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Abstract 

This paper is concerned with the numerical treatment of the first-order 
hyperbolic partial differential equation by small parameter with the time derivative 
term. This problem is reduced to stiff system of ODE, in time. The resulting 
system is solved by the restrictive Pad& approximation. The stability condition 
and the en-or upper bound are introduced. The numerical results are given and 
the considered method gives better results compared with the classical 
advantages of the considered method compared with the classical Pade' 
approximation. 
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1. Introduction 

Consider the singularly perturbed first-order hyperbolic partial differential 
equation: 

du du 5---+ 	f(x,1); 	x > 0, t>0 	 (1 ) 
dt 8x 

where8 > 0 is small, a is real positive constants and f (x, t) is given continuous 
function satisfies the initial and boundary conditions: 

u(x,0) = uo(x), 	0<x<1 	1 	 (2) 
u(0,r). go(t), 	u(1,t)-= g,(0, t>0 

Using the central finite difference approximation for ux  as 

u(ih,t)=-
1

[(u(i +1)h,t)--(u(i -1)h,t)i; 	i 1(1)N -1. 
2h 

The resulting semi-discrete approximation U(ih, t) to u (x, t) of equation (1) 
satisfies 
dU(ift,t) a 

- 	(U((i -1)h,t)-U((i +1)h,t)1+ -
I
- f (x,t); 1 	N -1, r>_ 0 	(3) 

	

dt 	2.3h 	 3 

	

where 	U(ih,0)= uo(th), U(0,i) = go(t), and 11(Nh,t)= 	t 0 , it can be 
written in matrix form as: 

dU(t) 
 - AU (t)+ 	 (4) 

dt 

	

where 	U(r)= 	
1 

,(t))T 	F(t)= --(f,(t), 	IN _Mr  , 

U,(0=U(th,t), Z(t)= f(ih,t) and 
0 -1 
1 0 -1 

A 

1 0 -1 
1 0 ur+vu+) 

The solut'on of this system of ordinary differential equations (4) as done in [10] 
and [11] take the form: 

U(0= exp(tA)U(0)+[-/ + exp(t AAA F 	 (5) 
Or equivalently 

U(r + AI)= 	F + exp(At A)[U(t)+ A 	 (6) 
If we approximate exp(A/ A) using Pad& approximation [M/N](PA[M/N), then we 
can write equations (6) for any time step j as: 

fel  = 	+PA„,„,[fP + y41-' Ft At r-k 	 (7) 
In the following section we define an implicit method for solving singularly 

perturbed initial boundary value problem for hyperbolic partial differential equation 
produced very high accuracy compared with the other classical methods. We use 
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the restrictive Pade' approximation as done in [1] and [2] to approximate the 
exponential matrix. 

2. Restrictive Pade' Approximation (RPA) 

The restrictive Pade' approximation can be written as done in [1] in the 
form 

Ai  

Ea, x' -s- .', x mc' 
RPA1M +a I Nlf ,x)(x) - o 

N 	 (8) 
t+Eb, x' 

,.1 
where a is a positive integer dose not exceed the degree of the denominator N, 
i.e. 	a =1(1)N, such that 

f (x)- RPA[M + a / N],- w (x)=ci(x li+") . 	 (9) 

Let f (x) have a Maclaurin series f(x)= Ec, , then from equations (8) and (9) 

we have 

(1+ ib,x1-(ii  a, x')- (±E, x-'14 )-= o(xm+N'). 

	

•=0 	i=1 
The vanishing of the first (M+N+1) powers of x on the left hand side of (10) 
implies a system of (M+N+1) equations. 

a, = c,+Ec,_,k, 	r = 0(1)M , 
i=1 

(k=0if i>M) 

E em 	bi = s,„„ s = 0(1)N -1, 
1=1 

(c,=0ifI< 0) j  
Hence we can determine the coefficient, a;  and bi  as a function of a, i=1(1)a, 
where the parameters si  are to be determined, such that 

f (x,)= RPA[M + a I 	 i = 1(1)a . 	 (12) 
It means that the considered approximation is exact at (a+1) points. 

