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Abstract.  
This paper presents a new algorithm for Manoeuvring Multitarget Tracking. 

The suggested algorithm solves the interrelated tasks of data association and state 
estimation in one combined algorithm. The new algorithm is based on fuzzy cluster 
means algorithm to solve the data association problem, and an adaptive Kalman filter 
for maneuvering multitaget tracking. To demonstrate the effectiveness of the 
proposed algorithm to perform data association and state estimation in multitarget 
tracking in high noisy measurement, an example of four-dimensional tracking system 
is considered. A scenario of two targets moving together at near distance and then 
making high maneuver is considered. The performance is evaluated using Monte 
Carlo simulations and the results are reasonable. 
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1-Introduction.  
Ordinary tracking problems involve processing measurements (e.g., range and 

azimuth observed by a sensor) from a target of interest and producing, at each time 
step, an estimate of the target's current position and velocity vectors. Uncertainties in 
the target motion and in the measured values, usually modeled as additive random 
noise, lead to corresponding uncertainties in the target state. 

A common and versatile approach to such problems involves assuming that 
the state dynamics and the measurements are both corrupted by additive, white 
Gaussian noise; the solution is then the Kalman-Bucy filter [1-3]. The parameters that 
determine tracking performance in such a filter are the system matrices in the 
equations describing target state dynamics and measurements, which will be 
considered fixed for the purposes of this discussion, and the covariance matrices of 
the process and measurements noises, which specify the uncertainties in target 
motion and measured values, respectively. 

In many tracking problems, particularly those arising in surveillance, there is 
additional uncertainty regarding the origin of the received data, which may (or may 
not) include measurements from the targets of interest, interfering targets, or random 
clutter (false alarms). This leads to the problem of data association or data 
correlation, which has been on a number of fronts [5-16]. In this situation, tracking 
performance depends not only upon the noise covariances, but also upon the 
amount of uncertainty in measurement origin. 

One can broadly divide the various aspects of a multitarget-tracking (MTT) 
algorithm into the interrelated tasks of data association and state estimation. Targets 
tracking involve: 1) the evaluation of a measure of how likely it is that a particular 
measurement originated from a target and 2) the update state of the target, if the 
measurement is assigned to the target by (the data association logic). The data 
association part of a multitarget-tracking algorithm is the decision process of linking 
together measurements of a common origin (i.e. a target or false alarms) so as to 
maximize a certain global performance measure, while satisfying certain feasibility 
condition (e.g., each measurement is associated with only one origin). 

In the literature, there are two main categories of data association for MTT 
systems: algorithmic and nonalgorithmic. The algorithmic category is based on 
nearest-neighbor and all-neighbor techniques. The nonalgorithmic category is based 
on neural network and fuzzy logic techniques.[22] 

Fuzzy logic techniques are well suited to model decision making processes 
[21]. Application of the fuzzy logic to the data association problem provides an 
approximate solution, and the results are subjected to the number of input variables, 
number of linguistic variables, the membership function, and the accuracy of the 
rules. In fuzzy clustering, each data point can be associated with more than one 
cluster with some degree of membership. The membership degrees are determined 
in a way to minimize or maximize a function. Recently, fuzzy clustering has been 
applied to data association and target identification. [20-23,25] 

However, in the multitarget case where association and estimation are 
coupled, one needs a systematic estimator that automatically adapts itself, and this is 
the major contribution of the present work. 

The remainder of this paper is organized as follows: section 2 formulates the 
tracking problem. Fuzzy cluster means algorithm is reported in section 3. The 
proposed Fuzzy Data Association Filter is presented in section 4. The simulation 
results are illustrated in section 5. Finally the conclusion is adopted in section 6. 
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2-Problem formulation. 
The mutitarget-tracking problem may be briefly stated as follows: Given a large 

number of close measurements for a group of targets. It is difficult to determine 
precisely which target corresponds to each of the closely —spaced measurements. 

It is assumed that the only measurements available are range R and bearing 
angle 8, and filtering is performed in the rectangular coordinates (two-dimensional) 
so that the measurements must first be transformed. The transformation equations 
are : 

directions, respectively. 

