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1 Introduction

Fixed point theory is quite useful in the existence theory
of differential, integral, partial differential and functional
equations. This is a basic mathematical tool used in
obtaining the existence of solutions of problems in
mathematical economics theory, nonlinear analysis,
topology, control theory, dynamical system, functional
analysis, differential equations, global analysis and game
theory, etc. Moreover, it is a very important tool used to
find analytical and numerical solutions in nonlinear
problems which shown in mathematical methods, game
theory, biology, engineering and physics, see [1,2,3,4,5,
6].

In 2003, Kirk et al. [7] introduced fixed point results
under cyclic contractive conditions. Lakshmikantham and
Ćirić [8] established the concept of coupled fixed points
(CFPs) in the context of partially ordered metric spaces.
Also, they discussed the existence and uniqueness of the
solution of periodic boundary value problems. For more
details, see [9,10,11,12,13,14,15,16].

Huang and Zhang [17] presented the idea of cone
metric spaces by replacing real numbers with an ordered
Banach space and showed some fixed point results in
such spaces. Moreover, the theory of fuzzy sets improved
by Zadeh [18]. In particular, Kramosil and Michalek in
[19] presented a fuzzy metric space. Many authors have
investigated fixed point theorems and common fixed point

theorems in cone metric spaces, see [20,21,22,23,24,25,
26].

2 Preliminaries

Definition 1.[20] A subset ϒ ∈𭟋 describes a cone if:

(1)ϒ ̸= /0, closed and ϒ ̸= {ϑ} ;
(2)λ1,β1 ∈ (0,∞) and θ ,ρ ∈ϒ , then λ1θ +β1ρ ∈ϒ ;
(3)both θ −θ ∈ϒ , then θ = ϑ .

A partial ordering on a given cone ϒ ⊂ 𭟋 is given by
θ ≤ ρ ⇐⇒ ρ −θ ∈ϒ . θ < ρ symbolize θ ≤ ρ and θ ̸= ρ,
while θ ≪ ρ symbolize ρ −θ ∈ϒ 0, where ϒ 0 stands for
the interior of ϒ , it should be noted that all cones have
non-empty interior.

Here, 𭟋 is the real Banach space and ϑ represents a
zero element in 𭟋.

Definition 2.[25] A trio (Ω ,Θϖ ,∗) is called a fuzzy cone
metric space (FCMS) if a cone ϒ ∈ 𭟋, Ω is an arbitrary
set, ∗ is a continuous υ−norm, and Θϖ is a fuzzy set on
Ω 2 ×ϒ 0 so that the assertions below hold:

(1)Θϖ (θ ,ρ,υ)> ϑ and Θϖ (θ ,ρ,υ) = 1 iff θ = ρ;
(2)Θϖ (θ ,ρ,υ) =Θϖ (ρ,θ ,υ);
(3)Θϖ (θ ,ρ,υ)∗Θϖ (ρ,δ ,µ)≤Θϖ (θ ,δ ,υ +µ);
(4)Θϖ (θ ,ρ, ·) : ϒ 0 → [0,1] is continuous,
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for all θ ,ρ,δ ∈ Ω and υ ,µ ∈ϒ 0.

Definition 3.[17] Assume that (Ω ,Θϖ ,∗) is a FCMS, θ ∈
Ω and (θi) is a sequence in Ω . Then

(a)(θi) is called converge to θ if, for υ ≫ϑ and 0< u< 1,
∃i1 ∈ N so that Θϖ (θi,θ ,υ) > 1− u, ∀i > i1, and we
can write limi→∞ θi = θ or θi → θ as i → ∞;

(b)(θi) is called a Cauchy sequence if, for υ ≫ ϑ and 0 <
u < 1, ∃i1 ∈ N so that

Θϖ (θk,θi,υ)> 1−u, ∀k, i > i1;

(c)if every Cauchy sequence is convergent in Ω , then we
say a trio (Ω ,Θϖ ,∗) is complete;

(d)(θi) is known as a fuzzy cone contraction (FCC) if ∃β ∈
(0,1) so that(

1
Θϖ (θi,θi+1,ν)

−1
)

≤ β

(
1

Θϖ (θi−1,θi,υ)
−1
)
, ∀υ ≫ ϑ , i ≥ 1.

Definition 4.[26] Assume that (Ω ,Θϖ ,∗) is an FCMS, the
fuzzy cone metric Θϖ is triangular for all θ ,ρ,δ ∈Ω , υ ≫
ϑ if(

1
Θϖ (θ ,δ ,υ)

−1
)

≤
(

1
Θϖ (θ ,ρ,υ)

−1
)
+

(
1

Θϖ (ρ,δ ,υ)
−1
)
.

Lemma 1.[22] Assume that (Ω ,Θϖ ,∗) is an FCMS, θ ∈ D
and (θi) is a sequence in Ω , then

θi → θ ⇔ lim
i→∞

Θϖ (θi,θ ,υ) = 1, for υ ≫ ϑ .

Definition 5.Suppose that D and G are two non-empty
closed subsets of a given set Ω . A mapping Ξ : Ω 2 → Ω ,
so that Ξ(θ ,ρ) ∈ D if θ ∈ G, ρ ∈ D and Ξ(θ ,ρ) ∈ G if
θ ∈ D, ρ ∈ G is said to be a cyclic map w.r.t. D and G.