Consider the function 	f (x)=
11+ 0.5x+ 0.25 x2 " 

1+5.r 
its Pade' approximation and restrictive Pade' approximation takes the forms: 

PA[2111.,.(,)(x)=
1+ 1.9311x- 0.563724  x'  

1+ 4.181Ix 

RpA[21111.00(x)-
1+1.73134x- 0.114257x2 

where a= land x„= 0.6 
1+3.98134x 

(10) 
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3. Restrictive Pade' Approximation (RPA) for Solving Singularly Perturbed 
Hyperbolic Partial Differential Equation 

The restrictive Pade' approximation of order [Oil] and [1/1] of the 
exponential matrix exp(k A) as done in [3] can take the forms: 
i-) RPA[0/1],„„,,(,),-- (1 + (e- k)A)-' 	 (13) 

using equation (13) to approximate the exp(k A) in equation (6), which can the 
form: 

-= 	+ (I + (e -k)A)-111'  + 	At k , 	 (14) 
or 

(I +(e 	=LP (e k)f.' 	 (15) 
which can take the equivalent scalar form: 

((e 

2

- 

8h 
k)a)  

u
" 

u, 
. 
,„ (e28h 

Oa  ') 

	

iu 	„ = u, 	(
e - k 

)f 	. 	(16) 
 8 

Similarly the restrictive Pads' approximation of order [111] of the exponential 
matrix exp(k A) as done in [3 ] can take the form: 

1 
ii-) RP,411/1],,w)=(/ + (6.--k)A) '  (I +(e +-

2
k)A) 	 (17) 

using equation (13) to approximate the exp(k A) in equation (6), which can the 
form: 

= 	F + (I +(e - -12  k)A)-1  (/ + (e -1-  k)A)[(1.' 	F] 	(18) 

or 
1  

--k)A)11"+'  = (I + +
1
-gik)A 	+ k 

- 	2 
equivalent scalar form: 

/(6- 0.5k)a‘  
11„,. /,1 

((r + 0.5 k)a) 	+u r(c+ 0.5101 	k u 	+ (-)frx
' 
 ,i) 

28I1 Jul 
	 28h 	8  

Putting e •= 0 in equations (16) and (20), we have the schemes arising of 
applying classical Pade' approximations [0/1] and [1/1] respectively to the 
exponential matrix exp (kA) in equation (6). To determine the restrictive 
parameters e , we must have the exact solution or a highly accurate numerical 
solution at the first level. 

(/+(6. 

It can take the 
((e -0 5k)a) u. 

2.5h 

(19)  

(20)  
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4. The Stability Analysis 

By using Von-Neumann stability analysis method we have, the 
amplification factors GI and G2 for the difference equations (16) and (20) 
respectively are: 

1 /
((e+ 0.50a  sine ) 

	

1 	 8h  

10.5k)a . 	= 1=1  G, = 	 , G2 = 
1- 

 1[
(5- k)a  sing' 	1 1(4.- 	sine) 

	

8 h 	 511 

i.e. IG, 1 <1, Ve and 1G11<1, Ye <0 consequently the considered methods 
(16) and (20) are unconditionally stable. 

5. The Local Truncation Error Upper Bound 

i-) For the RPA[0/1] 

Using Taylor expansion, we can obtained the local truncation error of the 
difference equation (16) as done in [5],[6],[7],[8] and [9] as: 

(e - k)a 	d'".iu) 	(k" trui 	(c - k)a  	 (k"  d'"'"u 
, 

	

Oh ,,,, (2n +1)! dx2'" to ,
+ 	

n! a^ 	Oh 	+ 	n! x2"'" Iet' 

Then, if there exists a positive real numbers M,, M2, M3 for all sufficiently large 
positive integer n such that 

 

M,, 
8"zil  

.5 M2, at.  
a'"u 
ax" at" 

M3 Vn 

    

Let M = max {MI,  M2,M3} 

then, the local truncation error T,1 of the difference equation (16) will have an 
upper bound as: 

LfI -xf 

 

e'(1+ 	k)a  sinh h)- -1 
h 

   

i- For the RPA[I/1] 

Also, in the same way using Taylor expansion, we can obtained the local 
truncation error of the difference equation (20) as: 

h2"  
(2 
	) 	l 

n!  a
c" crts)  

11+1)! 	 - 	.171(2m +1)!,,A n! dx.'"&" 04) 
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where r, = (e -0.504 = 
(6- + 0.50a , then if there exists a positive real numbers 

511 	811 
MI, M2, M3 for all sufficiently large positive integer n such that 

ax" 
< m 0"1/ 

 

O"'"u n< M v 
ox-ar;1 

    

and M = max (M,, 
then, the local truncation error T of the difference equation (20) will have an 
upper bound as: 

Ird<MI (rè -r2)sinhh+e`-1I,  

6. Numerical Results 

We present a numerical example to compare the considered methods (16) 
and (20) with the corresponding classical methods which arising of applying 
Pade• approximations (0/11 and [1/1] respectively to the exponential matrix exp (k 
A) in equation (6). 

