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Abstract 
'In this paper, an improved parallel generational copying real-time garbage 
collection scheme for shared-memory multiprocessors, which supports load 
balancing among workers, has been proposed, implemented, and evaluated. The 
basic idea of improvement is developed from Ali's two papers [2,3]. The 
scheme proposed here is a form of copying collectors that attempt to eliminate 
the drawback of frequently copying long-lived (stable) objects. This class of 
schemes is called generational-based schemes, which is based on concentrating 
the collection efforts on small areas of memory, so-called young generation. 
They reduce the need for collecting the remaining large areas of memory, old 
generation. A modified scheme, without real-time response, has also been 
implemented and compared to the real-time one. A comparative study has been 
done for the two schemes with other two parallel non-generational copying 
garbage collection schemes founded by the author in [1]. According to this 
comparative study, we proved that the performance of generational schemes is 
better than the performance of non-generational schemes. Also, the overheads 
occurred due to real-time response have been calculated. 

1. Introduction 
Storage Management in the programming environment refers to how to control 
the use of memory that holds representations of objects/information. It is 
responsible for allocating space for the object when it is created and 
subsequently reusing the allocated space when it is no longer needed. An 
efficient storage management scheme plays a crucial role in enhancing the 
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efficiency of a programming system. Programming languages that rely on 
garbage collection have existed since the late 1950's [7]. Though the benefits of 
garbage collection for program simplicity and robustness are well known and 
accepted, most software developers have continued to rely on traditional explicit 
memory management, largely because of performance concerns. Only recently 
garbage collection has been allowed to enter the mainstream and be used in 
large systems. Developers have been skeptical about garbage collection for two 
reasons: throughput and latency. That is, they fear that collection will either 
slow down the end-to-end performance of their systems, or induce long 
collection pauses, or both. Large increases in computing power have not 
eliminated these concerns, since they are typically offset by corresponding 
increases in memory requirement [6]. Lieberman and Hewitt [5] first proposed 
generational garbage collection techniques, but Ungar reported the first 
implementation [8]. Garbage collection techniques can address both 
performance concerns. They split the heap into generations according to object 
age. Concentrating collection activity on the "young" generation increases 
throughput, because (in most programs) young objects are more likely to be 
garbage, so more free spaces is recovered per unit of collection work. Since the 
young generation is typically small relative to the total heap size, young-
generation collections are usually brief, addressing the latency concern. 

The memory space, which is not accessible, is referred to as garbage and the 
reclamation of garbage is referred to as garbage collection (GC). The runtime 
system must be capable of recognizing memory shortages and reclaiming 
unused memory for reallocation. The following three steps are either implicitly 
or explicitly performed in all GC algorithms: 

(1) Identification of accessible objects, 
(2) Reclamation of the inaccessible memory objects, 

and (3) Compacting the memory to improve locality [9]. 
Advanced programming environments have been implemented on different 
parallel architectures and it is found that the shared-memory multiprocessor is 
the most used architecture as a test bed. Then, it is important to develop a 
memory management system such that it efficiently manages the allocated 
storage by the parallel program. Therefore the underlying architecture would be 
used efficiently. 

The aim of this work is to implement and compare the two generational schemes 
with each other and with the two non-generational copying schemes found in 
[1]. The same number of workers, number of memory blocks that construct the 
global shared heap space, data structures, locking mechanism, and 
synchronization mechanism have been used in our implementation. The used 
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simulator is a shared-memory multiprocessor simulation toolkit for Intel x86 
architectures that called Augmint [4]. This simulator has been used with number 
of workers up to 32 to implement the concerned GC schemes. Our improved 
generational scheme is based on a simple parallel generational real-time garbage 
collection scheme for Shared-memory Multiprocessors [3], which is described in 
Section 2. In Section 3 our modification to improve this simple scheme by 
adding the load balancing to produce the new scheme is explained. In section 4 
the new scheme is described. Section 5 explains how to modify the new scheme 
such that it becomes parallel generational load balancing garbage collection 
scheme without real-time response. The performance measurements and the 
comparisons of the schemes as well as the method used to calculate speedup are 
illustrated in Section 6. Finally section 7 is for conclusions and future work. 

