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Abstract 

In this paper, we present a new model to recognize a three-dimensional (3D) 
object. which uses six Hu moment invariants and six Zernike moments as a feature 
vector. It extends our former work on 3D-object recognition based on Hu moment 
invariants [1]. 
The classification of the desired 3D object using Hu-moment model [1] is based on 
selecting the object that corresponding the minimum distance of the six minima 
obtained from six reference libraries and the desired object. The classification may 
be correct if we selected the object that corresponding the second minimum distance 
value instead of the first value. To select the correct one, this paper describes 
another model to recognize a 3D object based on Hu and Zernike moment invariants 
as a feature vector. Zernike moment invariants are used to find the pose of the 
aircraft at first to know from which library we can make the decision. 
The proposed model differs significantly from many recent 3D recognition models, 
which emphasize on stereo reconstruction and structured light analysis. Several 
trajectories for 3, 6, and 9 aircraft are generated, using 3D Studio Max software. To 
study the performance of the proposed model, the aircraft patterns were chosen to 
test the proposed model because the views of these patterns are relatively difficult 
due to the similarity of their images. 
Finally, we show that the proposed model achieves high recognition rates compared 
with that of the View Information Encoded With Network model (VIEWNET) [2] and 
the Hu moment invariants [1] using the approximately the same set of objects and 
using the same decision rule. 
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1. Introduction 

The problem of 3D object recognition is one of the most challenging sub problems in 
computer vision. The difficulty in 3D object recognition is the potential variability in 
the images of an object at different view angles, i.e. only one side of an object can be 
seen from any given viewpoint, which is some times insufficient to recognize similar 
objects from each other. Another difficulty in 3D object recognition is the handling of 
3D objects allowing additional degree of freedom for the orientation of the object in 
space. Another difficulty in 3D object recognition appears when the desired objects 
may occlude each other. 
For the mentioned difficulties, all researchers assume that the 3D object is allowed 
one degree of freedom for rotation (rotation about vertical axis) or two degree of 
freedom. This paper describes a novel model to recognize 3D objects taking into 
account the 3D objects are allowed six degrees of freedom for rotation and 
translation as in real world. In this model, the image containing the desired object is 
first captured using 3D Studio MAX software. Then, preprocessing operations: 
binarization is applied. A set of statistical features (Hu-moment invariants and 
Zernike moments) is extracted from the geometry of the object. In the training phase, 
two types of library are built: one stores the Hu moment features references, and 
other stores the Zernike moment invariants as feature vector references. In the 
recognition phase, the Zernike moment invariants are used to determine the pose of 
aircraft to know from which Hu-library we can make the decision. Finally, 
accumulating evidence from sequences of 2D views until 3D recognition is assured. 
There are a variety of approaches for attacking the 3D object recognition problem. 
These include the approaches of Richard and Hemami [3], who used Fourier 
descriptors, and of Dudani et. al. who used moment invariants [4]. Tsai and Huang 
[5] solved the problem of determining the attitude of a 3D object given a minimum set 
of point correspondence. There is a different class of other approaches, which rely 
on 3D data (range data) for building 3D models of the objects to be identified [6]. We 
will not be concerned with this approach since we assume only image data from a 
single camera. There have been many studies on technology of recognizing a 3D 
object from its 2D image. As example, parametric eigenspace method [7]; neural 
networks [8, 9]; self-organizing neural architecture called VIEWNET [2]; and modular 
neural networks [10]. 
Section 2 describes a proposed 3D model to recognize 3D objects based on the Hu 
and Zernike moment invariants. The definition of the Hu moment invariants and 
Zernike moments are introduced in section 3. The training phase is illustrated in 
section 4. Section 5 illustrates the recognition phase. Section 6 presents 
experimental results, in different situations including noise effect, to show the efficacy 
of the proposed model. Finally, section 7 presents concluding remarks and 
recommendation for future work. 
2. Proposed model: overview 

