
Proceedings of the lom ASAT Conference, 1345 May 2003 	Paper CT-12 887

Military Technical College
Kobry El-Kobbah

Cairo, Egypt

10th International Conference
On Aerospace Sciences&

Aviation Technology

Parallel Generational Copying Garbage Collection
Schemes for Shared-Memory Multiprocessors

'Prof Khayri A. M. Ali 'Assoc. Prof. Fatma A. Omara 'Eng. Osama A. Elshakankiry

Abstract
'In this paper, an improved parallel generational copying real-time garbage
collection scheme for shared-memory multiprocessors, which supports load
balancing among workers, has been proposed, implemented, and evaluated. The
basic idea of improvement is developed from Ali's two papers [2,3]. The
scheme proposed here is a form of copying collectors that attempt to eliminate
the drawback of frequently copying long-lived (stable) objects. This class of
schemes is called generational-based schemes, which is based on concentrating
the collection efforts on small areas of memory, so-called young generation.
They reduce the need for collecting the remaining large areas of memory, old
generation. A modified scheme, without real-time response, has also been
implemented and compared to the real-time one. A comparative study has been
done for the two schemes with other two parallel non-generational copying
garbage collection schemes founded by the author in [1]. According to this
comparative study, we proved that the performance of generational schemes is
better than the performance of non-generational schemes. Also, the overheads
occurred due to real-time response have been calculated.

1. Introduction
Storage Management in the programming environment refers to how to control
the use of memory that holds representations of objects/information. It is
responsible for allocating space for the object when it is created and
subsequently reusing the allocated space when it is no longer needed. An
efficient storage management scheme plays a crucial role in enhancing the

Prof. Khayri A. M. All
Faculty of Computer Science
October University for Modem Sciences & Arts, MSA.

Assoc. Prof. Fatma A. Omara
Computer Science Dept.
Faculty of Computers & information
Cairo University.
• Eng. Osama A. Elshakankiry
Computer Science & Engineering Dept. Faculty of Electronic Engineering,
Minufiya University.

Proceedings of the 10fh ASAT Conference, 13-15 May 2003 	Paper CT-12 888

efficiency of a programming system. Programming languages that rely on
garbage collection have existed since the late 1950's [7]. Though the benefits of
garbage collection for program simplicity and robustness are well known and
accepted, most software developers have continued to rely on traditional explicit
memory management, largely because of performance concerns. Only recently
garbage collection has been allowed to enter the mainstream and be used in
large systems. Developers have been skeptical about garbage collection for two
reasons: throughput and latency. That is, they fear that collection will either
slow down the end-to-end performance of their systems, or induce long
collection pauses, or both. Large increases in computing power have not
eliminated these concerns, since they are typically offset by corresponding
increases in memory requirement [6]. Lieberman and Hewitt [5] first proposed
generational garbage collection techniques, but Ungar reported the first
implementation [8]. Garbage collection techniques can address both
performance concerns. They split the heap into generations according to object
age. Concentrating collection activity on the "young" generation increases
throughput, because (in most programs) young objects are more likely to be
garbage, so more free spaces is recovered per unit of collection work. Since the
young generation is typically small relative to the total heap size, young-
generation collections are usually brief, addressing the latency concern.

The memory space, which is not accessible, is referred to as garbage and the
reclamation of garbage is referred to as garbage collection (GC). The runtime
system must be capable of recognizing memory shortages and reclaiming
unused memory for reallocation. The following three steps are either implicitly
or explicitly performed in all GC algorithms:

(1) Identification of accessible objects,
(2) Reclamation of the inaccessible memory objects,

and (3) Compacting the memory to improve locality [9].
Advanced programming environments have been implemented on different
parallel architectures and it is found that the shared-memory multiprocessor is
the most used architecture as a test bed. Then, it is important to develop a
memory management system such that it efficiently manages the allocated
storage by the parallel program. Therefore the underlying architecture would be
used efficiently.

