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Abstract: In this paper, by using Jordan decomposition method, we develop an algorithm and convert it into a Maple 

procedure to get the exact solution of nonhomogeneous first order linear differential systems. With this procedure, we get the 

exact solution by just entering the system parameters. 
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1 Introduction 

Differential equations play an important role in the 

understanding of physical sciences. Many differential 

equations arise from problems in physics, engineering, and 

other sciences, and these equations serve as mathematical 

models for solving numerous problems in science and 

engineering [1-9].Numerous numerical methods exist for 

solving differential equations, such as Taylor, Picard, Euler, 

Runge-Kutta and transformation methods. 

 

In this paper, we present a Jordan decomposition 

method for solving the following nonhomogeneous first 

order linear differential systems :  

 
𝑦′1(𝑡) = 𝑎11 𝑦1(𝑡) + 𝑎12 𝑦2(𝑡) + ⋯+ 𝑎1𝑛 𝑦𝑛(𝑡) +  𝑢1(𝑡),

𝑦′2(𝑡) = 𝑎21 𝑦1(𝑡) + 𝑎22 𝑦2(𝑡) + ⋯+ 𝑎2𝑛 𝑦𝑛(𝑡) + 𝑢2(𝑡),

    ⋮
𝑦𝑛(𝑡) = 𝑎𝑛1 𝑦1(𝑡) + 𝑎𝑛2 𝑦2(𝑡) + ⋯+ 𝑎𝑛𝑛 𝑦𝑛(𝑡) +  𝑢𝑛(𝑡),

with initial conditions   𝑦1(𝑡0) = 𝑦01, … , 𝑦𝑛(𝑡0) = 𝑦0𝑛 .

 

 In matrix and vector notations, we write it as  
 

FOLDS    {

𝑦′(𝑡) = 𝐴 𝑦(𝑡) +  𝑢(𝑡),

with initial conditions
𝑦(𝑡0) = 𝑦0 ,

 

 where 𝑦(𝑡) = [𝑦1(𝑡), … , 𝑦𝑛(𝑡)]𝑇 ,  
𝑢(𝑡) = [𝑢1(𝑡), … , 𝑢𝑛(𝑡)]𝑇 ,   𝑦0 = [𝑦01, … , 𝑦0𝑛]𝑇  and 

 𝐴 = [𝑎𝑖𝑗]  is  𝑛 × 𝑛  constant matrix. 

 

We know that the analytic solution of FOLDS with 

continuous parameters is given by  

y(𝑡) = 𝑒𝐴𝑡  𝑦0 + 𝑒𝐴𝑡  ∫  
𝑡

𝑡0
𝑒−𝐴𝜏   𝑢(𝜏)𝑑𝜏    (1) 

 

Jordan decomposition method is based on 

decomposing matrix exponentials into a product of matrices 

This allows us to easily find the exact solution to the system 

throat a simple formula. 

 

After the introduction, the paper is divided into a six 

sections. In section 2, we introduce the definition and 

properties of matrix exponentials. Then, in section 3, we 

provide an overview of Jordan decompositions for matrices. 

Section 4 presents our algorithm. In section 5, we obtain the 

Maple procedure.  In section 6 we apply the algorithm to 

find the exact solution to some linear differential systems. 

Finally, we concluded our result 

2. Matrix exponential and its properties 
Definition 1 ( Matrix exponential) For each  𝑛 × 𝑛  
complex matrix  𝐴,  define the exponential of  𝐴  to be the 

matrix  

𝑒𝐴 = ∑  

∞

𝑘=0

𝐴𝑘

𝑘!
= 𝐼 + 𝐴 +

𝐴2

2!
+

𝐴3

3!
+. . .. 

This sum converges for all complex matrices  A . The 

definition 1 immediately reveals many other familiar 

properties. The following lemma is easy to prove from the 

definition 1. 
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Lemma 1  Let  𝐴, 𝐵  be  𝑛 × 𝑛, complex matrices.   

1. If  0  denotes the zero matrix, then  𝑒0 = 𝐼,  the 

identity matrix.  

2. 𝐴𝑚𝑒𝐴 = 𝑒𝐴𝐴𝑚  for all integers  𝑚.   

3. (𝑒𝐴)𝑇 = 𝑒𝐴𝑇
.   