The unknown object, represented by the extracted Hu invariant moments , is 

identified by matching 01  with reference moments 01 stored in six libraries using 
Euclidean distance and finding the minimum distance in each library. Then, sorting 
these six minima in ascending order. The index of the first minimum distance 
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indicates the type of the aircraft. So, the decision of the model described in [1] is 
based on selecting the first minimum of sorting six minima. But, from optimization 
point view, this rule may be not correct. In other words, since these six minima are 
found as a distance, so the difference between first and second minima of sorting six 
minima may be very small and the decision may be correct if the second sorted 
minima is selected instead of the first sorted minima. Therefore, the subject must be 
addressed: the selection of candidates from these six minima. 
To select these candidates, the model described in [1] is modified by finding the pose 
of the aircraft at first to know from which library the decision could be taken. In order 
to achieve this objective, additional features must be added to the Hu invariant 
moments. Zernike moments with Hu invariant moments have been used as a feature 
vector. Zernike moments are used to find the pose of aircraft at first to know which 
library we can take the decision. 
3. Feature extraction 
The feature extraction aspect of image analysis seeks to identify inherent 
characteristics, or features, of objects found within an image. These characteristics 
are used to describe the object, or attributes of the object, prior to subsequent task of 
classification or recognition. Feature extraction operates on 2D image arrays but 
produces a list of descriptions, or a feature vector. These descriptions, or feature 
vector should be invariant to position, orientation, and scale aspects of the object. 
The definition of the Hu moment invariants and Zernike moments are introduced next 
3.1 Hu moment Invariants 
For a digital image, stored in a 2D array, the moment of order (p + q) is given by [11]: 

M-IN-I 
111 p, = E ExPygf(x,y), 	 (1) 

y=-0 

where M, N are the horizontal and vertical dimensions respectively of the image, 
f(x,y) is the intensity (grey level) at a point (x,y) in the image. 
From Eq. (1), it should be noted however that these basic moments are limited in 
their usefulness since they vary according to their position with respect to the origin 
and the scale and orientation of the object under investigation [11]. A set of invariant 
moments would be of more use. These can be derived by first calculating the central 
moments, /.47,,, , with respect to the centroid, as given by [11]: 

p„ =E 
y 

Then developing the normalized central moments, 17 as 
Ppy 

'Pq (poo yt 

where a= (P
2

4) +Land(p +q) 2 . 

These normalized central moments are invariant under translation and scaling 
aspects. 
From these normalized parameters a set of invariant moments, {0), may then be 
defined as follows [11]: 
sbi = /720 +7702 	 (4) 

(2)  

(3)  
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(5)  
(6)  

(7)  

(8)  

(9)  

This set of invariant moments makes a useful feature vector for the recognition of 
objects which must be detected regardless of position, size or orientation [11]. 
3.2 Zemike moments 

The Zernike moments are related to the usual moments p„ . Thus once p, 

have been calculated, we have the Zernike moments also. The equations of Zernike 
moment invariants expressed in terms of geometric moments are given as following 
[12]: 

= 3[2(P20 +1402) -  Tie 	 (10) 

Z2 = 9frP2o — P02)2 -1402  2 	 (11) 

z3 = ickuo3 -3P21)2  + (P30 3P12 I/7r 2 	 (12) 

Z4 = 144[( 103 ±P21)2 +(p,o+p,2)2i/7,2 	 (13) 

Zs= 13:424  {(P o3 3P21 	03 + P21 )1x (i403 + P21 )2  430 + P12 )2 ] 

-430 = 3P12 XP30 +N72 )x r(P32 + P12 )2 —30-103 + P21 )2 ] 

Z
6 864 ft..  

