DENSITY STUDIES ON Stevia rebaudiana (BERTONI) IN EGYPT

Besheit, S.Y.; A.M. Nassar; A.I. Allam and S.M. Allam
Sugar Crops Research Institute, Agric. Research Center, Giza, Egypt

Abstract

The fresh leaf yield and quality i.e. total soluble carbohydr- ates and stevioside (the main sweetening agent) of stevia under six plant densities of 24000 to 48000 plants/fed. resulted from the treatment combinations of three inter-row spacing (58.3, 70.0 and 87.5 cm) and two intra-row spacing (15 and 20 cm) using two seed types (seedlings resulted from tissue culture and root rizomes) of the variety Spanti from Spain imported were evaluated in Giza Experimental Station, Agricultural Research Center during the period of September 1998 to July 2000, where a ten successive cuts were carried out. Results revealed that:

For seedlings, plant population density of 40000 plants/fed ($70 \times 15 \mathrm{~cm}$) gave the highest leaf yield (4.304 tons/fed.). However, for rizomes planting, plant population of 36000 , 40000 and 48000 plants/fed. ($58.3 \times 20 \mathrm{~cm}, 70 \times 15 \mathrm{~cm}$ and $58.3 \times 20 \mathrm{~cm}$), respectively, yielded the highest leaf yield ($7.158,7.226$ and 7.793 tons/fed.).

For both seedling types, increasing or decreasing the population density beyond that induced significant reduction in fresh leaf yield.

Total soluble carbohydrate and stevioside content in the leaves were not significantly affected by either inter or intra row spacing or their interaction with cutting times.

Fresh Leaf yield was increased gradually and significantly in successive cuts for both seed types and this increased was more pronounced in summer cuts and in the latest cuts. On the other hand, cutting time insignificantly affected leaf content of total soluble carbohydrate and stevioside.

INTRODUCTION

There is a great deal of interest in naturally occurring substitutes for potential use in diabetic and diebetic foods, beverages and medicines. Several commercially available high potency sweetness, with hundreds or even thousands the sweetening intensity of sucrose are obtained from plants and are used in several countries. Perhaps the best-known compounds of this type are the sweet diterpene glycosides from Stevia rebaudiana such as Stevioside. The Stevia herb in its natural form is approximately 10 to 15 times sweeter than common table sugar. Extract of Stevia in the form of Stevioside can range anywhere from 100 to 300 times sweeter than table sugar. (Richard, 1996; Kinghorn and Kim 1997 and Duseinov and Yu, 1999). Dzyuba (1998) added that the sweetener from stevia leaves has a good taste and is suitable for use in food products.

Therefore, studying the effect of variations in inter and intra-row spacing on stevia productivity for the first times under Egyptian conditions proved to be of vital importance. However, the review of the literature indicates that the highest yieldof stevia leaves was obtained at $70 \times 25 \mathrm{~cm}$ and the lowest one at $50 \times 45 \mathrm{~cm}$ spacing (Gvasaliya et al., 1990). Number of plants per unit area (plant density was discussed in Brazil, by Donalisio et al

Besheit, S.Y. et al.
(1982), In China, by Shu and Wang (1988), in Indonesia by Basuki (1990), in Georgia by Gvasaliya et al. (1990) and in Uzbekistan by Duseinov and Yu (1999).

Harvest of successive cuts also received attentions of some of above mentioned envestigators.

Because of the lack of information on the optimum plant population for maximum stevia production under Egyptian condition. Therefore, this paper will deal with the stevia plant density per unit area with cutting dates and their arrangements (inter and intra-row spacing).

MATERIALS AND METHODS

Two field trials were carried out in Giza Experimental Station, Agricultural Research Center during the period from Sept. 1998 till July 2000, using two seed types of stevia variety named Spanti imported from Spain, the first seed type was seedlings aged two months produced from tissue culture technique and the other one was root rizomes aged two years. Seedlings and rizomes were grown in all possible combinations of three inter- row spacing of $58.3,70.0$ and 87.5 cm (12, 10 and 8 rows $/ 2$ Kassabs (7 m) and two intra- row spacing i.e. 15 and 20 cm .