4. If  𝐴𝐵 = 𝐵𝐴  then  𝐴𝑒𝐵 = 𝑒𝐵𝐴  and  𝑒𝐴𝑒𝐵 =
𝑒𝐵𝑒𝐴 = 𝑒𝐴+𝐵 .   

 

Lemma 2  Let  𝐴  be a complex  𝑛 × 𝑛  matrix and let  𝑡, 𝑠  
be a real scalar variables. Then  

𝑒𝐴(𝑡+𝑠) = 𝑒𝐴𝑡𝑒𝐴𝑠 
Proof. From the definition 1, we have  

𝑒𝐴𝑡𝑒𝐴𝑠 = (𝐼 + 𝐴𝑡 +
𝐴2𝑡2

2!
+ ⋯ . )(𝐼 + 𝐴𝑠 +

𝐴2𝑠2

2!
+. . . . )

= (𝐼 + 𝐴(𝑡 + 𝑠) +
𝐴2(𝑡 + 𝑠)2

2!
+ ⋯ . ) = 𝑒𝐴(𝑡+𝑠)

 

 

Lemma 3  If  𝐴 = 𝐷 = 𝑑𝑖𝑎𝑔(𝜆1, 𝜆2, … , 𝜆𝑛) 

= [

𝜆1 0 . . . 0
0 𝜆2 . . . 0
⋮ ⋮ ⋮ ⋮
0 0 . . . 𝜆𝑛

] ,   then   𝑒𝐴 = 𝑑𝑖𝑎𝑔(𝑒𝜆1 , 𝑒𝜆2 , . . . , 𝑒𝜆𝑛) 

 

Proof. If we directly evaluate the sum of the infinite series 

in the definition of  𝑒𝐴𝑡, we find that the entry of  𝑒𝐴𝑡   is 

given by 

∑  
∞

𝑘=0

𝜆𝑖
𝑘𝑡𝑘

𝑘!
= 𝑒𝜆𝑖𝑡 . 

 

Lemma 4  Let  𝐴  and  𝑃  be complex  𝑛 × 𝑛  matrices, and 

suppose that  𝑃  is invertible. Then  

𝑒𝑃−1𝐴𝑃 = 𝑃−1𝑒𝐴𝑃 

 

Proof. Recall that, for all integers  𝑚 ≥ 0,  we have 

 (𝑃−1𝐴𝑃)𝑚 = 𝑃−1𝐴𝑚𝑃.  The definition 1 then yields  

 

𝑒𝑃−1𝐴𝑃 = 𝐼 + 𝑃−1𝐴𝑃 + (𝑃−1 𝐴2

2!
𝑃) + (𝑃−1 𝐴3

3!
𝑃)+. . . .

= 𝑃−1 (𝐼 + 𝐴 +
𝐴2

2!
+

𝐴3

3!
+. . . . ) 𝑃 = 𝑃−1𝑒𝐴𝑃

 

  

 We can now prove a fundamental theorem about matrix 

exponentials. 

 

Theorem 1  Let  𝐴  be a complex square matrix, and let  𝑡, 
be a real scalar variable.  

If   𝑓(𝑡) = 𝑒𝐴𝑡    then   𝑓′(𝑡) = 𝐴𝑒𝐴𝑡 . 
 

  

Proof. Applying lemma 2 to the limit definition of 

derivative yields  

𝑓′(𝑡) = lim
ℎ→0

𝑒𝐴(𝑡+ℎ) − 𝑒𝐴𝑡

ℎ
= 𝑒𝐴𝑡 (lim

ℎ→0

𝑒𝐴ℎ−𝐼

ℎ
) 

 Applying the definition 1 to  𝑒𝐴ℎ − 𝐼  then gives us  

 𝑓′(𝑡) = 𝑒𝐴𝑡 (lim
ℎ→0

1

ℎ
[𝐴ℎ +

𝐴2ℎ2

2!
+

𝐴3ℎ3

3!
+ ⋯ . ]) 

= 𝑒𝐴𝑡𝐴 = 𝐴𝑒𝐴𝑡 . 

 

3. Jordan decomposition 

This section contains linear algebraic results [10-13].  

Definition 2 (A Jordan block (of size  𝒌 ) )  𝐽𝑘(𝜆) ∈ 𝐶𝑘 ×
𝐶𝑘  is the upper triangular matrix  

𝐽𝑘(𝜆) =

[
 
 
 
 
𝜆 1 0

⋱ ⋱
𝜆 1

0 𝜆
]
 
 
 
 

 

From definition 1 and lemma 1, we can compute  𝑒𝐽𝑘(𝜆𝑡). 