The aim of this work is to implement and compare the two generational schemes
with each other and with the two non-generational copying schemes found in
[1]. The same number of workers, number of memory blocks that construct the
global shared heap space, data structures, locking mechanism, and
synchronization mechanism have been used in our implementation. The used

Proceedings of the 10° ASAT Conference, 13-15 May 2003 	Paper CT-12 889

simulator is a shared-memory multiprocessor simulation toolkit for Intel x86
architectures that called Augmint [4]. This simulator has been used with number
of workers up to 32 to implement the concerned GC schemes. Our improved
generational scheme is based on a simple parallel generational real-time garbage
collection scheme for Shared-memory Multiprocessors [3], which is described in
Section 2. In Section 3 our modification to improve this simple scheme by
adding the load balancing to produce the new scheme is explained. In section 4
the new scheme is described. Section 5 explains how to modify the new scheme
such that it becomes parallel generational load balancing garbage collection
scheme without real-time response. The performance measurements and the
comparisons of the schemes as well as the method used to calculate speedup are
illustrated in Section 6. Finally section 7 is for conclusions and future work.

2. A Simple Parallel Generational Real-time GC Scheme

Our generational scheme is based on a simple parallel generational real-time
garbage collection scheme for Shared-memory Multiprocessors [3]. It is a two
generations scheme in which garbage collection is interleaved with normal
program execution. In this scheme, the space devoted to the heap is dynamically
allocated to workers according to their demands for free space. This space is
subdivided into two generations, NEWER and OLDER. Each generation is
subdivided into two semispaces of equal size, the semispaces are OLDER_OLD,
OLDER_NEW, NEWER_OLD, and NEWER_NEW. Each semispace is a list of
non-contiguous memory blocks. During program execution, new objects are
allocated in the NEWER_NEW semispace and each accessed object in the
OLDER_OLD, and NEWER_OLD is moved to the OLDER NEW semispace.
Each time a new object is allocated, an increment of scanning and copying is
done. When a worker assigns a pointer to the NEWER_NEW space into a
memory cell in the OLDER_NEW space, a pointer to that cell is stored in a local
reference list. Elements of this list will be used as roots in the next minor cycle.

2.1 The Scheme Outlines

The idea of the scheme [3] is as follows: objects in the heap storage system
belongs to one of two generations: NEWER generation or OLDER generation.
Objects alive after the previous garbage collection cycles belong to the OLDER
generation, whereas newly allocated objects belong to the NEWER generation.
Live objects in the NEWER generation will be promoted to the OLDER
generation in a so-called minor collection cycle, and garbage in the OLDER
generation is collected in a so-called major collection cycle. Because most of the
newly created objects have short lifetimes, fewer objects will be promoted to the

Proceedings of the 10m ASAT Conference, 13-15 May 2003 	Paper CT-12 890

OLDER generation in every minor collection. This means that the OLDER
generation space fills up much slower than the NEWER generation space and
the minor collection cycles will be more frequent than the major collection
cycles. In minor cycles, references from the OLDER generation to the NEWER
generation as well as the set of main roots in the system will be used to identify
live objects, whereas in major cycles, the set of main roots only will be used.
Since this scheme is a real time one, garbage collection and maintaining
references from the OLDER generation to the NEWER generation are
interleaved with normal program execution, and when a collection cycle is
completed, a new one will be started.

The scheme uses two semispaces for maintaining objects in each generation. For
maintaining objects in the NEWER generation, we have two semispaces called
NEWER NEW and NEWER_OLD. The NEWER_NEW semispace contains
newly allocated objects, whereas the NEWER_OLD semispace contains objects
allocated in the previous minor collection cycle. In each minor cycle, live
objects in the NEWER_OLD semispace will be copied to the OLDER
generation. When all live objects in NEWER_OLD semispace have been copied
to the OLDER generation, the current minor cycle is complete and another one
can be started. The roles of the two semispaces NEWER_NEW and
NEWER_OLD change in every minor cycle. For maintaining objects in the
OLDER generation, two other semispaces called OLDER_NEW and
OLDER_OLD are used. The OLDER NEW semispace contains copied objects
from the NEWER generation in all invoked minor collection cycles after the
latest major collection cycle and it also contains copied objects from the current
OLDER_OLD semispace. The OLDER_OLD semispace contains all objects
that were alive in the previous major collection cycle. A major collection cycle
can be started when all live objects in the current NEWER_OLD and
OLDER_OLD semispaces have been copied to the OLDER_NEW semispace.
Here, also the roles of the two semispaces OLDER_NEW and OLDER_OLD
change in every major cycle.