The 6 treatment combinations for each seed types were arranged in a randomized complete block design with four replications. The 3×2 treatment combinations gave 6 plant densities of 5.71-11.13 plants $/ \mathrm{m}^{2}$ (24000-48000 plants/fed.). Seedlings and rizomes were transplanted in the permanent experiment site on June 5, 1998 and ten successive cutting dates treatments were taken on the following dates:

1-Sept. 5, 1998.	2-Dec. 5, 1998.	3-March5, 1999.
4-May 5, 1999.	5-July 5, 1999.	6-Sept. 5, 1999.
7-Dec. 5, 1999.	8-March 5, 2000.	9-May 5, 2000.

Plot dimension was $7 \times 3.5 \mathrm{~m}\left(24.5 \mathrm{~m}^{2}\right)$. Nitrogen fertilizer (30kg $\mathrm{N} /$ fed.) was added in the form of Urea ($46.5 \% \mathrm{~N}$) in two equal doses. The first was applied 15 days after transplanting or cutting and the other one was applied 15 days later. Moreover, $15 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} /$ fed in the form of calsium super phosphate ($15 \% \mathrm{P}_{2} \mathrm{O}_{5}$) was applied in single dose during soil preparation.

Other cultural practices were done at levels to assure optimum production. Cuttings were carried out at $3-5 \mathrm{~cm}$ above soil surface on abovementioned dates.

The middle rows in each plot (to avoid the border effect) were used to determine fresh leaf yield. Total soluble carbohydrates was determined according to AOAC (1990) after drying leaves in an electric oven and leaves stevioside content was calculated according to the equation of Nishiyama et al. (1991) .

Analysis of variance was computed for each trait (percentage data were transformed to Arcsin before statistical analysis) and means were compared using L.S.D at 5% level of probability according to Waller and Duncan (1969).

RESULTS AND DISCUSSION

1-Effect of inter and intra-row spacing on fresh leaf yield/fed. :
Data presented in Tables 1,2,3 and 4 show that inter and intra-row spacing significantly affected fresh leaf yield /fed. for both seed types (seedling and root rizomes).

Averag leaf yield over all the ten successive cutting was maximized when seedlings and rizomes were grown in 70 cm and 58.3 cm rows , respectively, (Tables 1and 3).

Furthermore, narrow spaced plants within rows (15cm) outyielded the wide one $(20 \mathrm{~cm})$. Leaf yield recorded 2.988 and 2.732 ton/fed. in seedling plantation for 15 and 20 cm spacing within rows as compared with the corresponding values of 6.952 and 6.280 ton/fed for root rizomes plantation (Tables 2 and 4). The obtaine results are partly similar to those of Gvasaliya et al. (1990) who reported that the highest stevia yield was obtained at 70×25 cm and the lowest at $50 \times 45 \mathrm{~cm}$ spacing.

The interactions between either row-and hill spacing and cutting dates were significant for leaf yield of plants resulted from seedlings or rizomes (Tables 1-4).The highest yield of leaves (6.714 and 9.538 tons), resulted from the last cutting with 70 cm and 58.3 cm row-spacing for seedling and rizomes planting, respectively.

Inter and intra-row spacing and their interaction with cutting dates had no significant effect on leaf contents of total soluble carbohydrates and stevioside for both seed types (Tables 5 to 12). These results indicated that stevia plants could make wide adjustments to growing spacings between and within rows producing similar leaf quality attributes

The obtained range of plant density is in accordance with these reviewed in Brazil by Donalisio et al. (1982), in China by Shu and Wang (1988), in Indonesia, by Basuki (1990), in Georgia, by Gvasaliya et al. (1990) and in Uzbekistan, by Duseinov and Yu (1999).

2-Effect of cutting time on leaf yield and quality:

Data in tables 1 and 3 revealed that cutting date had a significant effect on leaf yield of both seed types. It is worth to mention that leaves yield of summer cuts (March, May and July) for both seed types surpassed those of winter ones (September and December). Such effect may be due to that stevia thrived in a warm humidand sunny climate (Jia, 1984; Matejka, 1992; Ermakov and Kochetov, 1994; Richard, 1996 and Allam et al., 2001)

Data also cleared that leaf yield was increased gradually in successive cuts in both winter and summer but this increase was more pronounced in latest cuts as compared with the early ones. Such effect may be due to the augmentation of basal buds, new tillers and branches that developed with sequence cuts. In this connection, Shyu et al. (1994) found that harvesting date had a significant effect on tiller number, fresh and dry weight of stevia leaves.