For example, let us take  𝑘 = 3;   𝐽3(𝜆) = [

𝜆 1 0
0 𝜆 1
0 0 𝜆

], 

we can write  𝐽3(𝜆) = 𝜆𝐼 + 𝑁  where 𝑁 = [

0 1 0
0 0 1
0 0 0

]. 

Direct calculation shows that  

𝑁2 = [

0 0 1
0 0 0
0 0 0

]    and   𝑁3 = 0. 

But then the transition matrix  𝑒𝑁𝑡   is easily evaluated to be 

𝑒𝑁𝑡 = 𝐼 + 𝑁𝑡 +
𝑁2𝑡2

2!
=

[
 
 
 
 1 𝑡

𝑡2

2!
0 1 𝑡
0 0 1

]
 
 
 
 

. 

Since  𝜆𝐼  commutes with  𝑁,  we can write, 𝑒𝐽3(𝜆𝑡) =

𝑒(𝜆𝐼+𝑁)𝑡 = 𝑒𝜆𝐼𝑡𝑒𝑁𝑡 = 𝑒𝜆𝑡

[
 
 
 
 1 𝑡

𝑡2

2!

0 1 𝑡
0 0 1

]
 
 
 
 

. In the same way, 

we can compute  𝑒𝐽𝑘(𝜆𝑡)  for any arbitrary  𝑘.  Hence,  

𝑒𝐽𝑘(𝜆𝑡) = 𝑒𝜆𝑡

[
 
 
 
 
 
 
 1 𝑡

𝑡2

2!
…

𝑡𝑘−1

(𝑘−1)!

⋱ ⋱ ⋱ ⋮

⋱ ⋱
𝑡2

2!

⋱ 𝑡
0 1

]
 
 
 
 
 
 
 

 (2) 

 
Theorem 2 (Jordan decomposition) Every complex matrix 

 𝐴 ∈ 𝐶𝑛 × 𝐶𝑛  is similar to a block diagonal matrix  𝐽.  That 

is, for every matrix  𝐴  there exists an invertible matrix  𝑃  
so that  𝐴 = 𝑃𝐽𝑃−1,  where  

  

𝐽 =

[
 
 
 
𝐽𝑘1

(𝜆1) 0

⋱
0 𝐽𝑘𝑚

(𝜆𝑚)
]
 
 
 

 

 and  𝜆1, 𝜆2, … , 𝜆𝑚  are the eigenvalues of  𝐴  with 
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multiplicity  𝑘1, 𝑘2, … , 𝑘𝑚  and  𝑘1 + 𝑘2 + ⋯+ 𝑘𝑚 = 𝑛.   
 

Corollary 1 When  𝑚 = 𝑛  then  𝐽 = 𝐷.  ( 𝐴  is 

diagonalizable ). Recall from linear algebra, that an 

eigenvector  𝑣  associated with the eigenvalue  𝜆  for the 

matrix  𝐴  satisfies the equation (𝐴 − 𝜆𝐼)𝑣 = 0 and in this 

case, the nonsingular matrix  𝑝 = [𝑣1, 𝑣2, . . . , 𝑣𝑛],  consists 

of  𝑛  linearly independent eigenvectors  𝑣1, 𝑣2, . . . , 𝑣𝑛  of  𝐴.   
  

Definition 3 If  𝐴  an  𝑛 × 𝑛  matrix, a generalized 

eigenvector of  𝐴  corresponding to the eigenvalue  𝐴  is a 

nonzero vector  𝑣  satisfying (𝐴 − 𝜆𝐼)𝑝𝑣 = 0 for some 

positive integer  𝑝.  Equivalently, it is a nonzero element of 

the nullspace of  (𝐴 − 𝜆𝐼)𝑝.   
 

The aim of generalized eigenvectors was to enlarge a set of 

linearly independent eigenvectors to make a basis.  

 

Theorem 3  If  𝐴  an  𝑛 × 𝑛  matrix and  𝜆  is an eigenvalue 

with multiplicity  𝑘,  then the set of generalized eigenvectors 

for  𝜆  consists of the nonzero elements  𝑣1, 𝑣2, . . . , 𝑣𝑘   of 

nullspace  (𝐴 − 𝜆𝐼)𝑘.  In other words, we need to take at 

most  𝑘  powers of  (𝐴 − 𝜆𝐼)  to find all of the generalized 

eigenvectors for  𝜆.  We can calculate  𝑣1, 𝑣2, . . . , 𝑣𝑘   from 

the chain  

(𝐴 − 𝜆𝐼)𝑣1 = 0,    (𝐴 − 𝜆𝐼)𝑣2 = 𝑣1 ,    …,  
   (𝐴 − 𝜆𝐼)𝑣𝑘 = 𝑣𝑘−1. 

