Cache 

Switch Router 

Client 

Cache Cache 

Fig. (1) The Common Proxy Caching Configuration 

In general, the use of caching proxies can reduce three different issues [2]: 
1. The number of requests that reach servers, 
2. The volume of network traffic resulting from 

document requests, 
3. The latency that an end-user experiences in retrieving a 

document. 
On the other hand, the latency caused by clients or server could be reduced by 
using prefetching between caching proxy and browsers. Furthermore, the 
prefetching takes a heuristic-based approach using knowledge of past accesses 
to predict future access without user or application intervention. As a result, 
applications automatically receive reduced latencies, better use of available 
bandwidth batch file system via batched file system requests, and improved Web 
proxy cache utilization [1]. 



Proceedings of the 10" ASAT Conference, 13-15 May 2003 	Paper CT-11 869 

Although caching and prefetching are key ideas in the success of the Web, an 
inefficient forced approach to them will lead to disastrous performance. On the 
other hand, many strategies for prefetching in read-intensive applications have 
been used such as Fixed-Horizon, Aggressive, and Reverse - Aggressive 
strategies. 
The Fixed-Horizon prefetching is based on the Second Informed Prefetching 
(TIP2) system of Hugo Patterson, Gibson et al.[3]. This system manages 
allocation of cache space and I/O bandwidth between multiple processes, where 
only some of which are disclosing some or all of their future accesses. TIP2 is 
designed for the case in which sufficient I/O bandwidth exists to service the 
request stream without stalling on I/O [4]. 
Aggressive prefetching prefetches a block as early as possible, provided that the 
prefetched block is needed by the application sooner than the block that it will 
replace. When insufficient bandwidth is available, in particular, it becomes more 
important to schedule prefetch requests to ensure that no bandwidth is wasted. It 
uses knowledge of future accesses to minimize application elapsed time for both 
small and large numbers of disks [5]. 
The Reverse-Aggressive prefetching decisions depend on information farther in 
the future than the other algorithms because it prefetches blocks in parallel if 
these blocks reside on different disks [6]. This strategy was proposed 
therotically, and it has been implemented and verficated by the work in this 
paper. 
According to the work in this paper, the sophisticated caching and prefetching 
strategy using the Reverse-Aggressive technique with different replacement 
policies, has been developed to improve the Web performance without 
saturating the Internet with useless traffic. The developed caching and 
prefetching strategy has been implemented using the Web simulator [7]. This 
Web simulator includes steps to implement Fixed-Horizon caching and 
prefetching strategy using the tradional replacement policies; LRU, Size, and 
Hybrid. The simulator has been modified by the work in this paper such that the 
implementation of the Reverse-Aggressive caching and prefetching strategy has 
been included. Also, the most recent replacement policies; First-Try, Swapping 
Position, and Last-In-First-Out (LIFO), and Place-Holder policies are 
implemented and included. Furthermore, a comparative study of the Web 
caching prefetching strategy based on the Reverse-Aggressive technique and the 
Fixed-Horizon technique has been implemented to reveal the benefits of using 
the Reverse-Aggressive prefetching with caching using the tradional 
replacement policies, as well as, the most recent replacement policies 
The rest of this paper is organized as follows; section 2 handles the different 
proxy caching policies. Section 3 handles the modification propagation schemes 
to over- come the cache inconsistent problem, which is considered very 



Proceedings of the 10th  ASAT Conference, 13-15 May 2003 	Paper CT-11 870 

important in the write applictions case. The caching infrastructure schemes are 
handled in section 4. Section 5 is dedicated to illustrate the Reverse-Aggressive 
prefetching technique implementation. Section 6 illustrates the used Web cach 
simulator. The performnce measurements of the proposed Web caching 
prefetching strategy using different replacement policies with respect to RL 
prameter are given in section 7. Also, a comparative study of the Web caching 
prefetching using Reverse-Aggressive technique and Fixed-Horizon technique 
using different replacement policies is presented in section 7. Finally, the 
conclusions are presented in section 8. 
2. The Proxy Caching Policies 
The behavior of a cache is defined by a set of cache policies such as prefetching, 
routing, coherency, and removal policies [8]. 
2.1 Prefetching Policies 
Prefetching can be used with the Web proxy caching in different ways. For 
example, a client might use prefetching to load objects from the cache into the 
browser. This may be interesting in reducing the latency due to slow dialup 
connections. On the other hand, caches could be customized to accept objects 
pushed out from servers. This provides a technique whereby servers can perform 
push-caching of popular documents, and as a result, fewer requests will be 
served at the origin server reducing server connection and improving 
performance [8]. 
2.2 Routing Policies 
The routing policies determine how a cache retrieves an object. Clients, caches 
and servers might use the routing policy in a different manner. Clients could 
specify routing policies that use different prior services. A cache administrator, 
on the other hand, might specify a routing policy that allows cooperation among 
multiple caches. A routing policy provided by a site might be used to alternate 
requests between different mirrors of that site. Even better, the routing policy 
might determine the optimal mirror the cache should contact [8]. 
2.3 Coherency Policies 
The coherency policies determine how a cache responds to a request for an 
object in the cache. The coherency policy decides either to consider the object 
fresh or stale. In the case of stale objects, the cache consults the server to verify 
that the copy is up-to-date. A commonly used algorithm in deciding coherency 
is the TTL algorithm [9]. This algorithm determines whether an object is fresh 
or stale by evaluating the following equation: 