The idea of the scheme is shown in Figure 1. Figures 1 (A)-(C) show what
happens when a minor cycle is invoked, whereas Figure 1 (D) shows a major
cycle. The two semispaces on the right side represent the NEWER generation,
and the two semispaces on the left side represent the OLDER generation. In
minor cycle, which illustrated in Figure 1 (A), new objects are allocated in the
NEWER_NEW semispace and they are assumed to be live, and live objects in
NEWER_OLD semispace are copied to the OLDER_NEW semispace. Copying
of live objects, as well as, scanning of the copied objects are interleaved with
normal program execution.

Proceedings of the 10th ASAT Conference, 13-15 May 2003 	Paper CT-12 891

Figure 1 (B) illustrates a situation during the next minor cycle where live objects
in the new NEWER_OLD semispace are copied to the OLDER_NEW
semispace. It is assumed that at the end of the minor cycle shown in Figure 1
(C). The amount of used space in OLDER_NEW semispace has reached a
certain threshold and a major cycle is invoked as described in Figure 1 (D),
where live objects in the new OLDER_OLD and NEWER_OLD semispaces
will be copied to the new OLDER_ NEW semispace, and new objects will be
allocated in the current NEWER_NEW semispace. When all live objects in the
OLDER_OLD and NEWER_OLD semispaces have been copied to the
OLDER_NEW semispace, the major cycle is completed and then a number of
minor cycles could be performed before the next major cycle.

2.2 Locking

The data structures which can be simultaneously modified by more than one
worker in this scheme are:

(1) The four lists that maintain blocks allocated to each of the four semispace,
(2) The accessible objects in the OLDER_NEW, OLDER_OLD, and

NEWER_OLD semispaces.
One global lock for each global list solves the problem of controlling access to
such lists. For the second data structure, we would have a lock field per object (1
bit). To avoid simultaneous update of objects in the OLDER_OLD, and
NEWER_OLD semispaces, every worker wants to access an old object it first
checks its lock field. If it is locked (i.e., its value equal true), then worker waits,
if it isn't locked (i.e., its value equal false), the worker locks it, then access it,
and unlocks it again.

2.3 Synchronization

In the scheme, all workers have to synchronize at the beginning of every
collection cycle. Therefore, a new collection cycle cannot start until the previous
one has been completed. The question now is how to detect termination of a
collection cycle. One simple way is to use a global counter that counts how
many workers have completed their current collection cycle. When all workers
have completed their current collection cycle, the current GC cycle is
successfully terminated because the value of counter becomes equal to the
number of workers in the system, and then any worker can start a new collection
cycle. Then all workers can start a new collection cycle.

111111-8.

NEWER_I`

OLDER_NEW

(A)

OLDER_OLD

OLDER_NEW

(B)

OLDER_OLD

OLDER_NEW
(C)

OLDER_OLD

OLDER_OLD
(D)

NEWER NEW

NEWER OLD
Minor Cycle

NEWER_OLD

Minor Cycle

NEWER_NEW

NEWER_O 	Minor Cycle

NEWER_OLD

Proceedings of the 10th ASAT Conference, 13-15 May 2003 	Paper cr-12 892

Scanned or New Created Objects 	Area to be Scanned 	Area contains Old Objects 	Free Area

Figure 1: The Idea of Ali's Scheme 	NEWER_ 	
Major Cycle

2.4 Drawback of the Scheme

In any real time garbage collection scheme (GC), garbage collection is not
carried out as one atomic action while the program is halted, but instead small
units of garbage collection must be interleaved with small units of program
execution. The scheme interleaves collection activity with the actual work of the
program. In the parallel systems where more than one worker are active at the
same time, in order to guarantee each GC cycle will terminate, each creation of a
new object should garbage collect some objects. In the parallel implementation,
one worker could have no GC work when it creates a new object whereas

Proceedings of the 10° ASAT Conference, 13-15 May 2003 	Paper CT-12 893

another worker has. If the former worker does not help the later, the result will
be that the former worker creates a new object and does not perform any GC
work. If this situation is allowed to take place, copying all accessible objects in
every GC cycle could not be guaranteed. One way to solve this is that if a
worker can't find any garbage collection work to do, it also stops its mutator, but
this will effect the real time response of the scheme. Unfortunately, the author
didn't show how this situation could be solved. When we implement his scheme,
the scheme has become unstable, we proposed and implemented two solutions;
the first solution, workers can allocate new object without performing any GC
work, leads to not all-live objects are copied before the space is exhausted, so
the GC cycle will not terminate correctly. In the second solution, workers that
haven't any GC work stop their mutator also, the real time response is not as
required.