2. A Simple Parallel Generational Real-time GC Scheme 

Our generational scheme is based on a simple parallel generational real-time 
garbage collection scheme for Shared-memory Multiprocessors [3]. It is a two 
generations scheme in which garbage collection is interleaved with normal 
program execution. In this scheme, the space devoted to the heap is dynamically 
allocated to workers according to their demands for free space. This space is 
subdivided into two generations, NEWER and OLDER. Each generation is 
subdivided into two semispaces of equal size, the semispaces are OLDER_OLD, 
OLDER_NEW, NEWER_OLD, and NEWER_NEW. Each semispace is a list of 
non-contiguous memory blocks. During program execution, new objects are 
allocated in the NEWER_NEW semispace and each accessed object in the 
OLDER_OLD, and NEWER_OLD is moved to the OLDER NEW semispace. 
Each time a new object is allocated, an increment of scanning and copying is 
done. When a worker assigns a pointer to the NEWER_NEW space into a 
memory cell in the OLDER_NEW space, a pointer to that cell is stored in a local 
reference list. Elements of this list will be used as roots in the next minor cycle. 

2.1 The Scheme Outlines 

The idea of the scheme [3] is as follows: objects in the heap storage system 
belongs to one of two generations: NEWER generation or OLDER generation. 
Objects alive after the previous garbage collection cycles belong to the OLDER 
generation, whereas newly allocated objects belong to the NEWER generation. 
Live objects in the NEWER generation will be promoted to the OLDER 
generation in a so-called minor collection cycle, and garbage in the OLDER 
generation is collected in a so-called major collection cycle. Because most of the 
newly created objects have short lifetimes, fewer objects will be promoted to the 
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OLDER generation in every minor collection. This means that the OLDER 
generation space fills up much slower than the NEWER generation space and 
the minor collection cycles will be more frequent than the major collection 
cycles. In minor cycles, references from the OLDER generation to the NEWER 
generation as well as the set of main roots in the system will be used to identify 
live objects, whereas in major cycles, the set of main roots only will be used. 
Since this scheme is a real time one, garbage collection and maintaining 
references from the OLDER generation to the NEWER generation are 
interleaved with normal program execution, and when a collection cycle is 
completed, a new one will be started. 

The scheme uses two semispaces for maintaining objects in each generation. For 
maintaining objects in the NEWER generation, we have two semispaces called 
NEWER NEW and NEWER_OLD. The NEWER_NEW semispace contains 
newly allocated objects, whereas the NEWER_OLD semispace contains objects 
allocated in the previous minor collection cycle. In each minor cycle, live 
objects in the NEWER_OLD semispace will be copied to the OLDER 
generation. When all live objects in NEWER_OLD semispace have been copied 
to the OLDER generation, the current minor cycle is complete and another one 
can be started. The roles of the two semispaces NEWER_NEW and 
NEWER_OLD change in every minor cycle. For maintaining objects in the 
OLDER generation, two other semispaces called OLDER_NEW and 
OLDER_OLD are used. The OLDER NEW semispace contains copied objects 
from the NEWER generation in all invoked minor collection cycles after the 
latest major collection cycle and it also contains copied objects from the current 
OLDER_OLD semispace. The OLDER_OLD semispace contains all objects 
that were alive in the previous major collection cycle. A major collection cycle 
can be started when all live objects in the current NEWER_OLD and 
OLDER_OLD semispaces have been copied to the OLDER_NEW semispace. 
Here, also the roles of the two semispaces OLDER_NEW and OLDER_OLD 
change in every major cycle. 

The idea of the scheme is shown in Figure 1. Figures 1 (A)-(C) show what 
happens when a minor cycle is invoked, whereas Figure 1 (D) shows a major 
cycle. The two semispaces on the right side represent the NEWER generation, 
and the two semispaces on the left side represent the OLDER generation. In 
minor cycle, which illustrated in Figure 1 (A), new objects are allocated in the 
NEWER_NEW semispace and they are assumed to be live, and live objects in 
NEWER_OLD semispace are copied to the OLDER_NEW semispace. Copying 
of live objects, as well as, scanning of the copied objects are interleaved with 
normal program execution. 
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Figure 1 (B) illustrates a situation during the next minor cycle where live objects 
in the new NEWER_OLD semispace are copied to the OLDER_NEW 
semispace. It is assumed that at the end of the minor cycle shown in Figure 1 
(C). The amount of used space in OLDER_NEW semispace has reached a 
certain threshold and a major cycle is invoked as described in Figure 1 (D), 
where live objects in the new OLDER_OLD and NEWER_OLD semispaces 
will be copied to the new OLDER_ NEW semispace, and new objects will be 
allocated in the current NEWER_NEW semispace. When all live objects in the 
OLDER_OLD and NEWER_OLD semispaces have been copied to the 
OLDER_NEW semispace, the major cycle is completed and then a number of 
minor cycles could be performed before the next major cycle. 