T. — Tin  < K (Tin  - Tinst-mod) 
Where Tnow  is the time of the request, Th, is the time when the object entered the 
cache, Tint-mod is the time when the object was last changed, and K is a constant. 
If the Boolean expression is true, then the document is considered fresh [9]. 



Proceedings of the 10°  ASAT Conference, 13-15 May 2003 	Paper CT-11 871 

2.4 Removal Policies 
Two considerations must be taken into account in designing a removal policy for 
a Web caching system. First consideration is that real caches have finite size, 
and thus a request for a non-cached document may cause the removal of one or 
more cached documents. Second consideration is related to the effect of removal 
policies on Hit Rate (HR), Weighted Hit Rate (WHR), and cache size 
parameters. On the other hand, the term "removal" policy is used rather than 
"replacement" because a policy might be run periodically to remove documents 
until free space reaches a threshold. Removal polices are based on factors such 
as document size, time the document entered the cache, time of last access, 
number of references, in deciding which document has to be removed [10]. 
3. Modification Propagation Schemes 
In the file systems in which the cache is located on clients' nodes, a file's data 
may simultaneously be cached on multiple nodes. In such a situation, when the 
caches of all these nodes contain exactly the same copies of a file data, then the 
caches are consistent. It is possible for the caches to become inconsistent when 
the file data is changed by one of the clients and the corresponding data cached 
at other nodes are not changed. The used modification propagation scheme has a 
critical effect on the system's performance and reliability. Two schemes can be 
used to modify propagation [11]. These are write-through and delayed-write 
schemes. 
3.1. Write-Through Scheme 
According to the write-through scheme, when a cache entry is modified, the new 
value is immediately sent to the server for updating the master copy of the file. 
This scheme has two main advantages; high degree of reliability and suitability 
since every modification is immediately propagated to the server having the 
master copy of the file. The risk of updated data getting lost (when a client 
crashes) is very low. A major drawback of this scheme is its poor write 
performance because each write access has to wait until the information is 
written to the master copy of the server. Notice that with the write-through 
scheme, the advantages of data caching are only for read accesses. Therefore, 
this scheme is suitable for use only in those cases in which the ratio of read-to-
write accesses is fairly large [11]. 
3.2. Delayed-Write Scheme 
Although the write-through scheme helps on reads, it does not help in reducing 

the network traffic for writes. Therefore, to reduce network traffic for writes as 
well, some systems use the delayed-write scheme. In this scheme, when a cache 
entry is modified, the new value is written only to the cache and the client just 
makes a note that the cache entry has been updated. Some time later, all updated 
cache entries corresponding to a file are gathered together and sent to the server 



Proceedings of the lOw  ASAT Conference, 1345 May 2003 	Paper CT-11 872 

at a time. Different policies are used with delayed-write scheme. The most 
commonly used approaches are as follows: 
Write on Ejection From Cache; 
According to this method, modified data in a cache entry is sent to the server 
when the cache replacement policy has decided to eject it from the client's 
cache. This method can result in good performance, but some data can reside in 
the client's cache for a long time before they are sent to the server. Such data are 
subject to a reliability problem [12]. 
Periodic Write; 
hi this method, the cache is scanned periodically, at regular intervals, and any 
cached data that have been modified since the last scan are sent to the server. 
Sprite [12] uses this method with an interval of 30 seconds. 
Write On Close; 
In this method, the modifications made to a cached data by a client are sent to 
the server when the corresponding file is closed by the client. Notice that the 
write-on-close policy is a perfect match than others. However, it does not help 
much in reducing network traffic for those files that are open for very short 
periods or are rarely modified. Furthermore, the close operation takes a long 
time because all modified data must be written to the server before the operation 
completes. Therefore, this policy should be used only in cases in which files are 
open for long periods and are frequently modified [9]. 
Furthermore, the delayed-write scheme helps in performance improvement for 
write accesses due to the following reasons [12]: 

