EVALUATION OF SERUM VITAMIN D LEVELS IN A GROUP OF EGYPTIAN CHILDREN WITH FEBRILE SEIZURES: CASE CONTROL STUDY

Vol. 25

By

Mohammed A. Hassan¹, Hussein Awad El-Gharieb², Tahseen Samir Mohammed Yousef³, Hossam M. Farid El-Zamek⁴

Departments of Pediatrics¹, Neurology², Public Health and Community Medicine³, Clinical pathology⁴, Faculty of Medicine, Al-Azhar University, Cairo, Egypt

Correspondence to: Mohammed A. Hassan, Department of Pediatrics, Faculty of Medicine, Al-Azhar University

E-mail Address: mapissar@gmail.com

ABSTRACT

Background: The role of vitamin D (vit. D) deficiency in different neurological problems is gaining popularity. While the role of vit. D in epilepsy is widely understood, its role in febrile seizures (FS) is less well understood, with only a limited amount of research available. The broad distribution of vit. D receptors can account for its beneficial role in epilepsy. We therefore sought in this study to check out the impact of vit. D deficiency in the development of FS.

Methods: A sample of 28 children with simple FS and 26 age and sex matched controls (who had febrile disease without seizures) were enrolled sequentially in the study. Venous samples for vit. D level, complete blood count, and other laboratory tests were obtained within 2 hours of FS, and the results for both groups were statistically analyzed.

Results: Regarding the levels of vit. D in the serum, no significant statistical difference existed between both groups (22.12 \pm 21.97 vs 29.28 \pm 14.83 ng/ml, P=0.170, for convulsive and non-convulsive patients, respectively.). On the other hand, significant statistical differences existed between them, as regards the serum levels of Na, K, and platelets count (137.1 \pm 2.37 vs 140.92 \pm 7.45 meq/L, P = 0.013; 4.07 \pm 0.38 vs 4.30 \pm $0.32 \; \text{mmol/L}, \; P = 0.020; \; 260.07 \pm 129.88 \; \text{vs} \; 330.93 \pm 116.51 \; \text{cell/µL}, \; P = 0.040, \; \text{for} \;$ convulsive and non-convulsive patients, respectively.).

Conclusion: The association between the development of seizures in children with FS and vit. D deficiency was not proved statistically. However, they had a lower level than the control group.

Keywords: Febrile Seizures; vitamin D; Egyptian Children.

INTRODUCTION

Febrile seizure (FS) is amongst most prevalent medical the conditions, affecting 3% to 5% of children around the world (Smith et al., 2019) (Leung et al., 2018). FS could be considered when seizures occur with increased body temperature above 38°C without any central nervous system (CNS) affection or metabolic abnormalities in children aged from 6 to 60 months (Mosili et al., 2020). FS is classified into typical (simple) and atypical (complex) febrile seizures. Typical FS is mostly generalized tonic-clonic seizure that lasts 15 minutes or less and does not recure within 24 in children who hours are neurologically stable and without psychomotor abnormalities (American Academy Pediatrics, 2011) (Fukuyama et al., 1996). Atypical FS is a focal or generalized seizure that lasts more than 15 minutes and/or recures on the same Moreover, it can be associated with neurological deficits followed by Todd's paralysis (Leung et al., 2018) (Knudsen, 2000).

FS is likely attributed to genetic predisposition in combination with incompletely understood environmental risk factors (Mosili et al., 2020) (Shi

et al., 2012). After the 1st episode of FS, the rate of recurrence is whereas 30%. the rate ofrecurrence is 50% after the 2nd episode. Male gender, less than 1 year of age, atypical seizure type, fever of 38°C-39°C for less than one day, positive family history of FS or epilepsy, and low serum sodium are all increase the risk factors of recurrence (Mosili et al., 2020) (Smith et al., 2019).

On the other hand, scientists are still focusing on vitamin D (vit. D) and are trying to resolve physiological related controversies. Despite being linked to several health issues. including orthopedic, cardiovascular, metabolic, CNS, and autoimmune disorders, the harmful effects ofvit D deficiency remain investigation (Zmijewski et al., 2019) (Peterlik & Cross, 2005). Due to the increased rate of growth in children and teenagers, vit. D deficiency is quite prevalent in early life, and it is considered one of the most common medical hazards worldwide, especially in low-income countries (Zmijewski et al., 2019) (Andıran et al., 2012).