3-Interaction between plant density and cutting times.

Leaf yield, total carbohydrates and stevioside content as affected by the second order interactions are presented in tables (13-18)

Besheit, S.Y. et al.

1,2,3,4
J. Agric Sci. Mansoura Univ., 27(1), January, 2002.

5,6,7

Besheit, S.Y. et al.

8,9,10
J. Agric Sci. Mansoura Univ., 27(1), January, 2002.

11,12,13

Besheit, S.Y. et al.

14,15
J. Agric Sci. Mansoura Univ., 27(1), January, 2002.

16,17

Besheit, S.Y. et al.

It is worth to mention that, the differences in leaf yield between seedling and rizomes may be due to, the fact that the used seedlings of 2 months age had a single stem while, rizomes aged two years had augmented basal buds which gave from the beginning many tillers.

Differences among cutting times in total soluble carbohydrate and stevioside content in the leaves were not significant (Tables 5,7,9 and 11). However there was a tendency of both traits to increase with the ealiest three cuttings as compared with the other successive ones, reflecting the lower temperature prevailing during Sep., Dec. and March which in turn stimulate carbohydrate accumulation.

Table (19): Summary for the significance of between and within rows spacing and their interactions.

Factor	Seeds type					
	Seedlings			Root rizomes		
	Fresh leaves yield (ton/fed.)	Total soluble carbohydrate	Stevioside \%	Fresh leaves yield (ton/fed.)	Total soluble carbohydrate	Stevioside \%
Inter row spacing (B)	**	N.S	N.S	**	N.S	N.S
Intra row spacing (W)	**	N.S	N.S	**	N.S	N.S
Cutting time (C)	**	N.S	N.S	**	N.S	N.S
Interactions $\mathrm{B} \times \mathrm{W}$	**	N.S	N.S	*	N.S	N.S
$\mathrm{B} \times \mathrm{C}$	**	N.S	N.S	**	N.S	N.S
W \times C	N.S	N.S	N.S	N.S	N.S	N.S
B \times W \times C	**	N.S	N.S	**	N.S	N.S

The highest leaf yield, 6.963 and 9.032 tons/fed resulted from the last cutting with 40000 plant ($70 \times 15 \mathrm{~cm}$ spacing) for seedling plantion and from 48000 plants/fed ($58.3 \times 15 \mathrm{~cm}$ spacing) for rizomes plantion. Carbohydrates and stevioside content in the leaves were not significantly affected by the different interactions.

REFERENCES

Allam, A. I.; A. M. Nassar and S. Y. Besheit (2001). Nitrogen fertilizer requirements of Stevia rehaudiana, Bertoni under Egyptian condition. Egyptian J. Agric.,79 (3): 1005-1018.
A.O.A.C. (1990). Official Methods of Analysis. Association of Official Analysis Chemists, $14^{\text {th }}$ Ed. Washington, U.S.A.
Basuki, S. (1990). Effect of black plastic mulch and plant density on the growth of weeds and stevia. Biotrop- special publication No. 38, 107-113. Symposium on weed management held in Boger, Indonesia 7-9 June (1989).

Donalisio, M. G. R.; F. R. Duarte; A. J. D. Pinto and C. J. Souza (1982). Stevia rebaudiana. Agronomico, 1034: 65-68.
Duseinov,G.K. and M.Yu (1999). Stevia in Uzbekistan. Sakharnaya - Svekla No. 12 p.p 19.