Write accesses complete more quickly because the new value is 
written only in the cache of the client performing the write. 
Modified data may be deleted before the time to sent them to the 
server. For example, many programs create temporary files, use 
them, and delete them soon after they are created. In such cases, 
modifications need not be propagated at all to the server, resulting 
in a major performance gain. 
Gathering of all update files then sending them together to the 
server is more efficient than sending each update separately. 

However, delayed-write scheme suffers from the reliability problem, since 
modifications not yet sent to the server from client's cache might be lost if the 
client crashes. Another drawback of this approach is that delaying the 
propagation of modifications to the server results in fuzzier file sharing, because 
when another process reads the file, what it gets depends on the timing [12]. 
4. The Caching Infrastructure 
The caching infrastructure is based on subdividing a policy into actions that are 
taken when specific events occur [8]. In Fig. (2), the relevant states of a Web 



Stale Public 
Object 

Request/Prefetch 	Private Stored 
Object 

Removed From 
Cache 

Proceedings of the 10°  ASAT Conference, 13-15 May 2003 	Paper CT-11 873 

object are shown. The arcs in the figure represent events that cause an object 
state to change [8]. 
For example, the changes in state of the Web object http://wonderland.net/tea-
party.html,  are illustrated; firstly the Dormouse requests the tea party object and 
later Alice does. Initially, the tea party object exists in the Not Cached state. 
When the Dormouse makes a request for the tea party object, the routing policy 
is used to determine how the cache retrieves a copy of the tea party object. This 
object enters the Private Object state. Now, the placement policy determines 
whether the tea party object is stored in the cache or not. If the object is stored, 
then it enters the Fresh Public Object state. Later, when Alice requests the tea 
party object, the Requested state is entered. At this state, the coherency policy 
determines whether the object is fresh or stale and, if stale, the coherency policy 
checks whether the original object has changed using a Get If-Modified-Since 

Fig. (2) States of a Document in a Cache 
(IMS) request [8]. The amount of space available in the cache also affects the 
state of Web objects. When the cached bytes exceed capacity, the cache uses a 
removal policy to determine the best objects to be removed. These objects leave 
the Fresh or Stale Public Object states and return to the Not Cached state [8]. 
The work in this paper considers the object in the case of prefetching and storing 
in the cache (i.e., Private Object, Fresh Public, and Stale Public states). 
Although there are prefetching techniques like Fixed-Horizon, Aggressive, and 
Reverse-Aggressive, we focus on the Reverse-Aggressive prefetching technique, 
which was proposed theoretically, but has been implemented using a Web 
simulator by the work in this paper. 



LJ 

511 FITI  
LJ 	 ncu 

Cache 

6 
t 	t 

1 	
t 	t 
2 	3 4 5 

(a) A Natural Extension To The Aggressive Algorithm. 

F. F. 

L±d 
rni n n 

A LA_I 
R 

n 

Proceedings of the 10th  ASAT Conference, 13-15 May 2003 	Paper CT-11 874 

5. The Reverse-Aggressive Technique 
It is a theoretical model that captures the important characteristics of a system 
for prefetching and caching from multiple disks. The optimal prefetching and 
caching schedule in this model minimize the elapsed time required to serve a 
given request stream [6]. To illustrate this, consider the following example. 
Example: 
Consider an application that references blocks in sequence (A, B, C, D, E, F), 
and the cache initially holds A, B, D, and F. Blocks A, C, E, and P reside on one 
disk; blocks B and D on a different disk (see Fig. 3). A straight forward 
approach is to use the aggressive algorithm [51 which always fetch the missing 
block that will be referenced sonnets, and evicts the block whose next reference 
is furthest in the future, but do not fetch if the evicted block will be referenced 
before the fetched block. Fig. (3.a) represents the cache block changes. The 
produced schedule by this algorithm stalls for one unit of time. Another 
schedule is represented in Fig. (3.6), which is considered faster by one time unit. 
On the first fetch, D is evicted rather than F, even though D is referenced earlier. 
This allows two fetches to proceed in parallel (i.e., reverse aggressive is used) , 
thus saving one time unit. 