1 T 0 0 
0 1 0 0 

A= 0 0 1 
0 0 0 1 

(the state transition matrix) 

T2/2 0 
T 0 

B = 	0 	T2/2 
0 T 

(the input matrix), where T is the sampling interval. 

gx(k) 
G(k) = 

gy(k) 

(the acceleration input vector of the maneuvering target at time k). 

wx(k) 
W(k) = 

wy(k) 

(the input process noise vector with white zero mean) 

The measurement equation is modeled as: 
Z(k) = H(k) X(k) + V(k) 

X(t) = R cos (0) 	 (2.1) 

Y(t) = R sin (0) 	 (2.2) 
The state equation for maneuvering target model, discretized over time 

intervals of length T, is 
X(k+1) = A X(k) +B[G(k)+w(k)] 	 (2.3) 

Where 	X (k)=[x(k) x(k) y(k) y(k)] 

x(k), y(k), x(k) and y(k) represent the target positions and speeds in the X and Y 



Proceedings of the 10th  ASAT Conference, 13-15 May 2003 	Paper GN-6 988 

Where 	Z(k)=[z),(k) z,i(k) zy(k) zy(k)] 

(the observation vector at time k with dimension m) 

H: Identity matrix (it was assumed that both position and velocity in the X and Y 
directions are measured) 

V(k): (measurement noise vector with white zero mean). 

The plant noise and the measurement noise sequences are assumed to be 
uncorrelated; zero mean Gaussian sequences with the corresponding covariance 
matrices Q, R: 

E[w(k) w(j)T1= Qk Oki  

E[v(k) v(j)T] = Rk Oki 

E[w(k) V(j)T1 = 0 

And 6ki  is the Kronecker delta function. 
The problem treated here is how to construct the target states estimate by 

using the uncertain measurements originating from the targets in track. In particular 
the estimate is to be computed when tracking maneuvering multitargets. 

3-Fuzzy clustering means algorithm.  
The most widely used clustering algorithm is the fuzzy clustering means 

(FCM) algorithm developed by Bezdek [26]. This section introduces the FCM 
algorithm, which will be used for measurements —to-track association (correlation) 
The goal of any fuzzy clustering algorithm is to classify the data into a number of 
clusters (groups). The clustering algorithms produce a degree of membership for 
each data point in each cluster. Unlike conventional clustering, which involves a 
partitioning of objects into disjoint clusters. fuzzy clustering allows a data point x to 
have a partial degree of membership in more than one set [27,28]. A fuzzy set A in a 
collection of objects X is defined as [ 27,28 ] 

A = ((X, uA(x) ), xcX} 	 (3.1) 
Where uA(x) is the degree of membership function of data point x in fuzzy set A. 
Given a number of data points, it is required to group (cluster) the data into clusters 
according to some similarity measure. Let c be an integer, which represents the 
number of clusters with 2.s c sn, where n is the number of data points. Define U as 
partition matrix of elements ufi  (i=1,2,..., c , j=1,2,...,n) which represents the degree of 
membership of data points j in fuzzy cluster i, such that 

u,k C [0,1] 1 s i s c, 	k .s n 	 (3.2) 

u„ =1 	Vk 	 (3.3) 

0< 7( tic < n 	di 	 (3.4) 
k 
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Define ..1n, as the sum of the squared errors weighted by the Mill  power of the 
corresponding degree of membership, i.e., 

n c 

I,,(U,v)= E 	(4;k )"'(d4) 2  (3.5) 
k=1 1=1 

where 

(d,) 2  =11x,-v,112 	 (3.6) 

xk is a data piont and v, is a cluster center, and /1.// is induced norm, m is a real 
number C [1,-0)called the fuzzification constant (or weighting exponent).The degree 
of membership will be established by minmizing the sum of the squared errors 
weighted by the corresponding mth  power of the degree of membership. The goal of 
fuzzy clustering algorithm is to determine the optimum degree of membership utk and 
the optimum fuzzy v, such that the sum of the squared errors Jm  is minimum. The 
result is given by [26] 

u , - 
[I (d .k /d 	1ik 

I ". I 

V i,k 	 (3 .7 ) 