  

Corollary 2  If  𝑃  is the matrix whose columns are  𝑛  
linearly independent of generalized eigenvectors 

 𝑣1, 𝑣2, . . . , 𝑣𝑛  of an  𝑛 × 𝑛  matrix  𝐴  arranged in chains, 

then  𝐴 = 𝑃𝐽𝑃−1.  It is unique up to a rearrangement of the 

Jordan blocks.  

 

 

4.  Algorithm for Exact Solution 

Based on the previous sections and from (1), we can 

deduce the following theorem which transform to algorithm 

(table 1 ) for computing exact solution:  

  

Theorem 4 (Formula of exact solution of FOLDS ) If 

 𝑢(𝑡)  is  𝑛 −  vector continuous function on an open 

interval  𝐼 ⊂ ℜ,  𝐴  is  𝑛 × 𝑛  constant matrices and if  𝑦0  is 

any constant vector and  𝑡0  is any constant in  𝐼, then there 

exist only one function  𝑦  defined on an interval  𝐼 ⊂ 𝐼  with 

 𝑡0 ∈ 𝐼  solution of FOLDS, given by 

𝑦(𝑡) = 𝑃 [𝑒𝐽(𝑡−𝑡0) 𝑝−1 𝑦0 + ∫  
𝑡

𝑡0
𝑒𝐽(𝑡−𝜏)  𝑝−1 𝑢(𝜏)𝑑𝜏] (3) 

 

 

 

 

 

          Table 1: Algorithm for exact solution 

 

5. The procedure 

 
Procedure Solu1 computes and plots the exact solution 

for nonhomogeneous first order linear system with constant 

coefficients. 

Output: 

Plotting solutions if the conditions for finding them are 

met, or printing an objection sentence if the conditions are 

not met.  

Syntax: 

 

Input: 

 - A real number represents the start of the solution 

interval; 

 - A real number represents the end of the solution 

interval; 

 - A real number in [𝑎, 𝑏] which represents the initial time; 

 - A square matrix represents system coefficients; 

 - Vector of functions represents the nonhomogeneous 

term; 

 - Vector of real numbers represents the initial values.. 

Definition: 

 

> Solu1:=proc(a,b,t0, 

A::'Matrix'(square),u::Vector,y0::Vector) 

> local u1,m,J1,P,P1,eJ,eJ1,yh,yp1,yp2,x,yp,z,y,i; 

> u1:=convert(u,list);m:=nops(u1); 

> J1, P := LinearAlgebra[JordanForm](A, output = ['J', 

'Q']); 

> P1:=LinearAlgebra[MatrixInverse](P);  

> 

eJ:=LinearAlgebra[MatrixExponential](J1,t);eJ1:=subs(

t = -t, eJ); 

Step 1  Input 𝐴, 𝑢(𝑡), 𝑦0, 𝐼, 𝑡0   
Step 2  Calculate the eigenvalues  𝜆𝑖   of the matrix  𝐴   

Step 3 

 Calculate the eigenvectors (in the case of 

multiple eigenvalues from theorem 3 ) 

generalized eigenvectors and construct the 

corresponding Jordan matrix J and construct the 

nonsingular linear transformation matrix  𝑃  and 

its inverse  𝑃−1   
Step 4  Compute  𝑒𝐽 𝑡     

Step 5  Compute  𝑦ℎ(𝑡) = 𝑃 𝑒𝐽 (𝑡−𝑡0) 𝑃−1   

Step 6  Compute  𝑦𝑝(𝑡) = 𝑃 ∫  
𝑡

𝑡0
𝑒𝐽 (𝑡−𝜏)𝑃−1 𝑢(𝜏)𝑑𝜏   

Step 7  Compute  𝑦(𝑡) = 𝑦ℎ(𝑡) + 𝑦𝑝(𝑡)   

 Step 8  Plot 𝑦(𝑡)   
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> yh := simplify(P.eJ.P1.y0); 

> yp1 := eJ1.P1.u;yp2:=subs(t = x, 

yp1);yp:=P.eJ.map(int,yp2,x=a..t); 

> z:=simplify(yh+yp); z:=convert(z,list);  

> if seq(iscont(u1[i], t = a .. b),i=1..m)=seq(true,i=1..m) 

then for i to m do 

print(y[i](t));print(plot(z[i],t=a..b,color=red,thickness=2)

);end do;  else print( "u vector is not continous on "(a,b) 

);fi; 

> end : 
 

In our procedure Solu1, we have invoked some of the 

pre-existing Maple Linear Algebra procedures, such as 

JordanForm, MatrixInverse and MatrixExponential. 