References A BCD E F 
Prefetches 
Evictions 	F 	A 

References A BC DE 
Prefetches C D E 
Evictions F A B 

rill 5;1 5-1 A A 
	A 

Cache FIT  F. F. 

n LI 	r  1_6 re-1 LEJ 
t-F71  4_1 I t   r iL  I 	t 

2 	3 
	

5 

(b) Better Algorithm 
Fig. (3) Prefetching and Caching Using Two Disks 

F 



Proceedings of the 10" ASAT Conference, 13-15 May 2003 	Paper CT-11 875 

This example shows that it is helpful to take disk load into account when making 
fetching and eviction decisions. This is the factor that makes the multi-disk 
problem more difficult than the single-disk problem [6]. The advantages of the 
Reverse-Aggressive Algorithm over the Aggressive one are [6]: 

1. Whereas aggressive algorithm chooses evictions without 
considering the relative loads on the disks, reverse aggressive 
algorithm evicts as many disks as possible on the reverse sequence. 
This results in performing close to the best evictions possible for 
those fetches. 

2. Whereas aggressive algorithm can wastefully prefetch ahead on 
some of its disks, reverse aggressive algorithm is in the reverse 
direction. In the forward direction, this translates to performing a 
maximal set of fetches in parallel. 

6. Web Cache Simulator 
The used Web cache simulator uses pre-processed Web access traces, which are 
gathered and published by the Computer Science Department of Boston 
University and the Digital Equipment Corporation (DEC) in the USA, 
respectively [7]. The inputs of these trace files for each HTTP request are as 
follows: 
Unique Web Server ID: It is a unique integer number, which specifies the Web 
server address of the request. 
Unique Path ID: It is a unique integer number, which specifies the path of the request. 
File Size: It is the size of the accessed document, in bytes. 
Latency: The duration of the HTTP request in microseconds. 
Last Modified Time: It is the last modified timestamp in the HTTP reply header.  
Access Time: The time stamp of the HTTP request in seconds. 
This Web simulator does consider cooperation between caches as well as 
concurrent caching operation. The cache operations allow scripts to store objects 
in the cache and purge objects to make more space. Internally, the simulator 
maintains statistics about true/false hits, true/false misses, and latencies. A true 
hit occurs when the object being requested hits in the cache and the object has 
not been modified from the last version stored in the cache. This simulator is 
used to simulate the traditional replacement policies like LRU, Size, and Hybrid. 
It is modified by the work in this paper such that the most recently replacement 
policies; LIFO, First-Try, Swapping and Place-Holder have been included. 
Because this simultor considers proxy cache with different sizes, then the Fixed-
Horizon prefetch strategy is already considered. According to the work in this 
paper, the Reverse-Aggrassive prefetch strategy has also been implemented in 
the simulator by adding a buffer with specific size to store the references, which 
will be prefetching without waiting to store them in the cache. That is the 
opposit of what happens in the Aggressive strategy, where there is a specific 



Proceedings of the 10m  ASAT Conference, 13-15 May 2003 	Paper CT-11 876 

time that must be included after each prefetch to make sure that the reference is 
already stored in the cache. 
7. The Performance Measurements 
A comparative study has been done to compare the Reverse-Aggressive and the 
Fixed-Horizon caching prefetching strategies in reducing latency using a Web 
proxy caching simulator using the traditional replacement policies; LRU, Size, 
and Hybrid; as well as; the most recent replacement policies; First-Try, 
Swapping, Place-Holder and Last-In-First-Out (LIFO) policies. 
According to LRU policy, the document that was least recently requested will 
be selected to be evicted. According to Size policy; the large objects from 
caches will be selected to be evicted to reduce bytes requested from server and 
client latencies [6]. These policies depend on a single attribute of the object. For 
instance, Size removes large objects from the cache, which make room for 
multiple smaller objects. So, it improves the hit rate, but may degrade client 
latencies due to the high network overhead of uncached large documents, As a 
result, cache's hit rate improves. According to Hybrid policy, the evicted 
decoument will be selected according to the following equation [13]. 

{Cs + -
W 

p) wN 
B3 

i.e., the operation for a document P located at server S depends on the following 
parameters: 

Cs; the connected time with server S, 
Bs; the bandwidth of the servers, 
Np; the number of times P has been requested since it was brought into the 
cache, 
Zp; the size of the document P (in bytes). 
WB and WN are constants. 