3. Load Balancing .

The drawback of the above scheme will be overcome by load balancing of GC
work. The idea of load balancing has been taken from the parallel real-time
copying garbage collection scheme with load balancing for shared-memory
multiprocessor [2]. A worker with excess GC work has to make that work
available to other workers and each worker that has no GC work during the
creation of a new object will try to get some GC work from other worker with
excess GC work. The scheme uses a unique global queue and one private queue
for each worker. A worker would add work to the global queue when the queue
is empty or less than a certain threshold. When a worker finishes processing all
works in its own private queue, it gets some works from the global queue.
Figure 2 illustrates how a worker can maintain its excess work in its local queue
in a way that simplifies sharing of that work. The worker should efficiently
identify each piece of GC work, i.e., the beginning and the end of each piece of
work. A pointer (S) points to the beginning of the queue of objects to be scanned
and a pointer (B) points to the end of the queue. We extend the linking object,
Dummy object, by another linking field to point to the end of its following
unscanned area. Also, the head of the local queue, S, and B gives enough
information to quickly identify each piece of local GC work. The count field
indicates the number of excess pieces of GC work.

To illustrate this scheme an example is represented in Figure 3. Suppose a
system having three workers WO, WI, and W2 with its global queue and with a
local queue for each worker. GC work of WO is divided into two parts: one part
is global and the other part is private. WI has all its work global; W2 has only

Proceedings of the 10th ASAT Conference, 13-15 May 2003 	Paper CT-12 894

private GC work. The global queue has three pieces of GC work. Any worker
can pick work from the global queue.

The First-B and First-E fields identify the first piece in the global queue.

Local
Figure 2:Managing local GC work in a queue to simplify work distribution

Linking objects at the tail of each piece of work identifies the following pieces
of work. The Last field of global queue points to the end of the queue. The
Count field indicates the number of pieces in the queue. The data structures used
for representing GC work and the queues allow efficient moving of work from
any local queue to the global queue and conversely. When a worker finishes its
local work and takes work from global queue, it updates its S, B, and local
queue as follows. It sets its S to the beginning of the piece of work taken. It
makes the linking object of that work point to the location of B. It sets the First
and Last fields of the local queue to the location of B. It increments the Count
field of its local queue by 1. Then it starts scanning at S, copies at B and
allocates new objects at F. First-B and First-E fields of the global queue is
updated to point to the next global piece of GC work.

In the heap organization, a worker gets one free memory block at a time for
allocating new objects and for copying accessible objects. Workers allocate
objects in their memory blocks at different rates. The result could be a situation
where some workers may have GC work and have no free space available and
other workers have no GC work and have free space. In this situation the former
workers should give their GC work, which requires free space, to the latter
workers. WI in Figure 3 shows a situation where it has local GC work and does
not have free space to perform it. Thus, it moves its local work to the global
queue. Workers with no free space available (W1) can't allocate new objects
before the current GC cycle is complete. They can do any other work except
allocating or copying objects. Workers with free space available should speed up

MilAt ;t11 wawa

= 11111.1.1
EN

Proceedings of the 10th ASAT Conference, 13-15 May 2003 	Paper CT-12 895

completion of the current GC cycle by concentrating on processing the available
GC work, in order to minimize the idle time of the other workers.

WO

W1

W2

Figure 3:Local and Global GC work for a system with 3 workers WO, WI, and W2

4. A Parallel Generational Copying Real Time GC Scheme

This scheme is proposed according to the work in this paper, the idea of this
scheme is exactly as the idea that has been described in the simple parallel
generational real time garbage collection scheme for shared memory
multiprocessors, except that the scheme supports dynamic load balancing.
Dynamic load balancing has contributed by:

(1) guaranteeing garbage collection progress in every allocation of a new
object,

(2) guaranteeing successful termination of every GC cycle,
and (3) improving efficiency by making workers that have no 	computation
work due to lack of parallelism in the program, perform 	most of the GC
work, leaving the other workers to concentrate on 	computation work..
Each time a new object is allocated, an increment of scanning and copying is
done. The scanning and copying work is balanced between workers to guarantee
garbage collection progress in every allocation of a new object. Workers that

Proceedings of the 10th ASAT Conference, 13•15 May 2003 	Paper CT-12 896

have work and have not enough free memory space to perform the work will
give their work to workers having free space.