 

6.  Application 
 

We now give two applications to illustrate our 

procedure.  

Application I: Solve the following differential system:  

𝑦′1(𝑡) = 3𝑦1 + 𝑦2 + 2𝑡,   0 < 𝑡 < 1,

𝑦′2(𝑡) = 𝑦2 − 𝑦1 + 𝑡,
𝑦1(0) = 1,   𝑦2(0) = 1.

 

1.  Determine  𝐴, 𝑢(𝑡), 𝑦0 , 𝐼, 𝑡0;   

𝐴 = [
3 1
−1 1 ] ,    𝑢(𝑡) = [

2t
t ], 

    𝑦0 = [
1
1 ] ,    𝐼 = (0,1),    𝑡0 = 0. 

  

 2.  We can show that  𝜆 = 2  is the only eigenvalue of  𝐴  

with multiplicity  2,  so  𝐽 = [
2 1
0 2 ]  

 3.  Solve  (𝐴 − 2𝐼)𝑣1 = 0  and  (𝐴 − 2𝐼)𝑣2 = 𝑣1  to get the 

generalized eigenvectors 𝑣1 = [
1
−1] and  𝑣2 = [

1
0 ]  then, 

we can evaluate  𝑝  and calculate  𝑝−1;   

 𝑝 = [
1 1
−1 0 ] ⇒ 𝑝−1 = [

0 −1
1 1 ] ; 

 

4.  Compute  𝑒𝐽𝑡;       𝑒𝐽𝑡 = [
𝑒2𝑡 𝑡𝑒2𝑡

0 𝑒2𝑡 ]   

5.  Calculate  𝑦ℎ = 𝑝𝑒𝐽𝑡𝑝−1 𝑦0;  
 

 

𝑦ℎ = [
1 1
−1 0 ] . [

𝑒2𝑡 𝑡𝑒2𝑡

0 𝑒2𝑡 ] . [
0 −1
1 1 ] . [

1
1 ]

= 𝑒2𝑡 [
1 + 2 𝑡
1 − 2 𝑡]

 

 

 

6.  Compute  𝑦𝑝(𝑡) = 𝑃 ∫  
𝑡

0
𝑒𝐽(𝑡−𝜏) 𝑢(𝜏)𝑑𝜏;   

 

𝑦𝑝 = [
1 1
−1 0 ] . ∫  

𝑡

0
 [

𝑒2(𝑡−𝜏) (𝑡 − 𝜏)𝑒2(𝑡−𝜏)

0 𝑒2(𝑡−𝜏) ] . [
0 −1
1 1 ] . [

1
1 ] 𝑑𝜏

= [

1

4
 𝑒2𝑡(3 𝑡 − 1) +

1

4
(𝑡 − 1)

1

4
 𝑒2𝑡(−3 𝑡 + 1) −

5

4
 𝑡 − 1

]

 

  

7.  Compute  𝑦 = 𝑦ℎ(𝑡) + 𝑦𝑝(𝑡);  

 

 

𝑦 = 𝑒2𝑡 [
1 + 2 𝑡
1 − 2 𝑡] + [

1

4
 𝑒2𝑡(3 𝑡 − 1) +

1

4
(𝑡 − 1)

1

4
 𝑒2𝑡(−3 𝑡 + 1) −

5

4
 𝑡 − 1

]

= [

11

4
 𝑡 𝑒2𝑡 +

3

4
 𝑒2𝑡 −

1

4
 𝑡 +

1

4
−11

4
 𝑡 𝑒2𝑡 + 2 𝑒2𝑡 −

5

4
 𝑡 − 1

]

 

 
This is the same result using the procedure with  

 

> 

 

          

>  
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Application II: Solve the following differential system:  

 

𝑦′1(𝑡) = 𝑦2 ,    0 < 𝑡 < 3,

𝑦′2(𝑡) =
3

4
 𝑦1 + 𝑦2 + 𝑦4,

𝑦′3(𝑡) = 𝑦1 −
3

4
 𝑦4,

𝑦′4(𝑡) = −𝑦3 − 𝑦4,

𝑦1(0) = 0,   𝑦2(0) = 0,   𝑦3(0) = 1,   𝑦4(0) = 1.