P02 P20 *P03 + P21 )2 -430 + P12 )2  + 4P11 (P03 + P21 )(P 30 +N12)) )) 71' 	 (15) 
These Zernike moments and Hu moments are extracted or calculated for each 
training image to form the feature vectors, used to construct the corresponding 
library. 
4. Training phase 

As flowcharted in Figure (1), the training phase consists of three steps: image 
preprocessing, feature extraction, and construction of libraries. Binarization of the 
input image is defined as a preprocessing step, followed by the extraction of six Hu 
invariant moments and six Zernike moments that are referred to as a two sub-vectors 
that form the extracted feature vector. Then these two sub-feature vectors are used 
in construction of the corresponding reference library. 
The two types of libraries are as follows: the first one stores the feature vectors 
extracted from training images using Hu invariant moments, and the other one stores 
the feature vectors using Zernike moments. Each type of libraries consists of six 
libraries, which are created for each 3D aircraft for training, (X-library of dimension 
90x6, Y-library of dimension 90x6, Z-library of dimension 90x6, XY-library of 
dimension 90x6, XZ-library of dimension 90x6, and YZ-library of dimension 90x6). 
Figure (2) represents how the feature vector consisting of six Zernike moments is 
stored in X-library. Similarly, there are another five libraries like X-library where six 
Zernike moments stored for training image samples rotated around Y-axis, Z-axis, 
XY-plane, XZ-plane, and YZ-plane. Another group of six libraries store six Hu 
moments as a feature vector for each training image. 

(14) 
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The 3D objects that we used for the three-pattern experiment included F16, F18, and 
global hawk aircrafts. An example of the trained patterns shown in Fig. 4 We choose 
these three patterns because the views of these patterns are relatively difficult due to 
the similarity of their images. 

5. Recognition phase 
To demonstrate how the Hu-Zernike invariant moments- based object 

recognition model works, the flowchart of this model is illustrated in Figure (3). The 
first test image frame is transformed into binary image. From the resulting binary 
image, Hu-feature vector which contain the six Hu invariant moments, and Zernike-
feature vector which contain the six Zernike invariant moments are extracted. 

Hu-feature vector is matched with references feature vectors stored in six Hu 
moments libraries (X-library, Y-library, Z-library, XY-library, XZ-library, and YZ-library) 
using an Euclidean distance. In each library, the closest stored image sample to the 
input test image is found by choosing the minimum distance DI  , the index I of which 
will indicate the aircraft type. So, we obtain six minimum distances from six libraries 
as minHdx, minHdy, minHdz, minHdxy, minHdxz, and minHdyz from X, Y, Z, XY, XZ, 
and YZ libraries respectively. Also, we obtain six corresponding indexes lx, ly, lz, Ixy, 
lxz, and lyz each of, which will indicate the aircraft type determined in its library. 
Next, the resulting six minima are sorted in ascending order. Then the corresponding 
decisions are sorted too. To explain this, Let, for example, we obtain the following 
decisions from six libraries as: from X library-F18, from Y library-F16, from Z library-
mig21, from XY library-Fl 8, from XZ library-kfir, and from YZ library-F16. Suppose 
that the sorted six Hu- minimum distances are as: 
[minHdy, minHdx, minHdyz, minHdxz, minHdz, minHdxy], 
then the corresponding decisions will be sorted as: 

[F16, F18, F16, kfir, mig21, F181. 
Similarly, Zernike-feature vector is compared with the references Zernike 

moment's libraries using an Euclidean distanceD, . But the output of each library is 
the minimum distance minZd, the index II which indicates the library name. In other 
words, this index indicates the pose of aircraft. Therefore, from X library we get the 
minimum distance minZdx and the corresponding index Ilx, from Y library- minZdy 
and Ily, from Z library- minZdz and Hz, from XY library- minZdxy and Ilxy, from XZ 
library- minZdxz and Ilxz, and from YZ library- minZdyz and Ilyz. These six minimum 
distances are sorted in ascending order. Basing on this sort, the corresponding 
indexes are sorted too. For example, suppose that the six zernike minimum 
distances are sorted as follows: 
[minZdx, minZdy minZdxz, minZdz, minZdyz, minZdxy], 
then the corresponding indexes will be sorted as: 
[11x, Ily, Ilxz, Ilz, Ilyz, 
i.e. the sorted poses are as follows: 
[X, Y, XZ, Z, YZ, XY]. 