Consider the singularly perturbed hyperbolic partial differential equation 
au au 5—+—= 2x-1 , 
al as 

with the initial and boundary conditions 
u(x,0) = exp(-1 5), u(x,0) = exp(x) + - rand u(x,1) = exp(x -1/8)+1.1 - x 

its exact solution is: 
u(x,r)= exp(x - 1/ 8)+ - x 

We consider two cases: 
i-) Case I : We apply our methods such that the exact solution is given at 

the first level to determine the restrictive parameters s, , and hence we use it for 
another levels for calculation. Tables (1) gives the absolute errors along 
x=0.1,0.5,0.9 where h=0.1 and 	S = 0.01, k=0.001. Tables (2) gives the 
absolute errors along x=0.1,0.5,0.9 where h=0.1 and 8 = 0.001, k=:01)000T. 

ii-) Case II: In general the exact solution at the first level is unknown, and 
we use the classical method in the case of PA[1/1], to evaluate the solutions at 
the first time level by large number of very small space and time steps lengths 
h=0.01 and k=1x104°  , after 100 time step, k=1 xle and we can choice space 
step h=0.1, hence we determine the restrictive parameters s i.e. we can use large 
space and time steps lengths h and k to evaluate the solution at another levels. 
Tables (3) give the absolute errors along x=0.1,0.5,0.9 where h=0.1 and 8 = 
0.0001, k=1x1043. 
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/P42/ II 

/ 

70342, 	- 

no 

Fig (1) 
Comparison of the errors between PA[2 / 1) and RPA[2 / 1] 

Table (1) 
Comparison of the absolute errors (A.E.) between the considered methods RPA[1/1], RPA[0/1] and 

The classical methods PA[1/1], PA[0/1], for h=0.1, k=1 x 10 3  and 8=1 x 10 -2  for case I. 

x No. of 

Steps 

A. E. of The considered 

methods 

A. E. of The classical 

methods 

RPA[1/11  RPA10/11 PA[1/1] PA[0/1] 

0.1 500 4.30 x 10 '6  2.44 x 10 45  2.73 x 10 -3  7.38 x 10 "2  
0.5 4.44 X 10 48  2.38 x 10 -15  3.73 x 10 4  7.38 x 10 .2  
0.9 2.77 x 10 46  2.38 x 10 45  5.32 x 10 4  7.38 x 10 .2  

0.1 1000 1.92 x 10 45  2.44 x 10 -15  4.55 x 10 4  7.38 x 10 -2  
0.5 1.83 x 10 45  2.38 x 10 45  4.04 x 10 -3  7.38 x 10 -2  
0.9 1.87 x 10 45  2.38 x 10 15  2.93 x 10 4  7.38 x 10 .2  

0.1 1500 3.63 x 10 45  2.44 x 10
.15 

 3.98 x 10 4  7.38 x 10 -2  
0.5 3.66 x 10 45  2.38 x 10 45  3.70 x 10 4  7.38 x 10 4  
0.9 3.44 x 10 45  2.38 x 10 45  4.40 X 10 -3  7.38 x 10 .2  
0.1 2000 4.19 x 10 45  2.44 x 10 45  2.79 x 10 -3  7.38 x 10 -2  
0.5 4.27 x 10 -15  2.38 x 10 -15  4.07 x 10 4  7.38 x 10 -2  
0.9 4.48 x 10 45  2.38 x 10 45  4.72 x 10 4  7.38 x 10 -2 
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Table (2) 
Comparison of the absolute errors (A.E.) between the considered methods RPA[1/1], RPA[0/1] and 

The classical methods PA(1/1], PA[0/1], for h=0.1, k=1 x 10
.5  and 8= 1 x 10

.3  for case I. 