4.1 Synchronization

In our scheme, all workers have to synchronize at the beginning of every
collection cycle. A new collection cycle cannot start until the previous one has
been completed. The question is how to detect termination of a collection cycle.
One simple way is to use a global counter that counts how many workers have
completed their current collection cycle. A worker that wishes to start a new GC
cycle signals all other workers to synchronize. When a worker detects the signal,
it will try to finish all available GC work as long as it has free space available.
When a worker has no more free space available and has private GC work, it
puts its work in the global queue and then it replies to the synchronizer. When
all workers have replied to the GC invoker and there is no remaining work in
any of the local queues and the global queue, the current GC cycle is
successfully terminated. The counter value will be as the number of workers in
the system, and then any worker can start a new collection cycle.
The successful termination could fail when we reach a situation in which there is
GC work in the global queue and none of the workers has enough free space to
process it. To avoid this situation we must estimate the amount of GC work that
should be done in every allocation of a new object at run time to guarantee
successful termination.

4.2 GC Work per New Allocation

The amount of GC work that should be done in every allocation of a new object
to guarantee successful termination of each GC cycle will be estimated at run
time as follows:
Assuming that Omax is the maximum object size of the allocated objects, and
Omin is the minimum object size of the allocated objects. Recall our
assumption that the heap space contains (N+M) memory blocks where NEWER
generation contains N memory blocks, OLDER generation contains M memory
blocks, where M is much larger than N, and the two semispaces of each
generation are equal in size. At termination of a minor GC cycle, Li is the total
amount of free space in the current NEWER_NEW semispace. After flipping of
the NEWER generation semispaces, in the worst case ((N/2)-L1)/Omin objects
should be copied and scanned when (Na)/ Omax new objects are allocated.
That is (Omax / Omin)*(((N/2)-Ll)/(N/2)) objects should be scanned in every
new objects allocation. Upon doing this, the new GC cycle will successfully
terminate. In the real system, a high percentage of allocated objects are garbage
and not all old objects have minimum object size (Omin) and not all new

Proceedings of the 10th ASAT Conference, 13-15 May 2003 	Paper CT-12 897

objects have maximum size (Omax). Thus, using this estimation, it is
guaranteed that every minor GC cycle will successfully terminate.
By the same way, at termination of a major GC cycle, Ll is the total amount of
free space in the current NEWER_NEW semispace and L2 is the total amount
of free space current OLDER_NEW semispace. After flipping of the NEWER
and OLDER generations semispaces, in the worst case, (((N/2)-L1)+ ((M/2)-
L2))/Orrin objects should be copied and scanned when (N/2)/ Omax new
objects are allocated. That is (Omax / Omin)*((((N/2)-L1)+((M/2)-
L2))/(N/2)) objects should be scanned in every new objects allocation.

4.3 Outline of The Scheme

The space devoted to the heap is virtually subdivided into four semispaces:
OLDER_OLD, OLDER_NEW, NEWER_OLD and NEWER_NEW. The space
of each semispace is dynamically allocated to workers according to their
demands for free space. During program execution, new objects are allocated in
the NEWER_NEW semispace and each accessed object in the OLDER_OLD,
and NEWER_OLD is copied to the OLDER_NEW semispace, and references
from the OLDER generation to the NEWER generation are maintained. Each
time a new object is allocated, an increment of scanning and copying is done.
Each worker allocates new objects in its memory blocks in the NEWER_NEW
semispace and copies uncopied objects to its memory blocks in the
OLDER_NEW semispace. Each worker maintains its private work using its S
and B pointers, and its local queue. This queue represents unprocessed local GC
work. When a worker assigns a pointer to the NEWER_NEW semispace into a
memory cell in the OLDER_NEW semispace, a pointer to the cell is stored in a
local reference list. Elements of this list will be used as roots in the next minor
collection cycle. When a worker allocates a new object, it scans some elements
of its private queue and reference list created in the previous cycle, if there is
any.