The estimated values for Cs and Bs are based on the time to fetch documents 
from server S in the recent past [14]. The document with the smallest calculated 
value will be evicted. 
7-1 The Recent Replacement Policies 
There are four polices have been recently developed, First-Try, Swapping, 
Place-Holder, and Last In First Out (LIFO) algorithms. 
According to LIFO policy, the fast block in the list is the one to be evicted. The 
First-Try policy considered the global LRU policy, where the kernel maintains 
a LRU list of all blocks currently in the file cache. When a replacement is 
necessary, the block at the end of the LRU list is suggested as a candidate, and 
its owner process is asked to give up a block [15,16]. The problem of this policy 



Proceedings of the 10 h  ASAT Conference, 13-15 May 2003 	Paper CT-11 877 

is that if the owner process over-rules the kernel, the candidate block still stays 
at the end of the LRU list. On the next miss, the same process will  gain be 
asked to give up a block. 
The pseudo code of the First-Try policy is as follows: 

/* First-Try Algorithm */ 
if (inf.) 

/* LRU-policy */ 
if (head —0 backward != Null) 

{ head = head-0 backward; 
free (head-0 forward); 
head-0 forward = Null; 

} 
else 

free (head); 
head = Null; 
tail = Null; 

else 

{ /* LIFO Policy */ 
if (tail-0 forward! = Null) { 
tail = tail-0 forward; 
free (tail-0 backward); 
tail-0 backward = Null;} 
else { 
free (tail); 
head = Null; 
tail = Null;} } 

The problem of the First-Try policy arises because the LRU list is maintained in 
strict reference order. Intuitively, the only use of the LRU list is to decide which 
process will give up a block upon a miss. To get the same allocation policy as 
the existing global LRU policy, the suggested policy in the First-Try policy 
should be in correspondence to the LRU list in the original algorithm. This can 
be achieved by swapping the blocks' positions in the LRU list. This is what 
happens in the Swapping policy. 



Proceedings of the 10°  ASAT Conference, 13-15 May 2003 	Paper CT-11 878 

The Swapping policy guarantees that if no process makes foolish choices, the 
global hit ratio is the same as or betters than it would be under the global LRU 
policy [15,16]. The psoudo code of the Swapping is as follows: 
/* Swap Algorithm */ 

{ if (sanie_pagelD (head-0 page, rem-0 page)) { 
head= head-0 backward; 
head-0 forward =Null;} 

if (rem —0 forward != Null) 
rem-0 forward-0 backward = rem—> 
backward; 

if (rem —> backward != Null) { 
rem—• backward-0 forward = rem—• 
forward; 
rem—> forward = tail; 
tail-0 backward = rem; 
tail = rem; 
rem--0 backward = Null } 

The Place-Holder is a record that refers to a page. It records which block would 
have occupied that page under the global LRU policy. Suppose the kernel 
suggests A for replacement, and the user process over-rules it and decides to 
replace B instead. In addition to swapping the positions of A and B in the LRU 
list, the kernel also builds a Place-Holder for B to point A's page. If B is later 
referenced before A, A's page can be confiscated immediately. Hence, the 
Place-Holder algorithm keeps tracking the differences between the replacement 
choices made by an application's policy and these that would have been made 
by the default LRU policy. The Place-Holder algorithm allows the system to 
detect when the application's choice is not as good as that of the default policy. 
In this case the erroneous process will give up a block [15,16]. The psoudo code 
of the Place-Holder policy is as follows: 

/* Place-Holder Algorithm */ 
if (same_pagelD (page, ph-0 page)){ 

Ph-0 forward = tail; 
Ph—* backward = ph; 
Tail =ph; 
Ph—> backward = Null; } 

7.2 The Implementation Results 
The implementation results of the Fixed-Horizon Cashing Prefetching for the 
proxy cache using different replacement policies with respect to the Latency 
Reduction (LR) are listed in tables [1]. Cache size S is in Bytes, and LR in 
m.sec. 



S7 S6 

1.0000 0.97219 
1.0000 0.89444 
1.000 0.925 
1.000 0.925 
1.55312 0.80093 
1.55312 1.11521 
1.553 1.115 

Proceedings of the 10th  ASAT Conference, 13-15 May 2003 	Paper CT-11 879 

Table 1. The Latency Reduction (LR) For The Fixed-Horizon Caching 
Prefetching Using Different Replacement Policies 

S4 
	S5 

LRU 
	0.25256 

Size 
Hybrid 
LIFO 
First-Try 
Swapping 
Place- 
Holder 
The comparison results are shown in Fig. (4). It is found that by using the 
Swapping, Place-Holder replacement policies with the caching and prefeteching 
strategy such that the latency reduction can be satisfied. 