Definition 6.Suppose that Ω is a non-empty set. A pair
(θ ,ρ) ∈ Ω 2 is called a CFP of the mapping Ξ : Ω 2 → Ω

if Ξ(θ ,ρ) = θ , Ξ(ρ,δ ) = ρ and it is said to be a strong
CFP if θ = ρ, that is Ξ(θ ,θ) = θ .

Definition 7.Suppose that D and G are two non-empty
closed subsets of a FCMS (Ω ,Θϖ ,∗), where Θϖ is
triangular and the mapping Ξ : Ω 2 → Ω is known as a
cyclic coupled Kannan-type FCC w.r.t. D and G. Let Ξ

verifies(
1

Θϖ (Ξ(θ ,ρ),Ξ(q,s),υ)
−1
)

≤ σ

(
1

Θϖ (θ ,Ξ(θ ,ρ),υ) −1
+ 1

Θϖ (q,Ξ(q,s),υ) −1

)
,

where σ ∈ (0, 1
2 ), and θ ,s ∈ D and ρ,q ∈ G, for υ ≫

ϑ .

Theorem 1.Suppose that D and G are two non-empty
closed subsets of a complete fuzzy cone metric space
(CFCMS) (Ω ,Θϖ ,∗), where Θϖ is triangular and the
mapping Ξ : Ω 2 → Ω is a generalized cyclic coupled
Kannan-type contraction w.r.t. D and G and D∩G = /0.
Then, Ξ has a strong CFP in D∩G.

3 Main Results

Assume that Dand Gare two non-empty closed subsets of
a CFCMS (Ω ,Θϖ ,∗),where Θϖ is triangular and the
mapping Ξ : Ω 2 → Ω is a generalized cyclic coupled
fuzzy cone contractive-type condition w.r.t. Dand
G.Assume that Ξverifies(

1
Θϖ (Ξ(θ ,ρ),Ξ(q,s),υ)

−1
)

≤ γ

(
1

Θϖ (θ ,Ξ(θ ,ρ),υ) −1
+ 1

Θϖ (q,Ξ(q,s),υ) −1

)

+δ

(
1

Θϖ (θ ,Ξ(q,s),υ) −1
+ 1

Θϖ (q,Ξ(θ ,ρ),υ) −1

)
, (1)

where θ ,s ∈ D and ρ,q ∈ G, for υ ≫ ϑ , and γ,δ ∈
[0,∞). Our results generalize and improve Theorem 1.

Our first result in this part is as follows:

Theorem 2.Suppose that D and G are two non-empty
closed subsets of a CFCMS (Ω ,Θϖ ,∗), where Θϖ is
triangular and the mapping Ξ : Ω 2 → Ω is a cyclic w.r.t.
D and G. Suppose that Ξ satisfies (1) with (γ + δ ) < 1

2 .
Then D∩G = /0 and Ξ has a strong CFP in D∩G.

Proof.Define θ0 ∈ D and ρ0 ∈ G. Let (θi) and (ρi) be two
sequences given as follows:

θi+1 = Ξ(ρi,θi) and ρi+1 = Ξ(θi,ρi), (2)

for all i ≥ ϑ . Then (θi) ⊂ D and (ρi) ⊂ G since Ξ is a
cyclic mapping w.r.t. D and G. Let us denote

ξ =
γ +δ

1− (γ +δ )
.

Then ξ ∈ (0,1) for (γ +δ )< 1
2 . We prove that, for υ ≫ ϑ

and i ≥ ϑ ,(
1

Θϖ (ρi,θi+1,υ)
−1
)
+

(
1

Θϖ (θi,ρi+1,υ)
−1
)

≤ ξ
i
(

1
Θϖ (ρ0,θ1,υ)

−1+
1

Θϖ (θ0,ρ1,υ)
−1
)
. (3)

© 2022 Sohag University



Sohag J. Sci. 7, No. 3, 1-10 (2022) 3

Clearly, (3) holds for i = ϑ . Suppose that (3) holds for
i = k, υ ≫ ϑ , then from (1), we have(

1
Θϖ (ρk+1,θk+2,υ)

−1
)

=

(
1

Θϖ (Ξ(θk,ρk),Ξ(ρk+1,θk+1),υ)
−1
)

≤ γ

(
1

Θϖ (θk,Ξ(θk,ρk),υ)
−1

+ 1
Θϖ (ρk+1,Ξ(ρk+1,θk+1),υ)

−1

)

+δ

(
1

Θϖ (ρk+1,Ξ(θk,ρk),υ)
−1

+ 1
Θϖ (θk,Ξ(ρk+1,θk+1),υ)

−1

)
,

≤ γ

(
1

Θϖ (θk,ρk+1,υ)
−1

+ 1
Θϖ (ρk+1,θk+2,υ)

−1

)

+δ

(
1

Θϖ (ρk+1,ρk+1,υ)
−1

+ 1
Θϖ (θk,θk+2,υ)

−1

)

≤ γ

(
1

Θϖ (θk,ρk+1,υ)
−1

+ 1
Θϖ (ρk+1,θk+2,υ)

−1

)

+δ

(
1

Θϖ (θk,ρk+1,υ)
−1

+ 1
Θϖ (ρk+1,θk+2,υ)