While the role of vit. D deficiency is well known in epilepsy, its involvement in the FS is not yet well established, and

there is relatively little accessible literature about that. The large distribution of vit. D receptors in almost all human body tissues and cells may explain the role of its deficiency in epilepsy (Eyles et al., 2005). It is hypothesized that its role in the CNS could be conducted via calcemic and noncalcemic pathways (Stewart et 2010). The non-calcemic effect includes its action on the nuclear receptors to alter the gene expression inside the **CNS** (Ramagopalan et al., 2010).

There are many factors that have been proven to be associated with FS and its recurrence. However, many risk factors are still unknown and need to be investigated in order to improve control and prevent recurrence (Bhat et al., 2018) (Amiri et al., 2010). Therefore, we aimed in this study to assess the association between the development of FS in susceptible children and vit. D deficiency.

PATIENTS AND METHODS

An observational case–control study was conducted in El Hussein University hospital, Al-Azhar University for boys, Cairo, Egypt, during the period between September 2021 and December 2021.

Ethical considerations:

- 1. Informed written consent was obtained from the candidate or their legal guardians.
- 2. An approval by the local ethical committee was obtained before the study.
- 3. The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.
- 4. All the data of the candidates and results of the study are confidential, and the candidates have the right to keep it.
- 5. The candidates have the right to withdraw from the study at any time.

Sample size and sampling technique:

We included all children aged from 6 to 60 months with typical FS that presented to our emergency rooms or outpatient clinics (28 children) during the duration of the study (convenient sample). Also, 26 child age and sex matched with them (presented with fever but without seizures), were sequentially enrolled as controls.

Exclusion criteria and case definition:

Any child with atypical febrile seizures, history of epilepsy, or chronic neurological disease was omitted from the study. We also excluded those with apparent malnutrition, renal, hepatic, or any metabolic disorder that could interfere with vit. D Metabolism. American Academy The Pediatrics guidelines published in 1996 and revised in 2011 guided the diagnosis of simple (American Academy of Pediatrics. 2011). These guidelines still exist as the most accepted and applicable guidelines worldwide.

All candidates were subjected to: (a) detailed medical history taking, (b) comprehensive clinical examination, (c) blood samples been obtained from had participants and the following measured, in parameters were addition to the vit. D level: complete blood count (CBC), serum creatinine (Cr), serum alkaline phosphatase (ALP), blood nitrogen (BUN), urea serum calcium (Ca), serum sodium (Na), serum potassium (K), serum phosphorous (P).

Venous sampling was used to obtain 4 ml of blood in EDTA vacutainers as well as 4 ml in plain vacutainers. It was left to

clot before centrifugation at room temperature get serum. to Specimens were kept frozen at enzyme-linked 20°C. The immunosorbent test was performed to evaluate 25-OH vit. D using a marketably obtainable kit (Orgentec Diagnostika GmbH, Mainz, Germany). CBC including RBC indices was measured using automated cell counter, vit. D is considered normal if a 25(OH) vit. $D \ge 30 \text{ ng/ml}$ (Holick et al., 2011).

Statistical analysis:

The statistical package SPSS (Statistical Package for the Social Sciences) version 25 was used to compute and list the data. Data was outlined using mean and standard deviation for quantitative data, while frequency (count) and relative frequency (percentage) were used for categorical data. A student t-test or other equivalent has been used to compare the quantitative variables between the two main groups. A Chi square test was performed comparing categorical data. A logistic regression analysis was used to predict the association between variables. The level of significance was considered when the P-value was lower than 0.05.

Vol. 25

RESULTS

54 children The who participated in the study were categorized as follows: group I, or case group, consists of the 28 children with FS; and group II, or control group, consists of the 26 children with fever but without seizure. The mean age of the group I was (15.87 ± 13.92) months, while the mean age of the group II was (15.96 ± 12.11) months. Among the children in group I, 13 (46.42%) females, while group II contained 12 (46.15%) females

without a significant difference between the groups as regards gender (P = 1.00) (Table 1). There was also no significant statistical difference in mean body temperature between both groups (38.85+0.55)38.38+1.97 °C for groups I and II, respectively, P = 0.227). Furthermore, no differences were found between both groups in terms of birth mode (P= 0.99), breastfeeding (P=0.75), or the presence comorbidities of (P=0.14).