2.2 Locking 

The data structures which can be simultaneously modified by more than one 
worker in this scheme are: 

(1) The four lists that maintain blocks allocated to each of the four semispace, 
(2) The accessible objects in the OLDER_NEW, OLDER_OLD, and 

NEWER_OLD semispaces. 
One global lock for each global list solves the problem of controlling access to 
such lists. For the second data structure, we would have a lock field per object (1 
bit). To avoid simultaneous update of objects in the OLDER_OLD, and 
NEWER_OLD semispaces, every worker wants to access an old object it first 
checks its lock field. If it is locked (i.e., its value equal true), then worker waits, 
if it isn't locked (i.e., its value equal false), the worker locks it, then access it, 
and unlocks it again. 

2.3 Synchronization 

In the scheme, all workers have to synchronize at the beginning of every 
collection cycle. Therefore, a new collection cycle cannot start until the previous 
one has been completed. The question now is how to detect termination of a 
collection cycle. One simple way is to use a global counter that counts how 
many workers have completed their current collection cycle. When all workers 
have completed their current collection cycle, the current GC cycle is 
successfully terminated because the value of counter becomes equal to the 
number of workers in the system, and then any worker can start a new collection 
cycle. Then all workers can start a new collection cycle. 
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Figure 1: The Idea of Ali's Scheme 	NEWER_ 	
Major Cycle 

2.4 Drawback of the Scheme 

In any real time garbage collection scheme (GC), garbage collection is not 
carried out as one atomic action while the program is halted, but instead small 
units of garbage collection must be interleaved with small units of program 
execution. The scheme interleaves collection activity with the actual work of the 
program. In the parallel systems where more than one worker are active at the 
same time, in order to guarantee each GC cycle will terminate, each creation of a 
new object should garbage collect some objects. In the parallel implementation, 
one worker could have no GC work when it creates a new object whereas 
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another worker has. If the former worker does not help the later, the result will 
be that the former worker creates a new object and does not perform any GC 
work. If this situation is allowed to take place, copying all accessible objects in 
every GC cycle could not be guaranteed. One way to solve this is that if a 
worker can't find any garbage collection work to do, it also stops its mutator, but 
this will effect the real time response of the scheme. Unfortunately, the author 
didn't show how this situation could be solved. When we implement his scheme, 
the scheme has become unstable, we proposed and implemented two solutions; 
the first solution, workers can allocate new object without performing any GC 
work, leads to not all-live objects are copied before the space is exhausted, so 
the GC cycle will not terminate correctly. In the second solution, workers that 
haven't any GC work stop their mutator also, the real time response is not as 
required. 

3. Load Balancing .  

The drawback of the above scheme will be overcome by load balancing of GC 
work. The idea of load balancing has been taken from the parallel real-time 
copying garbage collection scheme with load balancing for shared-memory 
multiprocessor [2]. A worker with excess GC work has to make that work 
available to other workers and each worker that has no GC work during the 
creation of a new object will try to get some GC work from other worker with 
excess GC work. The scheme uses a unique global queue and one private queue 
for each worker. A worker would add work to the global queue when the queue 
is empty or less than a certain threshold. When a worker finishes processing all 
works in its own private queue, it gets some works from the global queue. 
Figure 2 illustrates how a worker can maintain its excess work in its local queue 
in a way that simplifies sharing of that work. The worker should efficiently 
identify each piece of GC work, i.e., the beginning and the end of each piece of 
work. A pointer (S) points to the beginning of the queue of objects to be scanned 
and a pointer (B) points to the end of the queue. We extend the linking object, 
Dummy object, by another linking field to point to the end of its following 
unscanned area. Also, the head of the local queue, S, and B gives enough 
information to quickly identify each piece of local GC work. The count field 
indicates the number of excess pieces of GC work. 