x No. of 
Steps 

A. E. of The considered 
methods 

A. E. of The classical 
methods 

RPA[1/1] RPA[0/1] PA[1/1] PA[0/1] 
0.1 500 8.68 x 10 -15  1.35 x 10 -14  1.78 x 10 -3  4.03 x 10 -3  
0.5 9.82 x 10 66  1.37 x 10 44  2.81 x 10'3  5.60 x 10 -3  
0.9 1.12 x 10 '14  1.51 x 10 -14  3.91 x 10 -3  7.25 x 10 '3  
0.1 1000 1.21 x10'14  1.07 x 10 '1  4 03 x 10 -3  6.99 x 10 "3  
0.5 1.01 x 10 44  8.52 x 10 -16  2.73 x 10 -3  5.63 x 10 -3  
0.9 8.99 x 10 -15  7.97 x 10 -15  1.82 x 10 -3  4.37 x 10 -3  
0.1 1500 8.54 x 10 16-2.94 x 10 -13  1.69 x 10 '3  4.62 x 10 "3  
0.5 1.06 x 10 -14  4.19 x 10 -16  2.96 x 10 -3  5.67 x 10 '3  
0.9 1.03 x 10 64  4.12 x 10 -16  1.88 x 10 -3  6.66 x 10 "3  
0.1 2000 1.11 x 10 16  3.60 x 10 -16  3.81 x 10 -3  6.39 x 10 -3  
0.5 9.90 x 10 -16  1.60 x 10 46  2.84 x 10 -3  5.65 x 10 '3  
0.9 9.02 x 10 -16  2.51 x 10 46  1.88 x 10 -3  4.92 x 10 '3  

Table (3) 
Comparison of the absolute errors (A.E.) between the considered methods RPA[1/1], RPAI0/1] and 

= 	= 	.8  and 8= 1 10 The classical methods 
x No. 

of 
Steps 

 .-.,_ 	- 
A. E. of The considered methods A. E. of The classical 

methods 
Case I Case II PA[1/1] PA[0/1] 

RPAI1 /11 RPA[0/11 RPA[1/117  RPA[0/1] 
0.1 500 2.7 x 10 ' 4  4.2 x 10 -4  7.7 x 10 ' 7.7 x 10'7  7.7 x 10 7.5 x 10 6  
0.5 3.5 x 10 -14  4.6 x 10 -14  1.3 x 10 -6  1.3 x 10 6  1.3 x 10 1.2 x 10 6  
0.9 2.7 x 10 64  1.1 x 10 - 3  2.2 x 10 6  2.2 x 10 6  2.2 x 10 2.1 x 10 6  
0.1 1000 9.4 x 10 -14  6.5 x 10 -14  1.2 x 10 4  1.2 x 10 -6  1.2 x 10 1.2 x 10 4  
0.5 6.7 x 10 64  1.2 x 10 '13  2.4 x 10 -6  2.4 x 10 '6  2.4 x 10 2.4 x 10 -4  
0.9 2.4 x 10 '14  3.2 x 10 63  4.7 x 10 -6  4.7 x 10 -6  4.7 x 10 4.6 x 10 '4  
0.1 1500 2.3 x 10 64  7.4 x 10 64  1.5 x 10 -6  1.5 x 10 -6  1.5 x 10 6  1.5 x 10 6  
0.5 8.3 x 10 .14  2.0 x 10 -13  3.5 x 10 '6  3.5 x 10 -6  3.5 x 10 -4  3.4 x 10 '4  
0.9 1.3 x 10 63  5.9 x 10 63  7.4x 10 -6  7.4 x 10 -6  7.4x 10 -4  7.2 x 10 6  
0.1 2000 6.8 x 10 .14  6.9 x 10 64  1.6x106  1.6x 10 -6  1.6 x 10'4  1.6 x 10 -4  
0.5 8.1 x 10 -14  2.8 x 10 .13  4.5 x 10 6  4.5 x 10 -6  4.5 x 10 -4  4.3 x 10 6  
0.9 3.0 x 10 -13  9.2 x 10 13  1.0 x 10 6  1.0 x 10 -6  1.0 x 10 -3  1.0 x 10 -3  

Conclusion 

The numerical results presented in case I in each of tables (1), (2) and (3) 
shows that the absolute errors obtained by the considered methods is almost of 
order 10-10  of that absolute errors obtained by the classical methods. Also, the 
numerical results presented in case II in table (3) shows that the best absolute 
errors estimation for the classical methods is not better than 10 -5  , while for the 
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considered methods the maximum absolute errors estimation dose not exceed 
that 10 '5 . 
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