Dzyuba, O. O. (1998). Stevia rebaudiana_(Bertoni) Hemsley. A new source of natural sugar substitute for Russia. Rastitet' nye Resursy, 34(2): 86-95.
Ermakov, E.I and A.A. Kochetov (1994). Growth and productivity of stevia under regulated conditions depending on the photoperiod and light intensity .Russion Agric. Sci., 11:11-14.
Gvasaliya,V.P.; N.V. Kovalenko and M.Ch. Garguliya (1990). Studies on the possibility of growing honey grass (Stevia rebaudiana) in Ahazia conditions. Subtropicheskie Kul tury, 5:149-156.
Jia, G.N. (1984). An experiment on the cultiration of Stevia rebaudiana.ShanxiAgric.Sci. China, 1: 20-21.
Kinghorn,A.D. and N.C. Kim (1997).Discovery of highly sweet substances from plants. Revista-de-Farmacia-e-. Bioqimica-da- Universidade -de -Sao Paulo, 33(2): 63-75.
Matejka, V. (1992). Climatic requirements and possibilities of growing Stevia rebaudiana (Bert.) Bertoni in the Czech Republic. Agric. Tropica-ete subtropica, (25): 21-32.
Nishiyama, P.I.T. Kusumoto; S-c. Costa; M. Alvarez and L.G.E. Vieira (1991). Correlation between total carbohydrates content and stevioside content in Stevia rebaudiana (Bert.) Bertoni leaves. Arquivos-de- Biologia -eTechnologia, 34(3-4): 425-434.
Richard, D. (1996). Stevia rebaudiana ,Nature Sweet secert.Published by Blue Heron Press. Bloumingdala IL USA p.p. 60 (book).
Shu,S.Z. and W.Z.Wang (1988). Variation in quantitive characters in Stevia rebaudiana Bertoni and their relation to yield. Acta-Agronomica, Sinico, 14(2):167-173.
Shyu,Y.T.; S.Y.Liu; H.Y.Lu;W.K.Wu and C.G.Su (1994). Effect of harvesting dates on the characteristics; yield and sweet components of stevia (Stevia rebaudiana Bertoni) lines. J. Agric. Res. China, 43(1):29-39.

> دراسـات على الكثافة النباتية للاستيفيا في مصر
> سمير يعقوب بشيت ـ احمد مصطفى نصـار ـ عبد الوهاب اسمـاعيل علام ـ صبرى علام معهـ بحوث المحاصيل اللسكريه ـ مركز البحوث الزراعية ـ الجيزة
> اجري هذا البحث خـلال الفترة مـن سبتمبر 1991 و وحتى يوليـه بمحطـة أبحـاث
ومحتو اها من الكربو هبدر ات الذائبة الكلية ومركب الاستيفو سبد باستخدام نـو عين مـن تقـاوي الاستيفيا
وريزومات جذور نباتات عمر ها عامين) وقد أمكن الحصول على الكثّافات النباتيـة مـن نو افيق ثلاثــة

> نتائج التحلبل الاحصائي إلي ما يلي:
> في حالـة استخدام الثـتلات فـي الزراعـة فـأن أعلـى محصـول لـلأوراق الخضـراء /فدان

$$
\begin{aligned}
& \text { •Vم بين الخطوطو } 0 \text { اسم بين الشتلات بينما في حالة استخدام ريزومات الجذور في الزر اعة فأن }
\end{aligned}
$$

 ، ،
هذا وقد لوحظ حدوث نقص معنوي في محصول الأوراق الخضر اء للفدان في حالة زيـادة أو نقص الكثافة النباتية عن المشار إليها.
أوضحت النتائت أن المسافاتِ بين الخطوط أو بين الجور لم يكن لهـا تأتُّبر معنوي علي
 إلي أن نباتات الاستيفيا تمكنت من مو ائمـة نفسها تحت ظروف الكتافة النباتيـة السستخدمة وبالتالي

أعطت قيما متقاربة لصفات جودة الأوراق.
زاد محصول الأوراق في كلا نوعي النقاوي المستخدمة بتتابع عمليات الحش كمـا لوحظ
تفوق صفة محصول الأور اق في حشـات الصيف عن حشـات الشتاء. و ولىى العكس من ذلك فإن صفات جودة الأوراق لم تختلف معنويـا بين الحشـات المتتاليـة. هذا ويرجـع التبـاين في محصول الأوراق بين نوعي التقاوي المستخدمة إلي أن ريزومات الجذور عمر عامين تحتوي في البداية علي العديد من البر اعم القاعدية و التي تتمو معطية عدد من الفروع بينما في حالة الثشتلات فابن البداية هي

ساق واحدة غير متفرعة قاعديا.

Table (1): Effect of between row spacing on leaf yield ton\fed (Plants originated from seedlings).

Within rows (W)	Cutting dates (C)										Mean
15 cm	2.161	2.275	2.485	2.689	3.092	2.661	2.841	3.141	3.613	4.918	2.988
20 cm	2.037	2.289	2.287	2.511	2.934	2.545	2.621	2.967	2.464	4.669	2.732
Mean	2.099	2.282	2.386	2.600	3.013	2.603	2.731	3.054	3.039	4.794	
L.S.D at 5\% For			W:	0.100			C	0.097			WC :

Table (3): Effect of between row spacing on leaf yield ton\fed (Plants originated from root rizomes).