Whenever a worker having excess work discovers that the global queue is empty
(or less than a certain threshold), it moves some of its excess work to the global
queue. Each worker could check the global queue at the end of each allocation
of a new object. When a worker allocates a new object and cannot find private
GC work to do, it will try to take work from the global queue, if there is any.
When a worker demands a new memory block and there is private work to be
scanned in the worker's current memory block, that work is saved in either the
global queue or in the worker's private queue. When a worker cannot get a new
memory block, i.e., memory space in the current NEWER_NEW semispace has
been exhausted, it will try to start a new GC cycle. If a worker has private GC
work, it will move that work to the global queue. Then the worker will decide

Proceedings of the 10th ASAT Conference, 13-15 May 2003 	Paper CT-12 898

whether it is a major or minor one and automatically signal all workers to
synchronize for flipping, if another worker has not done that yet. When a worker
detects the flipping signal, and finds GC work to be done, it will first try to
finish its private GC work and then the global queue. Any worker that cannot
process its private GC work due to shortage of free space will save the
remaining work in the global queue. Then the worker replies to the GC invoker
and waits.

When all workers have acknowledged the flipping, the GC invoker atomically
reverses the roles of the two semispaces and then signals all workers to start a
new collection cycle. When a worker detects a start signal, it copies objects
directly reachable from its roots to its newly allocated memory blocks replies
back, and resumes its normal program execution.

4.4 Idle Workers

The GC work in the system will be dynamically moved from busy workers to
idle workers. Workers performing memory operations and having excess GC
work move some of their local work to the global queue and each idle worker
that does not have GC work will take from the global queue.

5. Parallel Generational GC with Load Balancing

Because some systems don't need real-time or even interactive response,
disruptive behavior is not important, Therefore, our scheme has been changed
such that the real time response is eliminated (i.e., it becomes a stop-the-world
collector). According to this modification, GC carried out as one atomic action
while the mutator is suspended. When a worker cannot get a new memory block
(i.e., memory space in the current NEW semispace has been exhausted), this
worker will start a new GC cycle by signaling all other workers, suspending its
mutation, and waiting. When a worker finds the signal, it suspends mutation and
waits, this will be happen for all workers in the systems. After all workers
suspend, the first worker, which wishes to start a new GC cycle reverses the role
of the two semispaces. Then, all workers including the first one copy the live
objects starting from their root set. When all live objects have been copied (i.e.,
Global queue and all Local queues become empty), all workers are allowed to
resume their mutation. Because the mutator is halted during the GC cycle, then
it leads to long and unpredictable delays. In the opposite, the overheads that
could be occurred due to real-time response are eliminated, so that the total
execution time of the program is decreased. Therefor, the modified scheme
(without real time response) is preferred if the mutator allows long delays
without making any effect on it.

Proceedings of the 10th ASAT Conference, 13-15 May 2003 	Paper CT-12 899

5.1 Load Balancing

This modified scheme uses a unique global queue and one private queue for
each worker. This is exactly what is happening in the real time scheme, such
that the load balancing can be implemented. A worker would add work to the
global queue when the queue is empty or less than a certain threshold. When a
worker finishes processing all works in its own private queue, it gets some work
from the global queue. Figure 5 illustrates how a worker can maintain its excess
work in its local queue such that, this work can easily be shared among other
workers. The worker should efficiently identify each piece of GC work (i.e., the
beginning and end of each piece of work), where S points to the beginning of the
queue of objects to be scanned and B points to the end of the queue. The head of
the local queue, S, and B gives enough information to quickly identify each
piece of local GC work. The count field indicates the number of excess pieces of
GC work. If a worker has finished processing its local GC works, and there is
GC works in the global queue, then it takes work from global queue and
processes it. When all live objects have been copied (i.e., Global queue and all
Local queues are become empty), the mutator is allowed to resume its work.
Because of the load balancing among workers, no worker will be idle waiting
other workers to finish their GC works, instead they will help each other by
distributing GC work among them.