( u , )"' x 
v, -  	V i 	 (3.8) 

E 	)" 

Where (3.7) is valid for a fixed V(V=vi,v2, 	vc), and (3,8) is valid for a fixed U. In 
MU systems, c is the number of targets, n is the total number of received 
measurements, xk is the s-dimensional measurement vector (k=1,2 , 	n)and v; is the 
s-dimensional predicted vector for target i ( 1=1,2,...,c). The fuzzy c -means 
clustering algorithm or the Picard algorithm is guaranteed to converge to a local 
minimum [29]. 

It is worth to mention that the fuzzification constant m plays an important role. It 
reduces the influence of noise when computing the degree of membership (3.7) and 
the cluster center (3.8). The weighting exponent m reduces the influence of a small 
u,k (for data that are faraway from the cluster centers) compared to a large uk(for data 
that are closed to the cluster centers). As m increases, its influence becomes 
stronger [23]. 
4- Proposed Fuzzy Data Association Filter (FDAF).  
The state estimate of target i is updated based on the new Fneasurement by: 
.i,(k +11 k +1) = 	+11 k)+ K,(k +1)v (k) 	 (4.1) 

where 	v ,(k) =Iu 	,,(k) 
	 (4.2) 

1 =1  

is the weighted innovation, which uses all the validated measurements (Nv). 

u ,,(k) is the degree of membership of measurement j to target i at time k as 

obtained by (3.7) 
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v , j (k) = z j (k)- 	;(k I k -1) 	 (4.3) 

is the innovation due to new measurement 

Ki(k+1): is the standard Kalman filter gain. 

If we proceed by the same manner as the well known Probabilistic Data Association 
Filter technique [3,9] 
The updated covariance can be obtained as: 
p ;  (k +1Ik + 1) = p ;, (k +11k +1)+ p, (k + 1), 	 ( 4 .4 ) 

p,,(k +11 k + 1) = [/ - K,(k +1)H ,(k + 1)] p,(k +11k) 	( 4 .5) 

is the standard covariance update equation, and 

P 12 (k + I) = 	+ 1)[E u y v y  (k + 1)v y  (k + 1) - v ,(k + 1)v ,(k + 1)JIC (k + 1) 
1-1 

(4.6) 

The matrix P,2(k +1)shows the effect of the measurements that did not originate from 
the object in track by increasing the covariance of the estimate. This follows from the 
fact that the matrix P,2(k+1)is positive semi definite [9].The flow diagram of the 

(FDAF) is shown in Fig.1 



Compute Kalman gain 
+R„)-1  

Compute the associated error covariance Pk for the update 
estimate eqn.( 4.4 ) 

ir 
Receive new measurement set at scan SI 

Z(k).[Z j(k), 	,j =1,2,..NJ 

'IF 
Obtain 

U,,(k) 	the degree of membership of each measurement j to 
target i From fuzzy cluster means algorithm eqn.( 3.7) ) 

Ir 
Update 	states 	estimate 	with 	the 	sum 	of 	all 	received 
measurements Z(k) at scan S with the corresponding weight 
(degree of membership) eqn. ( 4.1) 

Project ahead 
= Azk  
= AP,AT  + Qk  
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Enter prior estimate zo and its covariance pc; 

Fig.1 flow diagram of the proposed Fuzzy Data Association Filter (FDAF) 

5-Simulation Results.  
To assess the performance of the proposed (FDAF), we suppose a test scenario of 
two targets (close together) moving with constant course and speed until time t= 30 
sec when they maneuver highly in x and y direction with acceleration inputs (10g, 
10g) for target 1, and (10g, -10g) for target 2 until t= 50 sec then they made another 
maneuver but in the reverse directions i.e. with acceleration inputs (-10g, -10g) for 
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target 1, and (-10g, 10g) for target 2 until t=80 sec, the two targets again move with 
constant course and acceleration until t= 100 sec. The initial conditions of the two 
maneuvering targets are as follows: 

Tarciet1: (x,(0) = 50,000m, x,(0) = –500 m /sec, y,(0) = 20500 m, y,(0) = 0) 

Taroet2:  (x2(0) = 50,000m, .x2(0) = –520 m/sec, Y2 (°) = 21000 m, .y2(0) = 0 ) 

The error of measurement for target 1(tg1): 	= 50m , 	= 25 m /sec ). 