Fixed-Horizen Caching Prefetching 

1.8 

1.6 

IA 1.4 

c  1.2 
• I 
E 
F- 0.8 

u 0.6 

10.4 

0.2 

0 

S I 
	

S2 	S3 	S4 	S5 
	

S6 
	

S7 

Cach Size in Bytes 

Fig. (4) The Fixed-Horizon Caching Prefetching For The Proxy Cache 
using Different Replacement Policies 

The implementation results of the Reverse-Aggressive Cashing Prefetching for 
the proxy cache using different replacement policies are listed in tables [2]. 

Rep. 
Algorithms 

S1 

0.04054 
0.00830 
0.03547 
0.26183 
0.46502 
0.465 

S2 
	S3 

0.27170 0.31900 
0.05818 0.22108 
0.40329 0.55211 
0.13547 0.48075 
0.26183 0.25354 
0.79733 0.75464 
0.797 
	0.754 

0.37817 
0.34289 
0.64972  
0.64972 
1.13194 
0.75463 
0.754 

0.49808 
0.47597 
0.87414 
0.87414 
0.95505 
0.96487 
0.964 



--LRU 
-0- Size 
-Hybrid 
-N--LIFO 
-1K- First -Try 
-0- Swapping 
-I-Place -Holder 

0 
S2 S3 S4 S5 S6 

Cache Size (Bytes ) 
S1 S7 

R
ed

uc
ed

 La
te

nc
y  

4 

3.5 

3 

2.5 

2 

1.5 

1 

0.5 

Proceedings of the 10th  ASAT Conference, 13-15 May 2003 	Paper CT-11 880 

Table 2. The Latency Reduction (LR) For The Reverse-Aggressive Caching 
PrefetchingUsing Different Replacement Policies 

Rep. 
Algorithm Si S2 S3 S4 S5 S6 S7 

LRU 0.26183 0.45354 0.95505 0.80093 1.55312 3.29971 3.39409 
Size 0.13760 0.16308 0.44082 0.89243 1.33393 3.36162 3.39409 
Hybrid 0.11417 0.93675 0.62106 2.04406 2.63935 3.34120 3.39409 
LIFO 0.0364 0.42825 0.49315 1.13194 2.63935 3.34120 3.39409 
First-Try 0.26183 0.26183 0.25354 1.13194 0.95505 0.80093 1.55321 
Swapping 0.46502 0.79733 0.75464 0.75463 0.96487 1.11521 1.55312 
Place- 
Holder 

0.465 0.754 0.754 0.754 0.964 1.115 1.553 

The comparison results are shown in Fig. (5). According to these results, it is 
found that the LIFO, Size, LRU and Hybrid replacement policies are the best 
algorithms that could be used with the caching and prefeteching strategy such 
that the latency reduction can be satisfied. 

Reverse Aggressive Caching Pefetching 

Fig. (5) The Reverse-Aggressive Caching Prefetching For The Proxy 
Cache using Different Replacement Policies 

The implementation results of the Fixed-Horizon and the Reverse-Aggressive 
caching prefetching strategies using different replacement policies are listed in 
tables 3-9 using different cache sizes. The comparison results between the 
Fixed-Horizon and the Reverse-Aggressive are represented in Figs. (6-12). 



3 

g 2 

41  

A

0 

S2 S3 S4 S5 
Cache Size (Bytes) 

Fig. (6) The Latency Reduction Under The LRU Replacement Policy 

4 

Si S6 Si 

—0—Reverse 
Aggressive 

—0—Fixed-Horizon 

Proceedings of the 10th  ASAT Conference, 13-15 May 2003 	Paper CT-11 881 

Table 3 —The Latency Reduction R using LRU R 

Si S2 S3 S4 S5 S6 S7 

Reverse Aggressiv 0.26183 0.4535 0.9550 0.80093 1.55312 3.29971 3.39409 

Fixed-Horizon 0.25256 0.2717 0.319 0.37817 0.49808 0.97219 1 

Table 4 —The Latency Reduction 	 iSi \ 	/ ■.. 	■ VI 	A 4■Wl...• SW 	g■ . WM.,  

S1 S2 S3 S4 S5 S6 S7 
Reverse Aggressive0.1376 0.1630 0.4408 0.8924 1.3339 .3616 3.3940 

Fixed-Horizon 0.0405 0.0581 0.2210 0.3428 1.4759 1.8944 1 

4 
3.5 

3 
2.5 0 

.15  2 
1.5 

r=4 	1 
G 0.5 
Sji  0 
o•-) 