−1

)
,

which implies that(
1

Θϖ (ρk+1,θk+2,ν)
−1
)
≤ ξ

(
1

Θϖ (θk,ρk+1,ν)
−1
)
,

for υ ≫ ϑ . Similarly, based on (1), one can write(
1

Θϖ (θk+1,ρk+2,υ)
−1
)
≤ ξ

(
1

Θϖ (ρk,θk+1,υ)
−1
)
,

for υ ≫ ϑ . Thus, by mathematical induction inequality
(3) is satisfied. Based on (3) with i = k, we get(

1
Θϖ (ρk+1,θk+2,υ)

−1
)
+

(
1

Θϖ (θk+1,ρk+2,υ)
−1
)

≤ ξ

 (
1

Θϖ (ρk,θk+1,υ)
−1
)

+
(

1
Θϖ (θk,ρk+1,υ)

−1
)

≤ ·· · ≤ ξ
k+1

 (
1

Θϖ (ρ0,θ1,υ)
−1
)

+
(

1
Θϖ (θ0,ρ1,υ)

−1
) .

Hence (3) is fulfilled for i = k+1. Therefore (3) holds, for
all i ≥ ϑ . Also, by (1) for i ≥ ϑ , we can write(

1
Θϖ (ρi,ρi+1,υ)

−1
)
+

(
1

Θϖ (θi,θi+1,υ)
−1
)

≤
(

1
Θϖ (ρi,θi+1,υ)

−1
)
+

(
1

Θϖ (θi+1,ρi+1,υ)
−1
)

+

(
1

Θϖ (θi,ρi+1,υ)
−1
)
+

(
1

Θϖ (ρi+1,θi+1,υ)
−1
)

=

(
1

Θϖ (ρi,θi+1,υ)
−1
)
+

(
1

Θϖ (θi,ρi+1,υ)
−1
)

+2
(

1
Θϖ (Ξ(θi,ρi),Ξ(ρi,θi),υ)

−1
)
,

≤
(

1
Θϖ (ρi,θi+1,υ)

−1
)
+

(
1

Θϖ (θi,ρi+1,υ)
−1
)

+2γ

 (
1

Θϖ (θi,ρi+1,υ)
−1
)

+
(

1
Θϖ (ρi,θi+1,υ)

−1
)

+2δ

 (
1

Θϖ (ρi,ρi+1,υ)
−1
)

+
(

1
Θϖ (θi,θi+1,υ)

−1
) ,

then, we get(
1

Θϖ (θi,θi+1,υ)
−1
)
+

(
1

Θϖ (ρi,ρi+1,υ)
−1
)

≤ (1+2γ)

(
1

Θϖ (θi,ρi+1,υ)
−1

+ 1
Θϖ (ρi,θi+1,υ)

−1

)

+2δ

(
1

Θϖ (θi,θi+1,υ)
−1

+ 1
Θϖ (ρi,ρi+1,υ)

−1

)
.

This together with (3) satisfies that(
1

Θϖ (ρi,ρi+1,υ)
−1
)
+

(
1

Θϖ (θi,θi+1,υ)
−1
)

≤ (1+2γ)

(1−2δ )
ξ

i

 (
1

Θϖ (ρ0,θ1,υ)
−1
)

+
(

1
Θϖ (θ0,ρ1,υ)

−1
) , (4)

for υ ≫ ϑ . Thus, for i, j ≥ ϑ , without loss of generally,
let i ≤ j,(

1
Θϖ (ρi,ρ j,υ)

−1
)

≤
j−1

∑
k=i

(
1

Θϖ (ρi,ρi+1,υ)
−1
)

≤
j−1

∑
k=i

(1+2γ)

(1−2δ )
ξ

i

 (
1

Θϖ (ρ0,θ1,υ)
−1
)

+
(

1
Θϖ (θ0,ρ1,υ)

−1
)

=
(1+2γ)

(1−2δ )(1−ξ )
ξ

i

 (
1

Θϖ (ρ0,θ1,υ)
−1
)

+
(

1
Θϖ (θ0,ρ1,υ)

−1
)

→ ϑ , as i → ∞.

This proves that (ρi) is a Cauchy sequence and convergent
in Ω . Because D and G are non-empty closed subsets of
Ω , we can write

ρi → ρ ∈ G, as i → ∞. (5)

Analogously,

θi → θ ∈ D, as i → ∞, (6)
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Then, from (5) and (6), one sees that

lim
i→∞

Θϖ (ρi,θi,υ) = Θϖ (ρ,θ ,υ), and

lim
i→∞

Θϖ (θi,ρi,υ) = Θϖ (θ ,ρ,υ).

Since Θϖ is a traingular, by (3) and (4), we get(
1

Θϖ (ρi,θi,ν)
−1
)

≤
(

1
Θϖ (ρi,ρi+1,υ)

−1
)
+

(
1

Θϖ (ρi+1,θi,υ)
−1
)

≤
(
(1+2γ)

(1−2δ )
+1
)

ξ
i

 (
1

Θϖ (ρ0,θ1,υ)
−1
)

+
(

1
Θϖ (θ0,ρ1,υ)

−1
)

→ ϑ , as i → ∞.

Thus, Θϖ (ρ,θ ,υ) = 1. Similarly, We conclude that
Θϖ (θ ,ρ,υ) = 1 for υ ≫ ϑ . This conclude that
θ = ρ ∈ D∩G.