Table (1): Demographic criteria of the participants

		Patients with febrile seizures	Febrile patients without seizures	P-value	
Number		28	26		
Age (mean ± SD) (months)		15.87 ± 13.92	15.96 ± 12.11	0.980	
Gender	Female	13	12	1.000	
	Male	15	14	1.000	
Body temperature (°C)		38.85 ± 0.5	38.38 ± 1.97	0.227	

Among the patients with FS, the number of patients with a single attack of seizure was 23 (82.14%). Only 3 children were reported to have had more than 1 seizure episode. The history of seizures was unclear with the remaining 2 children. As regards the type of seizure, 27 (96.43%) children were proven to have generalized developed clonic seizures. The remaining developed generalized child tonic seizures. Only 2 children (7.14%) were reported to have a

positive family history of seizures.

The results of laboratory tests of both groups showed that there significant statistical no difference between cases controls as regards the vit. D level (22.12 \pm 21.97 vs 29.28 ±14.83 ng/ml, for convulsive and non-convulsive patients, respectively, P =0.170). The laboratory data other candidates in both groups is shown in **Table (2)**.

Table (2): The results of laboratory tests of both groups

	Patients with	Febrile patients			
	febrile seizures	without seizures	P-value		
	(n=28)	(n=26)			
Vit. D (ng/ml)	22.12 ± 21.97	29.28 ±14.83	0.170		
Hb (gm/dL)	10.91 ± 0.99	11.09 ± 1.24	0.557		
WBC (cells/microL)	10.51 ± 4.94	11.31 ± 4.52	0.538		
Platelet (cells/microL)	260.07 ± 129.88	330.93 ± 116.51	0.040		
Sodium (meq/L)	137.1 ± 2.37	140.92 ± 7.45	0.013		
Potassium (mmol/L)	4.07 ± 0.38	4.30 ± 0.32	0.020		
ALP (unit/L)	530.92 ± 181.39	519.36 ± 170.6	0.811		
Calcium (mg/dL)	9.59 ± 0.76	9.81 ± 0.81	0.308		
Phosphorus (mg/dL)	4.10 ± 0.69	4.21 ± 0.65	0.550		
Serum creatinine (mg/dL)	0.52 ± 0.07	0.56 ± 0.19	0.303		
BUN (mg/dL)	22.05 ± 9.8	26.87 ± 13.99	0.146		
Blood sugar (mg/dL)	113.23 ± 28.01	105.84 ± 33	0.378		
(1) 11111. (11) 15 11. () 1111. () () ()					

(ng) nanogram, (ml) milliliter, (dL) Deciliter, (meq) milliequivalent, (L) liter, (mmol) millimole, (mg) milligram, (microL) microliter.

Additionally, when the included children were divided into infants (< 1 year) and older children (>1 year), no significant difference in vit. D levels could be detected $(28.19 \pm 17.14 \text{ vs})$ 23.6 ± 21.23 ng/ml, respectively, p = 0.383). By comparing the vit. D level in children with FS aged < 1 year with those aged > 1 year. there was no difference between them $(25.24 \pm 21.02 \text{ vs } 21.54 \pm$ 23.56 ng/ml, respectively, p = 0.664).

Moreover, when comparing infants who had FS and those who did not develop seizures as regards the vit. D level, no statistical difference between both groups would be noticed (respectively 25.24 ± 21.02 vs $29.75 \pm 15 \text{ ng/ml}, p = 0.514$). Similarly, no statistical difference could be observed between the vit. D level in older children (> 1 year) with and without FS (respectively, $21.54 \pm$ 23.56 vs 26.04 ± 17.25 p =0.594). The previous data is shown in **Table (3)**.