—0— Reverse Aggressive: 
—0— Fixed-Horizon 

Si S2 S3 S4 S5 S6 S7 
Cache Size (Bytes) 

Fig. (7) The Latency Reduction Under The Size Replacement Policy 



I 

4 

3.5 

3 

2.5 

2 

1.5 
—41— Rev erse Aggressive 
—VI—Fixed-Horizon 

1 

0.5 

0 

Proceedings of the 10th  ASAT Conference, 13-15 May 2003 	Paper CT-11 882 

• lame ) -ine Latency Keuucuon (Li() using rue nyonu r.cpracerucut rum:),  

S1 S2 S3 S4 S5 S6 S7 

1 • everse Aggressive 0.11417 0.93675 0.62106 2.04406 2.63935 3.34120 3.39409 

I ixed-Horizon 0.0083 0.40329 0.55211 0.64972 0.87414 0.925 1 

(.1 
7:3 
0 
0 

ci 
0 I 	*"..-"-' ---- 

Si S2 S3 S4 S5 S6 S7 
Cache Size (Bytes) 

Fig. (8) The Latency Reduction Under The Hybrid Replacement Policy 
Table 6 —The Latency Reduction R Using LIFO Replacement Polk 

S1 S2 S3 S4 S5 S6 S7 

everse Aggressive0.0364 0.4282 0.4931 1.1319 2.6393 3.3412 3.3940 

ixed-Horizon 0.0354 0.1354 0.4807 0.6497 0.8741 0.925 1 

SI 	S2 	gcheS:(ByteSs) 
	S6 	S7 

Fig. (9) The Latency Reduction Under The LIFO Replacement Policy 

—0--Reverse Aggressive 
—a—Fixed-Horizon 



S7 S6 S1 
	S2 	S3 	S4 	S5 

CacheSize (Bytes) 

Si 

0.2618 

S2 

0.2618 

0.2618 

S3 

0.2535 

0.2535 

S4 

1.1319 

1.1319 

S5 

0.9550 

0.9550 

S6 

0.8009 

0.8009 

S7 

1.5532 

1.5531 
Reverse Aggressiv e0.2618 

Fixed-Horizon 

-0-Reverse Aggressive 
-it-Fixed-Horizon 

1.8 
1.6 
1.4 
1.2 

1 
0.8 

g 0.6 
0.4 
0.2 

0 

Proceedings of the 10°  ASAT Conference, 13-15 May 2003 	Paper CT-11 883 

Table 7 -The Latency Reduction (LR) Using First - Try Replacement Algorithm 

Fig. (10) The Latency Reduction Under The First - Try Replacement Policy 

Table 8 -The Latency Reduction (LR) Using Swapping Replacement 
Algorithm e 

Si S2 S3 S4 S5 S6 S7 

Reverse Aggressiv e0.4650 0.7973 0.7546 0.7546 0.9648 1.1152 1.5531 

Fixed-Horizon 0.4650 0.7973 0.7546 0.7546 0.9648 1.1152 1.5531 

1.8 
1.6 
1.4 
1.2 

1 
0.8 
0.6 
0.4 
0.2 

0 
S2 S3 S4 S5 

CacheSize (Bytes) 
Fig. (11) The Latency Reduction Under The Swapping Replacement Policy 

La
te

nc
y  

R
ed

uc
tio

n  

    

    

 

-Reverse Aggressive 
-0-Fixed-Horizon 

 

    

    

       

SI S6 S7 



Proceedings of the 10th  ASAT Conference, 13-15 May 2003 	Paper CT-11 884 

Table 9 — 
Si S2 S4 S5 S6 S7 

I • everse Aggressiv - .46 1.79 1 1.75 1.96 1.1151.55 

ixed-Horizon 1.46 1.79 1 1.75 1.96 1.1151.55 

1.8 
1.6 
1.4 
1.2 

1 
g 0.8 
1' 0.6 

04 
4.) 0.2 
•1 	0 

 

—41— Reverse Aggressive 1 
—it— Fixed-Horizon 

 

SI S2 S3 S4 S5 S6 S7 
CacheSize (Bytes) 

Fig. (12) The Latency Reduction Under The Place - Holder Replacement Policy 

It is clear that by using the Reverse-Aggressive caching prefetching strategy, the 
average latency has been reduced compared with the Fixed-Horizon strategy. 
8. Conclusions 