5.2 Synchronization and Locking

As in the real-time scheme; all workers have to synchronize at the beginning and
the ending of every GC cycle. When a worker has no more free space available
to complete its mutation, it wishes to start a new GC cycle, it stops its mutation,
signals all other workers to synchronize. When a worker detects the signal, it
also suspends its mutation and replies to the GC invoker. When all workers have
replied, they start copying live objects staring from their root sets. After all live
objects have been copied, all workers are allowed to resume the mutation. In
seek of locking problem, one global lock for each global list solves the problem
of controlling access to such lists, also a lock field per objects (1 bit) is used to
control multiple simultaneous accesses to objects by more than one worker at
the same time.

Ti
m

e(
un

it
tim

e)

160
140 -
120
100 -
80
60
40
20 -
0

0

Proceedings of the 10th ASAT Conference, 13-15 May 2003 	Paper CT-12 900

6. Performance Measurements

A comparison among the two proposed schemes and the two non-generational
schemes has been made to measure the total execution time, as well as, the
speedup.

6.1 Total Execution Time

The simulator's results of the schemes with respect to the total execution time
are given in Table 1. All schemes are supported with load balancing. These
results have been measured up to 32 workers.

Table 1.
processors Non-generational

copying GC
Non-generational RT

copying GC
Generational
copying GC

Generational RT
copying GC

1 78.788807 152.664245 74.946954 123.415635
2 56.302677 91.331063 47.320733 72.111341
4 29.013456 46.282691 26.431811 34.942237
8 15.589865 24.519489 12.974917 17.259232
16 10.139065 16.683999 6.580165 9.038633
32 6.981663 14.901922 3.466478 7.479359

Generational copying GC —a-Generational RT copying GC 	j

5
	10 	15 	20 	25 	30 	35

numberof workers
Figure 4:Real-time and non real-time parallel generational copying GC with load balancing

According to the comparison results of real-time and non real-time parallel
generational copying GC schemes with load balancing, which are shown in
Figure 4, the non real-time scheme shows better performance than the one with
real-time. This result is natural since supporting real-time response incur more

Ti
m

e
un

it
tim

e)

80 -
70 -
60 -
50 -
40 -

30 -
20 -

10

Proceedings of the 1 ASA T Conference, 13-15 May 2003 	Paper CT-12 901

run-time overhead. So in the systems those don't necessary need interactive or
real-time response the non real-time scheme could be used.
According to Figure 5 and Figure 6, it has been found that generational copying
garbage collection has a better performance than non-generational copying
garbage collection. The major inefficiency in non-generational copying garbage
collection is that the system must copy all live data at a collection. Most objects
die before a collection and never need to be copied. Objects that do survive are
copied at every collection, over and over, and the garbage collector spends most
of its time copying the same old objects repeatedly. Generational copying
collection avoids much of this repeated copying by segregating objects into
multiple areas by age, and collecting areas containing older objects less often
than the younger ones.

—u--Non-generational copying GC 	—16--Generational copying G61

0 	7 	 1 	 7

0 	5 	10 	15 	20
	

25
	30

number of workers

Figure 5Non-generational and generational parallel copying GC with load balancing.

35

Proceedings of the 10m ASAT Conference, 1345 May 2003 	Paper CT-12 902

160

140
1-1 120

'2 100
**6

80

60

40
i=

20

0

Non-generational RT copying GC --a—Generational RT copying GC

5
	

10 	15 	20
	

25
	

30

number of workers

35

Figure 6:Non-generational and generational RT parallel copying GC with load balancing.

Once objects have survived a small number of collections, they are moved to a
less frequently collected area. Areas containing younger objects are collected
quite frequently, because most objects will generally die quickly, freeing up
space; copying the few that survive does not cost much. These survivors are
advanced to older status after a few collections, to keep copying costs down.

6.2 Speedup

The speedup is measured by the following equation.

sgctime
Speedup = pgctime

Where:
sgctime is the sequential garbage collection scheme time , and
pgctime is the parallel garbage collection scheme time

The calculated speedup of the four schemes are given in Table 2
Table 2.

processors Non-generational
copying GC

Non-generational RT
copying GC

Generational
copying GC

Generational RT
copying GC

1 1 1 1 1
2 1.399379411 1.671547883 1.583807968 1.711459436
4 2.715595378 3.298517042 2.835483123 3.531990096
8 5.053847933 6.226240889 5.776295448 7.150702592
16 7.770815849 9.150338897 11.38982898 13.65423676
32 11.285106 10.244601 21.62049031 16.50083049