The error of measurement for target 2(tg2): (0- 4  =100m , a. . = 25m/sec ). 

The sampling time T=1 sec. 
A Monte Carlo simulation of 50 runs has been obtained and the results are 

depicted, Fig.2 shows the true and the measured target trajectories, Fig.3 depicts the 
degree of membership of measurements 1,2 to target 1 during 100 sec. The degree 
of membership of measurement 1,2 to target 2 is in Fig.4. 

The results of tracking the two maneuvering targets by applying the proposed 
(FDAF) and by applying the standard Kalman filter (KF) are depicted in Fig.5 and 
Fig.6 respectively.The True and estimated velocity track in X-direction for (tg1) and 
(tg2) are depicted in Fig.7 and Fig.8. respectively. The plots of the root mean square 
position and velocity error in X-direction for (tg1) and (tg2) are depicted in Fig.9 and 
Fig.10 respectively, (the plot in Y-direction are similar so it is omitted). It has been 
shown that the two trackers appear to be equally effective in the constant course of 
the target trajectories. However, during the maneuvering period the (FDAF) has a 
lower average error than the standard Kalman filter. 
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Fig.2 True and measured target trajectories. 
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Fig.5 True and estimated target trajectories (FDAF). 
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— - true tg1 
— FDAF(tg1) 
- - KF(tg1) 

-1500
0 80 	100 20 	40 	60 

Time(sec) 

1500 

1000 - 

500 - 

-500 

-1000 - 

ve
lo

c i
ty

(m
/s

ec
),X

-d
ir.

  

Fig.7 True and estimated velocity track (tgl) 
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It is worth noting that RMS of both position and velocity error are strongly affected by 
the noise level of measurements of the targets (crl,„„0-2„),). Table 1 shows this 

effect, the values of the RMS position and velocity errors for both targets (tg1, tg2) in 
X-direction, and in Y-direction, taking the noise level for both targets as a parameter 
is tabulated. It is recommended to cosider that the noise levels of both targets are 
equal. 

o-1. ,,[m] ,,, 	, 50 50 
• ---- 

75 5 7 
- 
100,100 110.110 120.120 130.130  

Av. RMS X-position error tg1[m] 54.7 63.6 81.4 102.4 105.1 123.5 

Av.RMS-X position error tg2jm]  55.6 64.0 83.2 91.7 108.9 130.8 

Av. RMS-Y position error tg1[m]  53.1 61.6 78.7 99.4 100.1 756.5 

Av. RMS-Y position error tg2[m]  53.0 60.6 79.9 86.6 101.2 757.5 

Av. RMS X-velocity error 
tg 1[m/sec]  

69.1 71.9 66.6 81.1 67.2 93.5 

Av. RMS-X-velocity error 
tg2[m/sec]  

68.9 70.9 67.2 64.3 68.2 94.6 

Av. RMS-Y velocity error 
tg1[m/sec]  

70.9 72.6 67.2 82.6 67.7 70.1 

Av. RMS-Y velocity error 
t•2 m/sec 

69.9 71.3 65.9 64.1 67.1 69.8 

The results indicate that the proposed (FDAF) achieves reasonable 
performance even in the presence of high level of measurement noise. 
6- Conclusion.  

A new tracking algorithm (FDAF) for tracking maneuvering multitarget tracking 
is presented in this paper: The algorithm incorporates all the observations within the 
gate of the predicted target state to update the state estimate using a membership-
weighted sum of innovations obtained by Fuzzy cluster means algorithm. The major 
contribution of this work is the development of algorithm, which solves the 
interrelated tasks of data association and state estimation in one combined algorithm. 
The results show the effectiveness of the proposed algorithm to reduce the root 
mean square (position error, velocity error) in high maneuvering targets, and high 
level of measurement noise. 
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