Now, we shall prove that (ρ,θ) is a strong CFP of Ξ .
According to the Θϖ triangularly property, for υ ≫ ϑ .

By (1), (5) and (6), one can obtain(
1

Θϖ (ρ,Ξ(ρ,θ),υ)
−1
)

≤
(

1
Θϖ (ρ,ρi+1,υ)

−1
)

+

(
1

Θϖ (ρi+1,Ξ(ρ,θ),υ)
−1
)

=

(
1

Θϖ (ρ,ρi+1,υ)
−1
)

+

(
1

Θϖ (Ξ(θi,ρi),Ξ(ρ,θ),υ)
−1
)
,

≤
(

1
Θϖ (ρ,ρi+1,υ)

−1
)

+γ

(
1

Θϖ (θi,Ξ(θi,ρi),υ)
−1

+ 1
Θϖ (ρ,Ξ(ρ,θ),υ) −1

)

+δ

(
1

Θϖ (ρ,Ξ(θi,ρi),υ)
−1

+ 1
Θϖ (θi,Ξ(ρ,θ),υ) −1

)
,

≤ (1+δ )

(
1

Θϖ (ρ,ρi+1,υ)
−1
)

+γ

((
1

Θϖ (θi,ρi+1,υ)
−1

+ 1
Θϖ (ρ,Ξ(ρ,θ),υ) −1

))

+δ

(
1

Θϖ (ρ,Ξ(ρ,θ),υ)
−1
)

→ (γ +δ )

(
1

Θϖ (ρ,Ξ(ρ,θ),υ)
−1
)
, (7)

as i → ∞. Hence, (??) leads to Θϖ (ρ,Ξ(ρ,θ),υ) = 1,
since (γ + δ ) < 1

2 , then Ξ(ρ,θ) = ρ = θ . Therefore
(ρ,θ) is a strong CFP of Ξ .

The proof of the following corollaries follows
immediately from Theorem 2.

Corollary 1.Suppose that D and G are two non-empty
closed subsets of a CFCMS (Ω ,Θϖ ,∗), where Θϖ is
triangular and the mapping Ξ : Ω 3 → Ω is a cyclic
coupled Kannan-type FCC w.r.t. D and G. Let Ξ verifies(

1
Θϖ (Ξ(θ ,ρ),Ξ(q,s),υ)

−1
)

≤ γ

(
1

Θϖ (θ ,Ξ(θ ,ρ),υ) −1
+ 1

Θϖ (q,Ξ(q,s),υ) −1

)
,

where θ ,s ∈ D and ρ,q ∈ G, for υ ≫ ϑ ,and γ ∈ (0, 1
2 ).

Then D∩G = /0 and Ξ has a strong CFP in D∩G.

Corollary 2.Suppose that D and G are two non-empty
closed subsets of a CFCMS (Ω ,Θϖ ,∗), where Θϖ is
triangular and the mapping Ξ : Ω 3 → Ω is a cyclic
coupled Chatterjea-type FCC w.r.t. D and G. Let Ξ

verifies(
1

Θϖ (Ξ(θ ,ρ),Ξ(q,s),υ)
−1
)

≤ δ

(
1

Θϖ (θ ,Ξ(q,s),υ) −1
+ 1

Θϖ (q,Ξ(θ ,ρ),υ) −1

)
,

where θ ,s ∈ D and ρ,q ∈ G, for υ ≫ ϑ ,and δ ∈ (0, 1
2 ).

Then D∩G = /0 and Ξ has a strong CFP in D∩G.

To support Theorem 2, we present the following
example:

Example 1.Suppose that Ω = R is a continuous υ−norm
and Ξ : Ω 2 → Ω is described by

Θϖ (θ ,ρ,υ) =
υ

υ +ϖ(θ ,ρ)
,

where ϖ(θ ,ρ) = |θ −ρ| is a usual metric, for all θ ,ρ ∈ Ω

and υ > ϑ . Then easily one can proved that (Ω ,Θϖ ,∗) is
a CFCMS. Suppose that D = [−1,0] and G = [0,1] are two
non-empty closed subsets of Ω with ϖ(D,G) = 0. Define
a continuous mapping Ξ : Ω 2 → Ω by Ξ(θ ,ρ) = −4θ

7 .
Then, the mapping Ξ is a cyclic mapping w.r.t. D and G
for all θ ,s ∈ D and ρ,q ∈ G. A mapping Ω is not a cyclic
coupled Kannan-type contraction, since(

1
Θϖ (Ξ(θ ,ρ),Ξ(q,s),υ)

−1
)

=
1
υ

ϖ(Ξ(θ ,ρ),Ξ(q,s))

=
1
υ

4 |θ −q|
7

,

where σ = 4
7 /∈ (0, 1

2 ), therefore Theorem 1 is not satisfied.
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Now, for υ ≫ ϑ , we get(
1

Θϖ (Ξ(θ ,ρ),Ξ(q,s),υ)
−1
)

=
1
υ

ϖ(Ξ(θ ,ρ),Ξ(q,s))