Next, we take the first library name of sorting poses, which in our example is X. 
Then, finding the decision from Hu X library (in our example, it will be F18). The next 
step is to compare this decision with the first one of sorted six decisions, which is F16 
in our example. If they are the same, the final decision for the first input test image 
was determined as target (1). In other case (as in our example), these two decisions 
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are different and we thus take the second library name of sorted poses (in our 
example-Y) and taking the decision from this library using Hu invariant moments (in 
our example-F16). This decision is compared with the second sorted decision (in our 
example-F18). 

Again, if these two decisions are the same, the final decision for the first input 
test image was determined as target (1). If they are different (as it in our example), 
then we apply the following step. Normalizing the first minimum distance in both Hu 
and Zernike moment libraries by dividing them by the maximum value of six minimum 
distances, i.e.: 

dH 
min (mindx, mindy, mindz, mindxy, mindxz, mindyz ) 

- 
max (mindx, mindy, mindz, mindxy, mindxz, mindyz ) 	 (16) 

dZ
min (minzdx, minzdy, minzdz, minzdxy, minzdxz, minzdyz ) 

- 
max (minzdx, minzdy, minzdz, minzdxy, minzdxz, minzdyz ) 	(17) 

The resulting normalized distances dH and dZ are compared to find the smallest. 
Now, if dH is the smallest, then the final decision target (1) for the first input test 

image is determined as the first decision of sorted six Hu-decisions (in our example-
F16). If dZ is the smallest, we take the decision from that Hu library, which is the first 
name in sorted six poses (in our example, this library is X and its decision is F18), as 
the final decision target (1). 

Therefore, by recognizing the aircraft as target (1) (let it is F16), we arrive at the 
first evidence from first test frame. Applying the same processing on the second input 
frame of test image, we recognize the aircraft as target (2) (let it is F18) as the 
second evidence for second test frame. 

Now, the two-evidence target (1) and target (2) are compared. If they are the 
same, then the identification of 3D aircraft is achieved as target (1). But if target (1) 
differs from target (2) as shown in our example, the third test frame is needed to 
make our decision for identification of the aircraft. 

As we determine the aircraft name target (3) from third test frame (let it will be 
F18), we compare it with first and second evidence. First, target (1) and target (3) are 
compared. If they are the same, the identification of the 3D aircraft is represented as 
target (1). Otherwise, we compare target (2) with target (3). Again, if they are the 
same (as it in our example), the identification of the 3D aircraft is represented as 
target (2)(in our example-F18). Finally, if target (2) and target (3) are different, we 
can not identify the aircraft. By this way, we can identify the 3D aircraft if two from 
three evidence are identical. 

6. Experiments and results 
In this section, a number of experiments were conducted to compare the proposed 
3D-recognition model with the Hu moment-based model and VIEW net model. The 
performance of the proposed model as the number of objects varies, and the rotation 
of the object around X-, Y-, and Z-axes varies, is illustrated. 

Figure (6) shows the comparison among the proposed model, the Hu-moment 
model, and the VIEWNET model using approximately the same set of objects (3 
aircrafts F16, F18, global hawk) for the same case of objects rotation around the 
vertical axis (Z-axis), i.e. one degree of freedom for rotation, and using the same 
decision rule, based on one 2D view (K=1) or successive of three 2D views (K=3). 
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Figure 7 shows example of the test patterns for the three types of aircraft that follows 
the trajectory shown in Fig. 3. To study the performance of the proposed model, a 
several trajectories for 3, 6, and 9 aircrafts are generated using 3D Studio Max 
software. Table 1 describe the first trajectory set that follow the ARC trajectory shown 
in Figure 3 at different angle of rotation about Y-axis from 0° to 5°, from 0° to 10°, 
from 0° to 15°, and from 0° to 20°, while rotation about Z-axis from -90° to -180° and 
X-axis is fixed 0 