To illustrate this scheme an example is represented in Figure 3. Suppose a 
system having three workers WO, WI, and W2 with its global queue and with a 
local queue for each worker. GC work of WO is divided into two parts: one part 
is global and the other part is private. WI has all its work global; W2 has only 



Proceedings of the 10th  ASAT Conference, 13-15 May 2003 	Paper CT-12 894 

private GC work. The global queue has three pieces of GC work. Any worker 
can pick work from the global queue. 

The First-B and First-E fields identify the first piece in the global queue. 

Local 
Figure 2:Managing local GC work in a queue to simplify work distribution 

Linking objects at the tail of each piece of work identifies the following pieces 
of work. The Last field of global queue points to the end of the queue. The 
Count field indicates the number of pieces in the queue. The data structures used 
for representing GC work and the queues allow efficient moving of work from 
any local queue to the global queue and conversely. When a worker finishes its 
local work and takes work from global queue, it updates its S, B, and local 
queue as follows. It sets its S to the beginning of the piece of work taken. It 
makes the linking object of that work point to the location of B. It sets the First 
and Last fields of the local queue to the location of B. It increments the Count 
field of its local queue by 1. Then it starts scanning at S, copies at B and 
allocates new objects at F. First-B and First-E fields of the global queue is 
updated to point to the next global piece of GC work. 

In the heap organization, a worker gets one free memory block at a time for 
allocating new objects and for copying accessible objects. Workers allocate 
objects in their memory blocks at different rates. The result could be a situation 
where some workers may have GC work and have no free space available and 
other workers have no GC work and have free space. In this situation the former 
workers should give their GC work, which requires free space, to the latter 
workers. WI in Figure 3 shows a situation where it has local GC work and does 
not have free space to perform it. Thus, it moves its local work to the global 
queue. Workers with no free space available (W1) can't allocate new objects 
before the current GC cycle is complete. They can do any other work except 
allocating or copying objects. Workers with free space available should speed up 
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completion of the current GC cycle by concentrating on processing the available 
GC work, in order to minimize the idle time of the other workers. 

WO 

W1 

W2 

Figure 3:Local and Global GC work for a system with 3 workers WO, WI, and W2 

4. A Parallel Generational Copying Real Time GC Scheme 

This scheme is proposed according to the work in this paper, the idea of this 
scheme is exactly as the idea that has been described in the simple parallel 
generational real time garbage collection scheme for shared memory 
multiprocessors, except that the scheme supports dynamic load balancing. 
Dynamic load balancing has contributed by: 

(1) guaranteeing garbage collection progress in every allocation of a new 
object, 

(2) guaranteeing successful termination of every GC cycle, 
and (3) improving efficiency by making workers that have no 	computation 
work due to lack of parallelism in the program, perform 	most of the GC 
work, leaving the other workers to concentrate on 	computation work.. 
Each time a new object is allocated, an increment of scanning and copying is 
done. The scanning and copying work is balanced between workers to guarantee 
garbage collection progress in every allocation of a new object. Workers that 
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have work and have not enough free memory space to perform the work will 
give their work to workers having free space. 

4.1 Synchronization 

In our scheme, all workers have to synchronize at the beginning of every 
collection cycle. A new collection cycle cannot start until the previous one has 
been completed. The question is how to detect termination of a collection cycle. 
One simple way is to use a global counter that counts how many workers have 
completed their current collection cycle. A worker that wishes to start a new GC 
cycle signals all other workers to synchronize. When a worker detects the signal, 
it will try to finish all available GC work as long as it has free space available. 
When a worker has no more free space available and has private GC work, it 
puts its work in the global queue and then it replies to the synchronizer. When 
all workers have replied to the GC invoker and there is no remaining work in 
any of the local queues and the global queue, the current GC cycle is 
successfully terminated. The counter value will be as the number of workers in 
the system, and then any worker can start a new collection cycle. 
The successful termination could fail when we reach a situation in which there is 
GC work in the global queue and none of the workers has enough free space to 
process it. To avoid this situation we must estimate the amount of GC work that 
should be done in every allocation of a new object at run time to guarantee 
successful termination. 