 

   

1.  Determine  𝐴, 𝑢(𝑡), 𝑦0, 𝐼, 𝑡0;   

𝐴 =

[
 
 
 
 
 
 
0 1 0 0
3

4
1 0 1

1 0 0 −
3

4
0 0 −1 −1

]
 
 
 
 
 
 

,    𝑢(𝑡) = 𝟎,  

   𝑦0 =

[
 
 
 
 
0
0
1
1

]
 
 
 
 

,    𝐼 = (0,3),    𝑡0 = 0. 

 

 

2.  Solve the characteristic equation  |𝐴 − 𝜆𝐼| = 0 ⇒
(4𝜆2 − 5) = 0  to get two real eigenvalues of  𝐴;  with 

multiplicity  2;   

𝜆1 = −
√5

2
,    𝜆2 = −

√5

2
,    𝜆3 =

√5

2
,    𝜆4 =

√5

2
 

then  

𝐽 =

[
 
 
 
 
 
 
 
 
 −

√5

2
1 0 0

0 −
√5

2
0 0

0 0
√5

2
1

0 0 0
√5

2
]
 
 
 
 
 
 
 
 
 

 

 

3.  Solve    (𝐴 − 𝜆1𝐼)𝑣1 = 0    to get the first generalized 

eigenvectors 

                     𝑣1 =

[
 
 
 
 
 
 
 

3

20
+

√5

20

−
1

8
−

3√5

40
1

20

1

5
+

√5

10

]
 
 
 
 
 
 
 

 

 

Solve    (𝐴 − 𝜆2𝐼)𝑣2 = 𝑣1   to get the second generalized 

eigenvectors 

   𝑣2 =

[
 
 
 
 
 
 
 
 
 1

2
+

√3

50

−
√5

5

−
9√5

20

2√5

25
]
 
 
 
 
 
 
 
 
 

 

 

Solve    (𝐴 − 𝜆3𝐼)𝑣3 = 0    to get the third generalized 

eigenvectors 

 𝑣3 =

[
 
 
 
 
 
 
 
 
 3

20
−

√5

20

−
1

8
+

3√5

40
1

20

1

5
−

√5

10
]
 
 
 
 
 
 
 
 
 

 

 

Solve    (𝐴 − 𝜆4𝐼)𝑣4 = 𝑣3  to get the fourth generalized 

eigenvectors 

  𝑣4 =

[
 
 
 
 
 
 
 
 
 1

2
−

√3

50

√5

5

9√5

20

−
2√5

25
]
 
 
 
 
 
 
 
 
 

 

then  

𝑃 = [𝑣1, 𝑣2, 𝑣3, 𝑣4]

=

[
 
 
 
 
 
 
 
 
 3

20
+

√5

20

1

2
+

√3

50

3

20
−

√5

20

1

2
−

√3

50

−
1

8
−

3√5

40
−

√5

5
−

1

8
+

3√5

40

√5

5

1

20
−

9√5

20

1

20

9√5

20

1

5
+

√5

10

2√5

25

1

5
−

√5

10
−

2√5

25
]
 
 
 
 
 
 
 
 
 

 

 



       76                  M. Shehata and A. A. Khalil.: Algorithm for Computing Exact Solution of the First Order  

 

 

© 2022 Sohag University 
 

4.  Calculate  𝑒𝐽𝑡;       𝑒𝐽𝑡 =

[
 
 
 
 
 
 𝑒−

√5

2
𝑡 𝑡𝑒−

√5

2
𝑡 0 0

0 𝑒−
√5

2
𝑡 0 0

0 0 𝑒
√5

2
𝑡 𝑡𝑒

√5

2
𝑡

0 0 0 𝑒
√5

2
𝑡

]
 
 
 
 
 
 

 

 

Using the procedure with  
 

> 

 

                   

    

 

>  

 

 
 

 
 

 
 

 
 

 

     

7.  Conclusion 
 

In the paper, a Maple procedure was presented for 

computing and plotting the exact solutions of 

nonhomogeneous first-order linear differential equations 

whose coefficients are constant.The advantage of this 

procedure is that we do not need to enter the system 

equations and their parameters as we would in Matlab. Our 

solution is obtained by entering the parameters only as 

matrices or vectors. 
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