From Fig (8), it could be noticed that the results of the proposed model are 
better than the results of the Hu-moment model in case of using three objects. As 
shown in Fig. (8.a), the worst result yielded by Hu-moment model is 79% for arcl-5, 
while it 92.33% for the second model using only one 2D view. Similarly, using three 
successive 2D views (K=3)(see Fig. (8.b)), where the worst recognition rate is 80% in 
Hu-moment model, and 93.33% in the proposed model. Similarly, the proposed 
model improved the worst case in the Hu-moment model from 77.67% to 93% using 
frame step L=15 (see Fig. (8.c). 

In case of six objects, the recognition rates in the proposed model are better 
than in the Hu-moment model using only one 2D view K=1 (see Fig. (9.a)), using 
three successive 2D views K=3 (see Fig. (9.b), and using three 2D views with frame 
step L =15 (see Fig. 9.c). Using K=1 and K=3, the proposed model improved the 
results obtained in the Hu-moment model from 69.67% (the worst result) to 86.83% at 
K=1, and from 70.83% to 88.5% at K=3. Similarly, using frame step L=15, the worst 
recognition rate in Hu-moment model is 67% for rotation about Y-axis 0°-20°, while it 
is 80% in the proposed model. 

Table 2 describes another set of trajectories, which used to study the 
performance of the proposed model in case of rotation about three axes. The first 
where the object is rotated around Z-axis from -90° to -180°, X-axis from 0° to 5°, and 
Y-axis from 0° to 5°, i.e. the rotation about X- and Y- axes are performed with the 
same rate. 
The proposed model was compared with the Hu-moment model using the test 
patterns for the three types of aircraft shown in Figure 7. Figure 10 plots the 
recognition rate versus the rotation angle about the X- and Y-axes when angle varies 
from 0° to 5°, from 0° to 10°, from 0° to 15°, and from 0° to 20° using one 2D view, 
three successive 2D views, and three 20 views with frame step L=15. Using K=1 and 
K=3, the proposed model improved the results obtained in the Flu-moment model 
from 86% (the worst result) to 95% at K=1, and from 88% to 95% at K=3. Similarly, 
using frame step L=15, the worst recognition rate in Hu-moment model is 91% for 
rotation about X-axis and Y-axis 0°-20°, while it is 100% in the proposed model. 
From Figure 11, it could be noticed that the results obtained from the proposed 
model are better than the Hu-moment model in case of using six objects. Using K=1 
and K=3, the proposed model improved the results obtained in the Hu-moment model 
from 84% (the worst result) to 92% at K=1, and from 85% to 93% at K=3. Similarly, 
using frame step L=15, the worst recognition rate in Hu-moment model is 90% for 
rotation about X-axis and Y-axis 0°-20°, while it is 97% in the proposed model. 
Again, the proposed model was compared with the Hu-moment model for the case of 
using nine objects. Figure 12 plots the recognition rate versus the rotation angle 
about the X- and Y-axes when angle varies from 0° to 5°, from 0° to 10°, from 0° to 
15°, and from 0° to 20° using one 2D view, three successive 2D views, and three 2D 
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views with frame step L=15. Using K=1 and K=3, the proposed model improved the 
results obtained in the Hu-moment model from 76% (the worst result) to 84% at K=1, 
and from 79% to 84% at K=3. Similarly, using frame step L=15, the worst recognition 
rate in Hu-moment model is 81% for rotation about X-axis and Y-axis 00-20°, while it 
is 87% in the proposed model. 
For the case of rotation about three axes, another sets of trajectories are generated. 
The first trajectory with 150 image frames for each object are generated where object 
is rotated around Z-axis -90° to -180°, X-axis from 0° to 5°, and Y-axis from 0° to 10°, 
i.e. the difference between the rotation about X-axis and rotation about Y-axis is 5°. 
Figure 13 plots the recognition rate versus the difference between the rotation about 
X-axis and rotation about Y-axis using one 2D view, three successive 2D, and using 
three 2D views with frame step L=15. The model was tested with another trajectories 
at different values of the difference between the rotation about X-axis and rotation 
about Y-axis (10°, 15°, 20°). 
Using K=1 and K=3, the proposed model improved the results obtained in the Hu-
moment model from 84% (the worst result) to 93% at K=1, and from 85% to 94% at 
K=3. Similarly, using frame step L=15, the worst recognition rate in Hu-moment 
model is 79% for rotation about X-axis and Y-axis 0°-20°, while it is 90% in the 
proposed model. 