4.2 GC Work per New Allocation 

The amount of GC work that should be done in every allocation of a new object 
to guarantee successful termination of each GC cycle will be estimated at run 
time as follows: 
Assuming that Omax is the maximum object size of the allocated objects, and 
Omin is the minimum object size of the allocated objects. Recall our 
assumption that the heap space contains (N+M) memory blocks where NEWER 
generation contains N memory blocks, OLDER generation contains M memory 
blocks, where M is much larger than N, and the two semispaces of each 
generation are equal in size. At termination of a minor GC cycle, Li is the total 
amount of free space in the current NEWER_NEW semispace. After flipping of 
the NEWER generation semispaces, in the worst case ((N/2)-L1)/Omin objects 
should be copied and scanned when (Na)/ Omax new objects are allocated. 
That is (Omax / Omin)*(((N/2)-Ll)/(N/2)) objects should be scanned in every 
new objects allocation. Upon doing this, the new GC cycle will successfully 
terminate. In the real system, a high percentage of allocated objects are garbage 
and not all old objects have minimum object size (Omin) and not all new 
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objects have maximum size (Omax). Thus, using this estimation, it is 
guaranteed that every minor GC cycle will successfully terminate. 
By the same way, at termination of a major GC cycle, Ll is the total amount of 
free space in the current NEWER_NEW semispace and L2 is the total amount 
of free space current OLDER_NEW semispace. After flipping of the NEWER 
and OLDER generations semispaces, in the worst case, (((N/2)-L1)+ ((M/2)-
L2))/Orrin objects should be copied and scanned when (N/2)/ Omax new 
objects are allocated. That is (Omax / Omin)*((((N/2)-L1)+((M/2)- 
L2))/(N/2)) objects should be scanned in every new objects allocation. 

4.3 Outline of The Scheme 

The space devoted to the heap is virtually subdivided into four semispaces: 
OLDER_OLD, OLDER_NEW, NEWER_OLD and NEWER_NEW. The space 
of each semispace is dynamically allocated to workers according to their 
demands for free space. During program execution, new objects are allocated in 
the NEWER_NEW semispace and each accessed object in the OLDER_OLD, 
and NEWER_OLD is copied to the OLDER_NEW semispace, and references 
from the OLDER generation to the NEWER generation are maintained. Each 
time a new object is allocated, an increment of scanning and copying is done. 
Each worker allocates new objects in its memory blocks in the NEWER_NEW 
semispace and copies uncopied objects to its memory blocks in the 
OLDER_NEW semispace. Each worker maintains its private work using its S 
and B pointers, and its local queue. This queue represents unprocessed local GC 
work. When a worker assigns a pointer to the NEWER_NEW semispace into a 
memory cell in the OLDER_NEW semispace, a pointer to the cell is stored in a 
local reference list. Elements of this list will be used as roots in the next minor 
collection cycle. When a worker allocates a new object, it scans some elements 
of its private queue and reference list created in the previous cycle, if there is 
any. 

Whenever a worker having excess work discovers that the global queue is empty 
(or less than a certain threshold), it moves some of its excess work to the global 
queue. Each worker could check the global queue at the end of each allocation 
of a new object. When a worker allocates a new object and cannot find private 
GC work to do, it will try to take work from the global queue, if there is any. 
When a worker demands a new memory block and there is private work to be 
scanned in the worker's current memory block, that work is saved in either the 
global queue or in the worker's private queue. When a worker cannot get a new 
memory block, i.e., memory space in the current NEWER_NEW semispace has 
been exhausted, it will try to start a new GC cycle. If a worker has private GC 
work, it will move that work to the global queue. Then the worker will decide 
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whether it is a major or minor one and automatically signal all workers to 
synchronize for flipping, if another worker has not done that yet. When a worker 
detects the flipping signal, and finds GC work to be done, it will first try to 
finish its private GC work and then the global queue. Any worker that cannot 
process its private GC work due to shortage of free space will save the 
remaining work in the global queue. Then the worker replies to the GC invoker 
and waits. 