=
1
υ

4 |θ −q|
7

≤ 1
υ

4 |θ +q|
7

≤ 1
υ

5 |θ +q|
7

=
1
υ

(
4 |θ +q|

7
+

|θ +q|
7

)
=

4
11υ

∣∣∣∣11θ +11q
7

∣∣∣∣+ 1
11υ

∣∣∣∣11θ +11q
7

∣∣∣∣
=

1
υ

 4
11

(∣∣∣θ + 4θ

7 +q+ 4q
7

∣∣∣)
+ 1

11

(∣∣∣θ + 4q
7 +q+ 4θ

7

∣∣∣)


≤ 1
υ

 4
11

(∣∣θ + 4θ

7

∣∣+ ∣∣∣q+ 4q
7

∣∣∣)
+ 1

11

(∣∣∣θ + 4q
7

∣∣∣+ ∣∣q+ 4θ

7

∣∣)


=
4

11

(
1

Θϖ (θ ,Ξ(θ ,ρ),υ) −1
+ 1

Θϖ (q,Ξ(q,s),υ) −1

)

+
1

11

(
1

Θϖ (θ ,Ξ(q,s),υ) −1
+ 1

Θϖ (q,Ξ(θ ,ρ),υ) −1

)
.

Hence, all requirements of Theorem 2 are satisfied with
γ = 4

11 and δ = 1
11 for υ ≫ ϑ . Thus Ξ has a strong CFP,

i.e., Ξ(0,0) = 0 ∈ R.

The second result of this part is as follows:

Theorem 3.Suppose that D and G are two non-empty
closed subsets of a CFCMS (Ω ,Θϖ ,∗), where Θϖ is
triangular and the mapping Ξ : Ω 2 → Ω is a cyclic
coupled contractive-type mapping w.r.t. D and G verifying

1
Θϖ (Ξ(θ ,ρ),Ξ(q,s),υ)

−1

≤ σ


1

min


Θϖ (θ ,Ξ(θ ,ρ),υ),
Θϖ (q,Ξ(q,s),υ),
Θϖ (q,Ξ(θ ,ρ),υ),
Θϖ (θ ,Ξ(q,s),υ


−1


, (8)

where θ ,s ∈ D and ρ,q ∈ G, for υ ≫ ϑ , and σ ∈ [0,1).
Then D∩G = /0 and Ξ has a strong CFP in D∩G.

Proof.Define θ0 ∈ D and ρ0 ∈ G Assume that (θi) ∈ G
and (ρi)⊂ G are two sequences defined by (2), since Ω is
a cyclic mapping w.r.t. D and G.

Now, we shall prove that (ρi) is a Cauchy sequence.
For i ≥ ϑ ,(

1
Θϖ (ρk+1,θk+2,υ)

−1
)
+

(
1

Θϖ (θk+1,ρk+2,υ)
−1
)

≤ ξ
k+1

(
1

Θϖ (ρ0,θ1,υ)
−1

+ 1
Θϖ (θ0,ρ1,υ)

−1

)
,

where ξ = σ

1−σ
< 1. First, we shall prove that(

1
Θϖ (ρi+1,θi+2,υ)

−1
)

≤ ξ

(
1

Θϖ (θi,ρi+1,υ)
−1
)
, (9)

where ξ = σ

1−σ
< 1. Then, from (8), one can write(

1
Θϖ (ρi+1,θi+2,υ)

−1
)

=

(
1

Θϖ (Ξ(θi,ρi),Ξ(ρi+1,θi+1),υ)
−1
)

≤ σ


1

min


Θϖ (θi,Ξ(θi,ρi),υ),

Θϖ (ρi+1,Ξ(ρi+1,θi+1),υ),
Θϖ (θi,Ξ(ρi+1,θi+1),υ),

Θϖ (ρi+1,Ξ(θi,ρi),υ)


−1



= σ


1

min

 Θϖ (θi,ρi+1,υ),
Θϖ (ρi+1,θi+2,υ),

Θϖ (θi,θi+2,υ)


−1

 . (10)

Now, we have three cases:
(i) If Θϖ (θi,ρi+1,υ) is minimum, then(

1
Θϖ (θi,ρi+1,υ)

−1
)

is the maximum in (10), we have(
1

Θϖ (ρi+1,θi+2,υ)
−1
)

≤ σ

(
1

Θϖ (θi,ρi+1,υ)
−1
)

≤ σ

1−σ

(
1

Θϖ (θi,ρi+1,υ)
−1
)
.

It satisfies (9), as σ < σ

1−σ
, where σ ∈ [0,1).

(ii) If Θϖ (ρi+1,θi+2,υ) is minimum, then(
1

Θϖ (ρi+1,θi+2,υ)
−1
)

is the maximum in (10), so, we can
write(

1
Θϖ (ρi+1,θi+2,υ)

−1
)
≤ σ

(
1

Θϖ (ρi+1,θi+2,υ)
−1
)
,
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which is impossible.
(iii) If Θϖ (θi,θi+2,υ) is minimum, then(

1
Θϖ (θi,θi+2,υ)

−1
)

is the maximum in (10) so that(
1

Θϖ (ρi+1,θi+2,υ)
−1
)

≤
(

1
Θϖ (θi,θi+2,υ)

−1
)

≤
(

1
Θϖ (θi,ρi+1,υ)

−1
)
+

(
1

Θϖ (ρi+1,θi+2,υ)
−1
)

≤ σ

1−σ

(
1

Θϖ (θi,ρi+1,υ)
−1
)
.