To study the effect of the noise on the proposed model, we choose several 
types of noise like ripple, diffuse, and wind. Figure 14 shows example images from 
the test patterns affected by ripple noise with 100, 300, and 400 in case of rotation 
about vertical axis (Z-axis). The recognition rate versus ripple values is plotted using 
one 2D view (see Fig. 14.a), using three 2D views with K=3 (see Fig. 14.b), and 
using three 2D views with L=15(see Fig.14.c). 
For six objects tested for ripple noise, Using K=1 and K=3, the proposed model 
improved the results obtained in the Hu-moment model from 87% (the worst result) to 
93% at K=1, and from 89% to 94% at K=3. Similarly, using frame step L=15, the 
worst recognition rate in Hu-moment model is 94% for rotation about X-axis and Y-
axis 0°-20°, while it is 96% in the proposed model. 
7. Time and storage measures 
On objects with 541 image frame per object for training, the following time and 
storage measures has been observed for the first proposed model implemented 
using MATLAB (a sixth generation version) running under Microsoft Windows 98 as 
an operating system on a PC platform with the following configuration: 

• Processor: Intel Pentium Ill processor 450 MHZ. 
• Cache Memory: 512 kB cache. 
• Memory: 64 MB RAM. 

The time required to train a library with 90 image frames was 3527 seconds and 
3723 seconds required to train a library with 91 image frames, i.e. 21358 seconds 
required to train an object with 541 image frames. 

To conclude, for three object case, the training phase required a total of 64074 
seconds, while the testing phase requires on average time of 35.81 seconds using 
only one 2D view and of 65.47 seconds or of 98.81 seconds using three 2D views. 
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8. Conclusion and Future work 
The decision of the Hu moment model [1] is based on selecting the first value of 
sorting six minima obtained from six libraries, which may not be always correct. The 
decision may be correct if we select the second value instead of the first. To select 
the correct one, this paper describes a novel model to recognize a 3D object based 
on Hu and Zernike moment invariants as a feature vector. Zernike moment invariants 
are used to find the pose of the aircraft at first to know from which library we can 
make the decision. 
Recognition is done by comparing an object against many representations stored in a 
library, and finding the closest match using Euclidean distance classifier. The 
decision of the proposed model is based on accumulating evidence from a set of 
three 2D views of the desired objects at different frame step (L), where L = 5, 7, 10, 
15. 
The proposed model was tested using several experiments using aircraft patterns, in 
different situations including noisy image, to show the efficacy. This model is robust 
against several types of noise like ripple, diffuse, and wind. Also, the performance of 
the proposed model was compared with that of the Hu moment model [1] and the 
VIEWNET model [2]. Using approximately the same set of objects (3 aircrafts F16, 
F18, global hawk) for the same case of objects rotation around the vertical axis (Z-
axis) and using the same decision rule, which based on one 2D view or successive of 
three 2D views. The VIEWNET model yielded recognition rate of 90% with one view 
and up to 98.5% with three 2D views. In the Hu moment model, a recognition rate is 
up to 96.33% with one view, 98.67% with three 2D views, and up to 100% using 
frame step L=15. While the recognition rates obtained from the proposed model are 
of 99.33% with one view, 100% with three 2D views, and up to 100% using any frame 
step L (5, 7, 10, and 15). 
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