When all workers have acknowledged the flipping, the GC invoker atomically 
reverses the roles of the two semispaces and then signals all workers to start a 
new collection cycle. When a worker detects a start signal, it copies objects 
directly reachable from its roots to its newly allocated memory blocks replies 
back, and resumes its normal program execution. 

4.4 Idle Workers 

The GC work in the system will be dynamically moved from busy workers to 
idle workers. Workers performing memory operations and having excess GC 
work move some of their local work to the global queue and each idle worker 
that does not have GC work will take from the global queue. 

5. Parallel Generational GC with Load Balancing 

Because some systems don't need real-time or even interactive response, 
disruptive behavior is not important, Therefore, our scheme has been changed 
such that the real time response is eliminated (i.e., it becomes a stop-the-world 
collector). According to this modification, GC carried out as one atomic action 
while the mutator is suspended. When a worker cannot get a new memory block 
(i.e., memory space in the current NEW semispace has been exhausted), this 
worker will start a new GC cycle by signaling all other workers, suspending its 
mutation, and waiting. When a worker finds the signal, it suspends mutation and 
waits, this will be happen for all workers in the systems. After all workers 
suspend, the first worker, which wishes to start a new GC cycle reverses the role 
of the two semispaces. Then, all workers including the first one copy the live 
objects starting from their root set. When all live objects have been copied (i.e., 
Global queue and all Local queues become empty), all workers are allowed to 
resume their mutation. Because the mutator is halted during the GC cycle, then 
it leads to long and unpredictable delays. In the opposite, the overheads that 
could be occurred due to real-time response are eliminated, so that the total 
execution time of the program is decreased. Therefor, the modified scheme 
(without real time response) is preferred if the mutator allows long delays 
without making any effect on it. 
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5.1 Load Balancing 

This modified scheme uses a unique global queue and one private queue for 
each worker. This is exactly what is happening in the real time scheme, such 
that the load balancing can be implemented. A worker would add work to the 
global queue when the queue is empty or less than a certain threshold. When a 
worker finishes processing all works in its own private queue, it gets some work 
from the global queue. Figure 5 illustrates how a worker can maintain its excess 
work in its local queue such that, this work can easily be shared among other 
workers. The worker should efficiently identify each piece of GC work (i.e., the 
beginning and end of each piece of work), where S points to the beginning of the 
queue of objects to be scanned and B points to the end of the queue. The head of 
the local queue, S, and B gives enough information to quickly identify each 
piece of local GC work. The count field indicates the number of excess pieces of 
GC work. If a worker has finished processing its local GC works, and there is 
GC works in the global queue, then it takes work from global queue and 
processes it. When all live objects have been copied (i.e., Global queue and all 
Local queues are become empty), the mutator is allowed to resume its work. 
Because of the load balancing among workers, no worker will be idle waiting 
other workers to finish their GC works, instead they will help each other by 
distributing GC work among them. 

5.2 Synchronization and Locking 

As in the real-time scheme; all workers have to synchronize at the beginning and 
the ending of every GC cycle. When a worker has no more free space available 
to complete its mutation, it wishes to start a new GC cycle, it stops its mutation, 
signals all other workers to synchronize. When a worker detects the signal, it 
also suspends its mutation and replies to the GC invoker. When all workers have 
replied, they start copying live objects staring from their root sets. After all live 
objects have been copied, all workers are allowed to resume the mutation. In 
seek of locking problem, one global lock for each global list solves the problem 
of controlling access to such lists, also a lock field per objects (1 bit) is used to 
control multiple simultaneous accesses to objects by more than one worker at 
the same time. 
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6. Performance Measurements 

A comparison among the two proposed schemes and the two non-generational 
schemes has been made to measure the total execution time, as well as, the 
speedup. 

6.1 Total Execution Time 

The simulator's results of the schemes with respect to the total execution time 
are given in Table 1. All schemes are supported with load balancing. These 
results have been measured up to 32 workers. 