It follows that (9) fulfilled. Thus from all cases, we get that
(9) is fulfilled.

Similarly, we can prove that(
1

Θϖ (θi+1,ρi+2,υ)
−1
)

≤ ξ

(
1

Θϖ (ρi,θi+1,υ)
−1
)
, (11)

where ξ = σ

1−σ
< 1. Then, from (8), one can write(

1
Θϖ (θi+1,ρi+2,υ)

−1
)

=

(
1

Θϖ (Ξ(ρi,θi),Ξ(θi+1,ρi+1),υ)
−1
)

≤ σ


1

min


Θϖ (ρi,Ξ(ρi,θi),υ),

Θϖ (θi+1,Ξ(θi+1,ρi+1),υ),
Θϖ (ρi,Ξ(θi+1,ρi+1),υ),

Θϖ (θi+1,Ξ(ρi,θi),υ)


−1



= σ


1

min

 Θϖ (ρi,θi+1,υ),
Θϖ (θi+1,ρi+2,υ),

Θϖ (ρi,ρi+2,υ)


−1

 . (12)

Hence, again we have three cases:
(i) If Θϖ (ρi,θi+1,υ) is minimum, then(

1
Θϖ (ρi,θi+1,υ)

−1
)

is the maximum in (12), we get(
1

Θϖ (θi+1,ρi+2,υ)
−1
)

≤ σ

(
1

Θϖ (ρi,θi+1,υ)
−1
)

≤ σ

1−σ

(
1

Θϖ (ρi,θi+1,υ)
−1
)
.

It satisfies (11), as σ < σ

1−σ
, where σ ∈ [0,1).

(ii) If Θϖ (θi+1,ρi+2,υ) is minimum, then(
1

Θϖ (θi+1,ρi+2,υ)
−1
)

is the maximum in (12), we get(
1

Θϖ (θi+1,ρi+2,υ)
−1
)

≤ σ

(
1

Θϖ (θi+1,ρi+2,υ)
−1
)
,

which is impossible.
(iii) If Θϖ (ρi,ρi+2,υ) is minimum, then(

1
Θϖ (ρi,ρi+2,υ)

−1
)

is the maximum in (12), we get(
1

Θϖ (θi+1,ρi+2,υ)
−1
)

≤
(

1
Θϖ (ρi,ρi+2,υ)

−1
)

≤ σ

(
1

Θϖ (ρi,θi+1,υ)
−1

+ 1
Θϖ (θi+1,ρi+2,υ)

−1

)

≤ σ

1−σ

(
1

Θϖ (ρi,θi+1,υ)
−1
)
.

It follows that (11) justified. Thus, from all cases, we get
that (11) is fulfilled.

Now, by adding (9) and (11), we can write(
1

Θϖ (ρi+1,θi+2,υ)
−1
)
+

(
1

Θϖ (θi+1,ρi+2,υ)
−1
)

≤ ξ

 (
1

Θϖ (θi,ρi+1,υ)
−1
)

+
(

1
Θϖ (ρi,θi+1,υ)

−1
) . (13)

Now, again by (8) and similar as above, we obtain(
1

Θϖ (θi,ρi+1,υ)
−1
)

≤ ξ

(
1

Θϖ (ρi−1,θi,υ)
−1
)
, (14)

(
1

Θϖ (ρi,θi+1,υ)
−1
)

≤ ξ

(
1

Θϖ (θi−1,ρi,υ)
−1
)
, (15)

where ξ = σ

1−σ
< 1. Hence, again by adding (14) and (15)

and then putting in (13), we get(
1

Θϖ (ρi+1,θi+2,υ)
−1
)
+

(
1

Θϖ (θi+1,ρi+2,υ)
−1
)

≤ ξ
2

 (
1

Θϖ (ρi−1,θi,υ)
−1
)

+
(

1
Θϖ (θi−1,ρi,υ)

−1
) ,
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by continuing, we get(
1

Θϖ (ρi+1,θi+2,υ)
−1
)
+

(
1

Θϖ (θi+1,ρi+2,υ)
−1
)

≤ ξ
i+1

(
1

Θϖ (ρ0,θ1,υ)
−1

+ 1
Θϖ (θ0,ρ1,υ)

−1

)
, (16)

for i ≥ ϑ . Now, for integer k, we get(
1

Θϖ (ρk+1,θk+1,υ)
−1
)

=

(
1

Θϖ (Ξ(θk,ρk),Ξ(ρk,θk),υ)
−1
)

≤ σ


1

min


Θϖ (θk,Ξ(θk,ρk),υ),
Θϖ (ρk,Ξ(ρk,θk),υ),
Θϖ (θk,Ξ(ρk,θk),υ),
Θϖ (ρk,Ξ(θk,ρk),υ)


−1



= σ


1

min


Θϖ (θk,ρk+1,υ),
Θϖ (ρk,θk+1,υ),
Θϖ (θk,θk+1,υ),
Θϖ (ρk,ρk+1,υ)


−1


. (17)

Hence, we the cases below:
(a) If Θϖ (θk,ρk+1,υ) is minimum, then(

1
Θϖ (θk,ρk+1,υ)

−1
)

is the maximum in (17), we get(
1

Θϖ (ρk+1,θk+1,υ)
−1
)

≤ σ

(
1

Θϖ (θk,ρk+1,υ)
−1
)

≤ ξ

(
1

Θϖ (θk,ρk+1,υ)
−1
)
,

where σ < ξ = σ

1−σ
< 1, since σ ∈ [0,1).