10 25 30 35 0 	5 15 	20
numberof workers

22 -
20 -
18 -
16 -

0 14
12
10
8-
6
4
2
0 	

Proceedings of the le ASAT Conference, 13-15 May 2003 	Paper CT-12 903

The speedup results of the real-time and non real-time parallel generational GC
schemes with load balancing are shown in Figure 7. According to the results, it
has been found that the real time scheme satisfy better results than the non real-
time scheme for small number of workers. The overheads have been occurred in
the real time scheme when the number of workers increases. This is because of
the synchronization overheads.
Figure 7:Real-time and non real-time parallel generational copying GC with load balancing.

Generational copying GC 	—a— Generational RT copying GC

From Figure 8 and Figure 9 we can see that generational copying garbage
collection schemes satisfy better results than non-generational copying garbage
collection.

. Non-generational copying GC —&—Generational copying GC

22 -
20 -
18 -
16 -

I 14 -
k 12

10.
8 -
6 -
4 -
2 -
0 	

0 5 10 	15 	20
number of workers

25 	30 	35

Figure 8:Non_generational and generational parallel copying GC with load balancing.

Proceedings of the 10m ASAT Conference, 1315 May 2003 	Paper CT-12 904

--a—Non-generational RT copying GC —generational RT copying GC

22
20
18
18
14

112
10
8

4
2
0

0
	

5
	

10 	15 	20
	

25 	30 	35

number of workers

Figure 9:Non_generational and generational RT parallel copying GC with load balancing.

7. Conclusion

In this paper we proposed an improved parallel generational real-time garbage
collection scheme for shared memory multiprocessors. This scheme as will as, a
parallel generational garbage collection scheme for shared memory
multiprocessors have been implemented and evaluated. The basic idea of
improvement is developed from Ali's two papers "A simple Parallel
Generational Real-time Garbage Collection Scheme for Shared-memory
Multiprocessors" [3], and "A Parallel Real-time Garbage Collection Scheme for
Shared-memory Multiprocessors" [2]. A comparison between the first two
schemes has been made. Because the real-time response is not always required,
so if we use a system that doesn't need interactive or real-time response, the
modified scheme that does not support a real-time response can be used. A
comparison between the two generational schemes and with non-generational
schemes is also made. We prove that generational schemes have better
performance than those non-generational schemes.

Proceedings of the 10th ASAT Conference, 13-15 May 2003 	Paper CT-12 905

References

1. Khayri A. M. Ali, et al., " A Comparative Study of Parallel Copying
Garbage Collection Schemes for Shared-memory Multiprocessors", to be
published.

2. Khayri A. M. Ali, "A parallel Real-Time Garbage Collection Scheme for
Shared-Memory Multiprocessors," In the Proceedings of the 31st Annual
Conferences on Statistics, Computer Science, and Operating Research,
Cairo, December 1996.

3. Khayri A. M. Ali, "A Simple Parallel Generational Real-Time Garbage
Collection Scheme for Shared-Memory Multiprocessors, " The Egyptian
Computer Journal, ISSR, Cairo, JNIV, Vol.24, No.2, 1996.

4. Augmint: A multiprocessor Simulation Toolkit for Intel x86
Architectures. 	Source 	+ 	executable 	+ 	docs:
http://www.csrd.uiuc.edu/iacoma.

5. H. Lieberman and C. E. Hewitt, "A Real-Time Garbage Collector based
on the Lifetimes of Objects," Communications of the ACM, Vol.26, No.6,
PP 419-429, 1983.

6. Tony Printezis and David Detlefs, "A Generational Mostly-concurrent
Garbage Collector," SMLI TR-2000-88, June 2000.

7. Herbert Stoyan, "Early Lisp History (1956-1959)," Web version.
http://www8 inforrnatik .uni-erlangen. de/ html/lisp/histlitl . html .

8. D. M. Ungar, "Generation scavenging A non-disruptive high performance
storage reclamation algorithm," ACM SIGPLAN Notices, Vol.19, No.5,
PP 157-167, April 1984.

9. Paul R. Wilson, "Uniprocessor Garbage Collection Techniques," Tech.
Rep. University of Texas, January 1994.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19