The effectiveness of prefetching depends on how well the prefetching policy can 
predict which objects will be accessed and therefore should be retrieved in 
advance. The Reverse-Aggressive technique, which is probably close to optimal, 
is a perfect match than other policies like the Fixed-Horizon. Using a proxy 
caching simulator to implement and produce performance measurements of a 
file access, we compare the performance of using the Reverse-Aggressive 
cashing prefetching strategy with Web caching using the traditional replacement 
policies; LRU, Size, and Hybrid and the most recently replacement policies; 
LIFO, First-Try, Swapping and Place-Holder assuming an environment in which 
a single process is running and full advance knowledge is available. Also, a 
comparative study has been implemented between the Reverse-Aggressive 
caching prefetching strategy and the Fixed-Horizon cashing prefetching 
strategy. Based on the comparison results, we have recommended that if the 
proxy wants low average latency, the Reverse-Aggressive cashing prefetching 
strategy is the best policy under small cache sizes 



Proceedings of the 10ff' ASAT Conference, 13-15 May 2003 	Paper CT-11 885 

References 

1. Griffioen James, and Appleton Randy, "Reducing File System 
Latency Using A Predictive Approach," TR #CS247-94, June 1994. 

2. Gracias A. A and Sivakumar G., "Seminar Report on World Wide 
Web Caching," Computer Science and Engineering Department, 
November 2000, Private Communication. 

3. Hugo R. Patterson, Garth A. Gibson, Eka Ginting, Daniel 
Stodolsky, and Jim Zelenka, "Informed Prefetching and Caching," 
in The of the 15th ACM Symp. On Operating System Principles, 
Vol. 3, No. 6, PP. 79-95, December 1995. 

4. Tracy Kimbrel, Andrew Tomkins, R. Hugo Patterson, Brain 
Bershad, Pei cao, Edward W. Felten, Garth A. Gibson, Anna R. 
Karlin, and kai Li, "A Trace-Driven Comparison Of Algorithms 
For Parallel Prefetching And Caching," In The Proceedings Of The 
USENIX 2nd Symposium On Operating Systems design and 
Implementation (OSDI 96) Seattle Washington, PP. 19-34, October 
1996. 

5. Pei Cao, Edward W. Felten, Anna R. Karlin, and Kai Li, " A Study 
Of Integrated Prefetching And Caching Strategies," SIGMETICS 
95, Ottawa, Ontario, Canada, ACM, Vol. 23, No. 1, PP. 188-197, 
May 1995. 

6. Kimbrel Tracy, and Anna R. Karlin, " Near-Optimal Parallel 
Prefetching And Caching," IEEE Symposium on Foundations of 
Computer Science, Vol. 14, No. 16, PP. 540-549, October 1998. 

7. http://www. WebSim-A  Trace Driven Web Cache Proxy 
Simulator.html. 

8. Fritz J. Barnes, Pandey Raju, "Providing Dynamic and 
Customizable Caching Policies," in The Proceedings of the 2nd 
Symposium on Internet Technologies & Systems (USITS), October 
1999. 

9. Vincent Cate, " Alax-A Global File System," In USENIX File 
Systems Workshop Proceedings, PP. 1-12, May 1992. 



Proceedings of the 10th  ASAT Conference, 1345 May 2003 	Paper CT-// 886 

10.Williams S., Abrams M., Standridge C. R., Abdulla 0. and Fox E. 
A., "Removal Policies in Network Caches for World Wide Web 
Documents," Proceedings of The ACM Sigcomm 96, August 1996. 

11.Pradeep K. Sinha, Distributed Operating Systems (Concepts and 
Design), IEEE Distributed Computing, January 1997. 

12.Satyanarayanan et al., "A Caching File System for A Programmer's 
Workstation," Proceedings of the 10th  ACM Symposium on 
Operating systems Principles, Vol. 4, No. 14, PP. 26-35, October 
1980. 

13.Satyanarayanan, Howard et al., "Towards A Scalable 
Metacomputing Storage Service-Pattern," Proceedings of the ITC 
Distributed File System: Principles and Design, 1997. 

14.Wooster R. and Abrams M., "Proxy Caching That Estimates Page 
Load Delays," In The 6th International World Wide Web 
Conference, PP. 7-11, April 1997. 

15.Cao P., filters E. W., and Li K., "Application-Controlled File 
Caching Policies," USENIX Summer workshop, PP. 171-182, June 
1994. 

16.Cao P., "Implementation and Performance of Application-
Controlled File Caching, Prefetching and Disk Scheduling," 
Proceedings of The First USENIX Symposium on Operating 
Systems Design and Implementation (OSDI), PP. 165-178, 
November 1994. 


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20