(b) If Θϖ (ρk,θk+1,υ) is minimum, then(
1

Θϖ (ρk,θk+1,υ)
−1
)

is the maximum in (17), we get(
1

Θϖ (ρk+1,θk+1,υ)
−1
)

≤ σ

(
1

Θϖ (ρk,θk+1,υ)
−1
)

≤ ξ

(
1

Θϖ (ρk,θk+1,υ)
−1
)
,

where σ < ξ = σ

1−σ
< 1, since σ ∈ [0,1).

(c) If Θϖ (ρk,ρk+1,υ) is minimum, then(
1

Θϖ (ρk,ρk+1,υ)
−1
)

is the maximum in (17), we get(
1

Θϖ (ρk+1,θk+1,υ)
−1
)

≤ σ

(
1

Θϖ (ρk,ρk+1,υ)
−1
)

≤ σ

(
1

Θϖ (ρk,θk+1,υ)
−1

+ 1
Θϖ (θk+1,ρk+1,υ)

−1

)

≤ ξ

(
1

Θϖ (ρk,θk+1,υ)
−1
)
,

where σ < ξ = σ

1−σ
< 1, since σ ∈ [0,1).

(d) If Θϖ (θk,θk+1,υ) is minimum, then(
1

Θϖ (θk,θk+1,υ)
−1
)

is the maximum in (17), we get(
1

Θϖ (ρk+1,θk+1,υ)
−1
)

≤ σ

(
1

Θϖ (θk,ρk+1,υ)
−1

+ 1
Θϖ (ρk+1,θk+1,υ)

−1

)

≤ ξ

(
1

Θϖ (θk,ρk+1,υ)
−1
)
,

where σ < ξ = σ

1−σ
< 1, since σ ∈ [0,1).

Then, from (a) and (d), we can write(
1

Θϖ (ρk+1,θk+1,υ)
−1
)

≤ ξ

(
1

Θϖ (θk,ρk+1,υ)
−1
)
, (18)

where ξ = σ

1−σ
< 1. And from (b) and (c), we can write(

1
Θϖ (ρk+1,θk+1,υ)

−1
)

≤ ξ

(
1

Θϖ (ρk,θk+1,υ)
−1
)
, (19)

where ξ = σ

1−σ
< 1. Now, by adding (18) and (19), we can

write(
1

Θϖ (ρk+1,θk+1,υ)
−1
)

≤ ψ

(
1

Θϖ (ρk,θk+1,υ)
−1+

1
Θϖ (θk,ρk+1,υ)

−1
)
,

where ψ = ξ

2 . Hence, in view of (16), one can get(
1

Θϖ (ρk+1,θk+1,υ)
−1
)

≤ ψξ
k

(
1

Θϖ (ρ0,θ1,υ)
−1

+ 1
Θϖ (θ0,ρ1,υ)

−1

)
, (20)
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for k ≥ 0. By triangular inequality (16) and (20) for i ≥ ϑ ,
we get(

1
Θϖ (ρi,ρi+1,υ)

−1+
1

Θϖ (θi,θi+1,υ)
−1
)

≤
(

1
Θϖ (ρi,θi,υ)

−1+
1

Θϖ (θi,ρi+1,υ)
−1
)

+

(
1

Θϖ (θi,ρi,υ)
−1+

1
Θϖ (ρi,θi+1,υ)

−1
)

=

(
1

Θϖ (ρi,θi,υ)
−1+

1
Θϖ (θi,ρi,υ)

−1
)

+

(
1

Θϖ (θi,ρi+1,υ)
−1+

1
Θϖ (ρi,θi+1,υ)

−1
)

≤ 2ψξ
i−1
(

1
Θϖ (ρ0,θ1,υ)

−1+
1

Θϖ (θ0,ρ1,υ)
−1
)

+ξ
i
(

1
Θϖ (ρ0,θ1,υ)

−1+
1

Θϖ (θ0,ρ1,υ)
−1
)

=

(
1+

2ψ

ξ

)
ξ

i

(
1

Θϖ (ρ0,θ1,υ)
−1

+ 1
Θϖ (θ0,ρ1,υ)

−1

)
. (21)

Now, for i, j ≥ ϑ and j > i, we get(
1

Θϖ (ρi,ρ j,υ)
−1
)

≤
j−1

∑
k=i

(
1

Θϖ (ρk,ρk+1,υ)
−1
)

≤
j−1

∑
k=i

(
1+

2ψ

ξ

)
ξ

k

 (
1

Θϖ (ρ0,θ1,υ)
−1
)

+
(

1
Θϖ (θ0,ρ1,υ)

−1
)

=

(
1+

2ψ

ξ

)
ξ k

1−ξ

 (
1

Θϖ (ρ0,θ1,υ)
−1
)

+
(

1
Θϖ (θ0,ρ1,υ)

−1
)

→ ϑ , as i → ∞.

Hence, we proved that (ρi) is a Cauchy sequence and it
convergent in Ω .