Table (3): Vitamin D levels of the candidates according to their age

Vol. 25

	Infants (< 1 year)	Children (>1 year)	P-value	
Patients with febrile seizures	, ,	, ,		
Number	15 (53.6%)	3.6%) 13(46.4%)		
Vitamin D level (ng/ml)	25.24 ± 21.02	21.54 ± 23.56	0.664	
Febrile patients without				
seizures				
Number	14 (53.8%)	12 (46.2%)	0.563	
Vitamin D level (ng/ml)	29.75 ± 15	26.04 ± 17.25		
P-value	0.514	0.594		
All Patients				
Number	29 (53.7%)	25 (46.3%)	0.292	
Vitamin D level (ng/ml)	28.19 ± 17.14	23.6 ± 21.23	0.383	

The regression analysis revealed no association between the vit. D level and the development of seizures in febrile children as the P-value

was 0.098 and odd ratio was 1.338 when testing the possibility of seizure when the vit. D level was < 30 ng/ml (**Table 4**).

Table (4): Logistic regression analysis for prediction of seizures in febrile children

	D	S.E.	Wald	P	OR	95% C.I.	
	Б			value		Lower	Upper
Vitamin D < 30 ng/ml	0.290	0.183	2.693	0.098	1.338	0.956	1.873
(OR) odd ratio, (CI) conference interval.							

DISCUSSION

Despite, the increasing interest in the role of vit. D deficiency in a variety of neurological disorders, its role in the development of FS is not well established yet. This article looked at the levels of vit. D in the sera of 54 children presenting with fever who had or didn't have FS. Although children with FS had lower vit. D levels than children without seizures $(22.12 \pm 21.97 \text{ vs } 29.28 \pm 14.83)$ significant ng/ml), variation between both groups didn't exist (P = 0.170).

Moreover, higher vit. D levels were found in the sera of infants (< 1 year) than older children (either with FS or not), but the difference was not significant (28.19 ± 17.14 vs 23.6 ± 21.23 ng/ml, respectively, p = 0.383). This finding can be attributed to vit. D supplementation in infants.

Receptors of vit. D are widely distributed throughout the brain, impacting both non-calcemic and calcemic functions (Holló et al., 2012). The association between seizures and vit. D was initially aroused in 1974 when the authors noted that it could work inside the CNS as a neurotransmitter and had anticonvulsant activity (Holló et al., 2012) (Christiansen et al., 1974). Additionally, vit. D may help to boost the effectiveness of other neuroprotective drugs. On the other hand, some metabolic adjustments that can increase vit. D demand have been claimed to occur during febrile illness (Holló et al., 2012). As far as we know, there are very few clinical trials assessing and comparing levels of vit. D in the sera of children with FS and febrile children without FS (Heydarian et al., 2020) (Bhat et al., 2020).

Remarkably, we found that the mean vit. D level of all 54 candidates was lower than the normal range, and this contrasting what Heydarian et al. reported in their recent research (Hevdarian et al., 2020). Meanwhile, the literature crowded with studies which proved that the vit. D level was decreased in the sera of children who had FS (Shariatpanahi et al., 2018) (Vuletić et al., 2016) (Tekin et al., 2014) (Mantadakis et al., 2012). This discrepancy may be due to many factors including geographical, genetic, habits. cultural. and dietary differences

compared When to their controls, our FS candidates had a considerably reduced count. These findings have been confirmed by several articles and studies (Hassan et al., 2021) (Liu al.. 2018) et (Gontko-Romanowska et al., 2017). The notable decrease in platelet count in the FS patients may point to the quickness of platelet consumption severity of and the inflammation in children who are liable to FS (Hassan et al., 2021). undoubted reasons The and pathways have not yet been completely discovered.

Our results showed that the serum Na and serum K are markedly lower in FS group than

the control group. which agree with previous studies about the role of electrolyte disturbances in pathogenesis of FS (Deia et al., 2018) (Chiarelli et al., 1985).

The electrolytic disturbances, mainly hyponatremia (could be due to SIADH syndrome) may play a role in frequent relapses of FS (Chiarelli et al., 1985). The stability neuronal of membrane that prevents seizures. is impaired in hyponatremia, due to increased calcium influx, and facilitation of action potential seizure which will cause generation (Deia et al., 2018). Decrement of serum K level in animals and humans, leads to neurological abnormalities (Hawas et al., 2018).