Table 1. 
processors Non-generational 

copying GC 
Non-generational RT 

copying GC 
Generational 
copying GC 

Generational RT 
copying GC 

1 78.788807 152.664245 74.946954 123.415635 
2 56.302677 91.331063 47.320733 72.111341 
4 29.013456 46.282691 26.431811 34.942237 
8 15.589865 24.519489 12.974917 17.259232 
16 10.139065 16.683999 6.580165 9.038633 
32 6.981663 14.901922 3.466478 7.479359 

Generational copying GC —a-Generational RT copying GC 	j 

5 
	10 	15 	20 	25 	30 	35 

numberof workers 
Figure 4:Real-time and non real-time parallel generational copying GC with load balancing 

According to the comparison results of real-time and non real-time parallel 
generational copying GC schemes with load balancing, which are shown in 
Figure 4, the non real-time scheme shows better performance than the one with 
real-time. This result is natural since supporting real-time response incur more 
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run-time overhead. So in the systems those don't necessary need interactive or 
real-time response the non real-time scheme could be used. 
According to Figure 5 and Figure 6, it has been found that generational copying 
garbage collection has a better performance than non-generational copying 
garbage collection. The major inefficiency in non-generational copying garbage 
collection is that the system must copy all live data at a collection. Most objects 
die before a collection and never need to be copied. Objects that do survive are 
copied at every collection, over and over, and the garbage collector spends most 
of its time copying the same old objects repeatedly. Generational copying 
collection avoids much of this repeated copying by segregating objects into 
multiple areas by age, and collecting areas containing older objects less often 
than the younger ones. 

—u--Non-generational copying GC 	—16--Generational copying G61 
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0 	5 	10 	15 	20 
	

25 
	30 

number of workers 

Figure 5Non-generational and generational parallel copying GC with load balancing. 
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Figure 6:Non-generational and generational RT parallel copying GC with load balancing. 

Once objects have survived a small number of collections, they are moved to a 
less frequently collected area. Areas containing younger objects are collected 
quite frequently, because most objects will generally die quickly, freeing up 
space; copying the few that survive does not cost much. These survivors are 
advanced to older status after a few collections, to keep copying costs down. 

6.2 Speedup 

The speedup is measured by the following equation. 

sgctime 
Speedup = pgctime 

Where: 
sgctime is the sequential garbage collection scheme time , and 
pgctime is the parallel garbage collection scheme time 

The calculated speedup of the four schemes are given in Table 2 
Table 2. 

processors Non-generational 
copying GC 

Non-generational RT 
copying GC 

Generational 
copying GC 

Generational RT 
copying GC 

1 1 1 1 1 
2 1.399379411 1.671547883 1.583807968 1.711459436 
4 2.715595378 3.298517042 2.835483123 3.531990096 
8 5.053847933 6.226240889 5.776295448 7.150702592 
16 7.770815849 9.150338897 11.38982898 13.65423676 
32 11.285106 10.244601 21.62049031 16.50083049 
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The speedup results of the real-time and non real-time parallel generational GC 
schemes with load balancing are shown in Figure 7. According to the results, it 
has been found that the real time scheme satisfy better results than the non real-
time scheme for small number of workers. The overheads have been occurred in 
the real time scheme when the number of workers increases. This is because of 
the synchronization overheads. 
Figure 7:Real-time and non real-time parallel generational copying GC with load balancing. 

Generational copying GC 	—a— Generational RT copying GC 

From Figure 8 and Figure 9 we can see that generational copying garbage 
collection schemes satisfy better results than non-generational copying garbage 
collection. 
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Figure 8:Non_generational and generational parallel copying GC with load balancing. 
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Figure 9:Non_generational and generational RT parallel copying GC with load balancing. 

7. Conclusion 

In this paper we proposed an improved parallel generational real-time garbage 
collection scheme for shared memory multiprocessors. This scheme as will as, a 
parallel generational garbage collection scheme for shared memory 
multiprocessors have been implemented and evaluated. The basic idea of 
improvement is developed from Ali's two papers "A simple Parallel 
Generational Real-time Garbage Collection Scheme for Shared-memory 
Multiprocessors" [3], and "A Parallel Real-time Garbage Collection Scheme for 
Shared-memory Multiprocessors" [2]. A comparison between the first two 
schemes has been made. Because the real-time response is not always required, 
so if we use a system that doesn't need interactive or real-time response, the 
modified scheme that does not support a real-time response can be used. A 
comparison between the two generational schemes and with non-generational 
schemes is also made. We prove that generational schemes have better 
performance than those non-generational schemes. 
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