Where D and G are a closed subsets of Ω , so that

ρi → ρ ∈ G, as i → ∞. (22)

Analogously,

θi → θ ∈ D, as i → ∞. (23)

Therefore, from (22) and (23), we get

lim
i→∞

Θϖ (ρi,θi,υ) = Θϖ (ρ,θ ,υ),and

lim
i→∞

Θϖ (θi,ρi,υ) = Θϖ (θ ,ρ,υ).

By triangular inequality (16) and (21), we get(
1

Θϖ (ρi,θi,υ)
−1
)

≤
(

1
Θϖ (ρi,ρi+1,υ)

−1
)
+

(
1

Θϖ (ρi+1,θi,υ)
−1
)

≤
(

ξ +2ψ

ξ
+1
)

ξ
k

(
1

Θϖ (ρ0,θ1,υ)
−1

+ 1
Θϖ (θ0,ρ1,υ)

−1

)
→ ϑ , as i → ∞.

Hence, Θϖ (ρ,θ ,υ) = 1, which leads to Ξ(ρ,θ) = ρ =
θ ∈ D∩G.

Now, we can prove that Ξ has a strong CFP in D∩G,(
1

Θϖ (ρ,Ξ(ρ,θ),υ)
−1
)

≤

(
1

Θϖ (ρ,ρi+1,υ)
−1

+ 1
Θϖ (ρi+1,Ξ(ρ,θ),υ) −1

)
(24)

Therefore, by the view of (8), (22) and (23), one can write

1
Θϖ (Ξ(θi,ρi),Ξ(ρ,θ),υ)

−1

≤ σ


1

min


Θϖ (θi,Ξ(θi,ρi),υ),
Θϖ (ρ,Ξ(ρ,θ),υ),
Θϖ (ρ,Ξ(θi,ρi),υ),
Θϖ (θi,Ξ(ρ,θ),υ)


−1



= σ


1

min


Θϖ (θi,ρi+1),υ),

Θϖ (ρ,Ξ(ρ,θ),υ),
Θϖ (ρ,ρi+1),υ),

Θϖ (θi,Ξ(ρ,θ),υ)


−1


→ σ

(
1

Θϖ (ρ,Ξ(ρ,θ),υ)
−1
)
, as i → ∞. (25)

Hence, from (24), we have(
1

Θϖ (ρ,Ξ(ρ,θ),υ)
−1
)

≤
(

1
Θϖ (ρ,ρi+1,υ)

−1+
1

Θϖ (ρi+1,Ξ(ρ,θ),υ)
−1
)

→ σ

(
1

Θϖ (ρ,Ξ(ρ,θ),υ)
−1
)
, as i → ∞,

which verifies that Θϖ (ρ,θ ,υ) = 1, where 1 − σ ̸= ϑ .
Thus, Ξ(ρ,θ) = ρ = θ , which implies that Ξ(ρ,θ) is a
strong CFP of Ξ .
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Corollary 3.Suppose that D and G are two non-empty
closed subsets of a CFCMS (Ω ,Θϖ ,∗), where Θϖ is
traingular and the mapping Ξ : Ω 2 → Ω is a cyclic
coupled contractive-type mapping w.r.t. D and G verifying

1
Θϖ (Ξ(θ ,ρ),Ξ(q,s),υ)

−1

≤ σ

 1

min
{

Θϖ (θ ,Ξ(θ ,ρ),υ),
Θϖ (q,Ξ(q,s),υ)

} −1

 ,

where θ ,s ∈ D and ρ,q ∈ G, for υ ≫ ϑ , and σ ∈ [0,1).
Then D∩G = /0 and Ξ has a strong CFP in D∩G.

The following example support Theorem 3:

Example 2.Assume that all requirements of Example 1
hold. Define the mapping Ξ : Ω 2 → Ω by Ξ(θ ,ρ) = −2θ

5 .
Then, the mapping Ξ is a cyclic mapping w.r.t. D and G
for all θ ,s ∈ D and ρ,q ∈ G. Now, from for υ ≫ ϑ , we
have

1
Θϖ (Ξ(θ ,ρ),Ξ(q,s),υ)

−1

=
1
υ

ϖ(Ξ(θ ,ρ),Ξ(q,s))

=
1
υ

2 |θ −q|
5

≤ 1
υ

14 |θ −q|
25

≤ 1
υ
· 2

5
· 7

5

(
max

{
θ ,q,

5θ +2q
7

,
5q+θ

7

})
=

2
5υ

(
max

{
7θ

5
,

7q
5
,

5θ +2q
5

,
5q+θ

5

})

≤ 2
5υ

max


∣∣θ + 2θ

5

∣∣ , ∣∣∣q+ 2q
5

∣∣∣ ,∣∣∣θ + 2q
5

∣∣∣ , ∣∣q+ 2θ

5

∣∣



=
2
5


1

min


Θϖ (θ ,Ξ(θ ,ρ),υ),
Θϖ (q,Ξ(q,s),υ),
Θϖ (q,Ξ(θ ,ρ),υ),
Θϖ (θ ,Ξ(q,s),υ


−1


.

Hence, all requirements of Theorem 3 are justified with
σ = 2

5 for υ ≫ ϑ . Then Ξ has a strong CFP, i.e. Ξ(0,0) =
0 ∈ R.
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[6] Guran, L.; Mitrović, Z. D.; Reddy, G. S. M.; Belhenniche,
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