CONCLUSION

In conclusion, the association between vit. D levels and the development of FS in children hadn't been proved; however, vit. D levels were found to be lower in children who had FS. Furthermore, no link between vit. D levels and the age of children in both FS patients and febrile patients without FS has been established. To deeply investigate the presence of this association, large sample correlation studies may be recommended.

Recommendations: More studies should be done to investigate the pathogenesis as well as risk factors of FS to prevent its occurrence and recurrence in susceptible children and infants.

Acknowledgments: We acknowledge all the participants in this research.

Limitations: Lack of sufficient number of previous research studies on the topic.

Authors Contribution:

Mohammed A. Hassan and Hussein Awad El Gharieb were responsible for medical assessment and data collection. Samir Tahseen Mohammed Yousef was responsible for statistical analysis. Hossam M. Farid El Zamek was responsible for laboratory assessment. All authors designed the research and wrote the manuscript.

Conflicts of interest: No conflicts of interest to be declared.

REFERENCES

- 1. American Academy of Pediatrics (2011):

 Neurodiagnostic evaluation of the child with a simple febrile seizure. Pediatrics, 127(2), 389–394.

 https://doi.org/10.1542/peds.2010-3318.
- 2. Amiri, M., Farzin, L., Moassesi,

- M. E., & Sajadi, F. (2010): Serum trace element levels in febrile convulsion. Biological trace element research, 135(1-3), 38–44. https://doi.org/10.1007/s12011-009-8487-6.
- 3. Andıran, N., Celik, N., Akça, Doğan, G. (2012): & Vitamin D deficiency in children adolescents. Journal clinical research pediatric in 25–29. endocrinology, 4(1), https://doi.org/10.4274/jcrpe.574.
- 4. Bhat, J. A., Bhat, T. A., Sheikh, S. A., Wani, Z. A., & Ara, R. (2020): Status of 25-hydroxy vitamin D level in simple febrile seizures and its correlation with recurrence of seizures. Avicenna journal of medicine, 10(1), 6–9. https://doi.org/10.4103/ajm.ajm_57_19.
- 5. Bhat, J. A., Kurmi, R., Ara, R., & Kumar, S. (2018): Level of Micronutrient [zinc] and its Association with Seizures in Children: A Case Control Study. Academic Journal of Pediatrics & Neonatology, 7. 10.19080/ajpn.2018.07.555765.
- 6. Chiarelli, F., De Palma, C., Verrotti, A., Lombardi, G., & Domizio, S. (1985): Alterazioni elettrolitiche in corso di convulsioni febbrili [Electrolytic changes in febrile convulsions]. La Pediatria medica e chirurgica, Medical and surgical pediatrics, 7(2), 249–252.

- 7. Christiansen, C., Rodbro, P., & Sjö, O. (1974): "Anticonvulsant action" of vitamin D in epileptic patients? A controlled pilot study. British medical journal, 2(5913), 258–259. https://doi.org/10.1136/bmj.2.591 3.258.
- 8. Deia, K. K., Yusra, K. A., & Maaesah, S. A. (2018): Relationships between serum electrolytes and febrile seizure. Pharma Innovation, 7(8):227-230.
- 9. Eyles, D. W., Smith, S., Kinobe, R., Hewison, M., & McGrath, J. J. (2005): Distribution of the vitamin D receptor and 1 alphahydroxylase in human brain. Journal of chemical neuroanatomy, 29(1), 21–30. https://doi.org/10.1016/j.jchemne u.2004.08.006.
- 10. Fukuyama, Y., Seki, T., Ohtsuka, C., Miura, H., & Hara, M. (1996): Practical guidelines for physicians in the management of febrile seizures. Brain & development, 18(6), 479–484. https://doi.org/10.1016/s0387-7604(96)00066-6.
- 11. Gontko-Romanowska, K., Żaba, Z., Panieński, P., Steinborn, B., Szemień, M., Łukasik-Głębocka, M., Ratajczak, K., & Górny, J. (2017): The assessment of laboratory parameters in children with fever and febrile seizures. Brain and behavior, 7(7), e00720. https://doi.org/10.1002/brb3.720.

- 12. Hassan, M. A., Elsayeh, A.A., & Hassan, M. A. (2021):
 Relationship between the febrile seizures in children and complete blood count inflammatory indices. Sci J Al-Azhar Med Fac Girls, 5:560-6.
- **13.** Hawas, A. F., Al-Shalah, H. H., & Al-Jothary, A. H. (2018): The impact of electrolytes in pathogenesis of simple febrile convulsions. Med J Babylon, 15:12-5.
- 14. Heydarian, F., Bakhtiari, E., Golmakani, H., Fakhr Ghasemi, N., & Heidarian, M. (2020): Serum Level of Vitamin D and Febrile Seizure? A Clinical Study. Iranian journal of child neurology, 14(3), 77–82.
- 15. Holick, M. F., Binkley, N. C., Bischoff-Ferrari, Η. Gordon, C. M., Hanley, D. A., Heaney, R. P., Murad, M. H., Weaver, C. M., & Endocrine Society (2011): Evaluation. treatment, and prevention vitamin deficiency: D an Endocrine Society clinical practice guideline. The Journal of endocrinology clinical metabolism, 96(7), 1911–1930. https://doi.org/10.1210/jc.2011-0385.
- 16. Holló, A., Clemens, Z., Kamondi, A., Lakatos, P., & Szűcs, A. (2012): Correction of vitamin D deficiency improves seizure control in epilepsy: a pilot study. Epilepsy & behavior: E&B, 24(1), 131–133.

- https://doi.org/10.1016/j.yebeh.20 12.03.011.
- **17. Knudsen F. U. (2000):** Febrile seizures: treatment and prognosis. Epilepsia, 41(1), 2–9. https://doi.org/10.1111/j.1528-1157.2000.tb01497.
- **18. Leung, A. K., Hon, K. L., & Leung, T. N. (2018):** Febrile seizures: an overview. Drugs in context, 7, 212536. https://doi.org/10.7573/dic.21253 6.
- 19. Liu, Z., Li, X., Zhang, M., Huang, X., Bai, J., Pan, Z., Lin, X., Yu, D., Zeng, H., Wan, R., & Ye, X. (2018): The role of Mean Platelet Volume/platelet count Ratio and Neutrophil to Lymphocyte Ratio on the risk of Febrile Seizure. Scientific reports, 8(1), 15123. https://doi.org/10.1038/s41598-018-33373-3.
- 20. Mantadakis, E., Deftereos, S., Tsouvala, E., Thomaidis, S., & Chatzimichael, A. (2012): Seizures as initial manifestation of vitamin D-deficiency rickets in a 5-month-old exclusively breastfed infant. Pediatrics and neonatology, 53(6), 384–386. https://doi.org/10.1016/j.pedneo.2 012.08.004.
- 21. Mosili, P., Maikoo, S., Mabandla, M. V., & Qulu, L. (2020): The Pathogenesis Fever-Induced Febrile Seizures Its Current State. and Neuroscience insights, 15.

- 2633105520956973. https://doi.org/10.1177/26331055 20956973.
- 22. Peterlik, M., & Cross, H. S. (2005): Vitamin D and calcium deficits predispose for multiple chronic diseases. European journal of clinical investigation, 35(5), 290–304. https://doi.org/10.1111/j.1365-2362.2005.01487.
- 23. Ramagopalan, S. V., Heger, A., Berlanga, A. J., Maugeri, N. J., Lincoln, M. R., Burrell, A., Handunnetthi, L., Handel, A. E., Disanto, G., Orton, S. M., Watson, C. T., Morahan, J. M., Giovannoni, G., Ponting, C. P., Ebers, G. C., & Knight, J. C. (2010): A ChIP-seq defined genome-wide map of vitamin D receptor binding: associations with disease and evolution. Genome research, 20(10), 1352-1360.
 - https://doi.org/10.1101/gr.107920 .110.
- 24. Shariatpanahi, G., Paprooschi, N., Yaghmaei, B., Sayarifard, F., & Sayarifard, A. (2018): Exploring Vitamin D in Children with Febrile Seizure: A Preliminary Study. International Journal of Pediatrics, 6(9), 8233-8239. doi: 10.22038/ijp.2018.30035.2645.
- 25. Shi, X. L., Lin, Z. D., Ye, X. Y., Hu, Y., Zheng, F. X., & Hu, H. W. (2012): Zhongguo dang dai er ke za zhi = Chinese journal of contemporary pediatrics, 14(2),

128–130.

- 26. Smith, D. K., Sadler, K. P., & Benedum, M. (2019): Febrile Seizures: Risks, Evaluation, and Prognosis. American family physician, 99(7), 445–450.
- 27. Stewart, A., Wong, K., Cachat, J., Elegante, M., Gilder, T., Mohnot, S., Wu, N., Minasyan, A., Tuohimaa, P., & Kalueff, A. V. (2010): Neurosteroid vitamin D system as a nontraditional drug target in neuropsychopharmacology. Behavioural pharmacology, 21(5-6), 420–426. https://doi.org/10.1097/FBP.0b01 3e32833c850f.
- 28. Tekin, M., Konca, Ç., & Gülyüz, A. (2014):
 Hypocalcemic convulsion in a

- six-year-old child with vitamin D deficiency. Journal of Academic Emergency Medicine. 13(4):206.
- 29. Vuletić, В., Marković, S., Igrutinović, Z., Vladimir, R., Rasković, Z., & Simović, A. (2016): Case report of an infant with severe vitamin D deficiency rickets manifested hypocalcemic seizures. Srpski arhiv za celokupno lekarstvo, 144(1-2), 90-93. https://doi.org/10.2298/sarh16020 90v.
- **30. Zmijewski M. A. (2019):** Vitamin D and Human Health. International journal of molecular sciences, 20(1), 145. https://doi.org/10.3390/ijms20010 145.

تقييم مستويات فيتامين د في مصل مجموعة من الأطفال المصريين المصابين بالتشنجات الحرارية: دراسة الحالة والمرجع

محمد عبد المليك حسن 1 ، حسين عوض الغريب 2 ، تحسين سمير محمد يوسف 6 ، حسام محمد فريد الزامك

1قسم طب الأطفال، كلية الطب، جامعة الأزهر (بنين، القاهرة) 2قسم طب المخ والاعصاب، كلية الطب، جامعة الأزهر (بنين، القاهرة) 3قسم طب المجتمع

4قسم التحاليل الطبية، كلية الطب، جامعة الأزهر (بنين، القاهرة)

مقدمة: أصبح دور نقص فيتامين د في حدوث مشاكل عصبية مختلفة امرا معروفا. وفي حين أن دور نقص فيتامين د في مرض الصرع قد أصبح مفهوما على نطاق واسع، إلا أن دوره في نوبات التشنجات الحرارية ما زال غير واضح، مع عدم توفر قدر كافي من الأبحاث في هذه النقطة. يمكن أن يفسر الانتشار الواسع لمستقبلات فيتامين د دوره المفيد في مرض الصرع. وقد سعينا في هذه الدراسة للتحقق من تأثير نقص فيتامين د في حدوث التشنجات الحرارية.

الطرق: تم اجراء الدراسة على عينة من 28 طفلاً يعانون من النوع البسيط للتشنجات الحرارية و 26 طفلاً متسقين معهم عمرا وجنسًا (من النين أصيبوا بالحمى دون تشنجات). تم الحصول على عينات وريدية منهم لإجراء تحاليل مستوى فيتامين د، وعد الدم الكامل، والاختبارات المعملية الأخرى في

غضون 2 ساعات من حدوث التشنجات، وتم تحليل نتائج كلتا المجموعتين إحصائيًا.

النتسائج: فيمسا يتعلىق بمستويات فيتسامين د فسي مصل المجموعتين، لم يكن هناك فرق إحصائي ذو دلالة بينهما (P = 0.170). (0.170 من ناحية أخرى، كانت هناك اختلافات إحصائية ذات دلالة كبيرة بينهما، فيمسا يتعلىق بمستويات مصل الصوديوم والبوتاسيوم وعدد الصفائح الدموية (P = 0.040). (P = 0.020)

الاستنتاج: لـم يثبت إحصائيا الارتباط بين تطور نوبات التشنجات الحرارية لدى الأطفال المصابين بها وبين النقص في فيتامين د، بالرغم من انه كان لديهم مستوى أقل من المجموعة الضابطة.