Table (4): Effect of within row spacing on leaf yield tonlfed (Plants originated from root rizomes).

Table (6): Effect of within row spacing on leaf carbohydrates content (Plants originated from seedlings).

Within rows (W)	Cutting dates (C)										Mean
	5/9/98	5/12/98	5/3/99	5/5/99	5/7/99	5/9/99	5/12/99	5/3/2000	5/5/2000	5/7/2000	
15 cm	42.240	42.092	41.998	41.881	41.838	41.590	41.712	41.682	41.609	41.517	41.816
20 cm	42.336	42.279	42.219	42.184	42.078	41.990	41.657	41.660	41.597	41.488	41.948
Mean	42.288	42.186	42.109	42.033	41.958	41.790	41.685	41.671	41.603	41.502	
L.S.D at 5\% For				W : N.				C :			C : N

Table (8): Effect of within row spacing on leaf carbohydrates content (Plants originated from root rizomes).

Within rows (W)	5/9/98	5/12/98	5/3/99	5/5/99	Cutting 5/7/99	(C) 5/9/99	5/12/99	5/3/2000	5/5/2000	5/7/2000	Mean
15 cm	43.867	43.708	43.433	43.333	43.150	43.092	42.892	42.633	42.383	42.300	43.079
20 cm	43.308	43.183	43.025	42.900	42.808	42.542	42.558	42.425	42.583	42.467	42.780
Mean	43.588	43.446	43.229	43.117	42.979	42.817	42725	42.529	42.483	42.384	

Table (9): Effect of between row spacing on leaf stevioside content (Plants originated from seedlings).

Between rows (B)	5/9/98	5/12/98	5/3/99	5/5/99	$\begin{gathered} \text { Cuttin } \\ 5 / 7 / 99 \end{gathered}$	$\begin{gathered} \text { tes }(C) \\ 5 / 9 / 99 \end{gathered}$	5/12/99	5/3/2000	5/5/2000	5/7/2000	Mean
87.5 cm	36.327	36.143	36.021	36.068	35.999	35.922	35.776	35.737	35.639	35.060	35.869
70.0 cm	35.681	35.520	35.365	35.337	35.290	35.239	35.130	35.333	35.257	35.122	35.327
58.3 cm	36.647	36.541	35.910	36.349	36.184	36.115	35.725	35.533	35.488	35.388	35.988
Mean	36.218	36.068	35.765	35.918	35.824	35.759	35.544	35.534	35.461	35.190	
L.S.D at 5\% For				B :		N.S.				BC : N.S.	

Table (10): Effect of within row spacing on leaf stevioside content(Plants originated from seedlings).

Within rows (W)	Cutting dates (C)										Mean
	5/9/98	5/12/98	5/3/99	5/5/99	5/7/99	5/9/99	5/12/99	5/3/2000	5/5/2000	5/7/2000	
15 cm	36.201	35.970	35.473	35.795	35.691	35.678	35.572	35.546	35.468	35.038	35.643
20 cm	36.235	36.166	36.057	36.041	35.957	35.839	35.514	35.522	35.454	35.341	35.814
Mean	36.218	36.068	35.765	35.918	35.824	35.759	35.543	35.534	35.461	35.190	

Table (11): Effect of between row spacing on leaf stevioside content (Plants originated from root rizomes).

Between rows (B)	5/9/98	5/12/98	5/3/99	5/5/99	$\begin{aligned} & \text { Cuttir } \\ & 5 / 7 / 99 \end{aligned}$	$\begin{aligned} & \text { g dates } \\ & 5 / 9 / 99 \end{aligned}$	C) 5/12/99	5/3/2000	5/5/2000	5/7/2000	Mean
87.5 cm	37.888	37.637	37.575	37.388	37.238	37.087	36.925	36.888	36.675	36.575	37.188
70.0 cm	37.213	36.988	36.875	36.700	36.675	36.387	36.387	36.263	36.150	35.975	36.561
58.3 cm	37.475	37.188	37.100	37.013	36.813	36.700	36.500	36.425	36.287	36.188	36.769
Mean	37.525	37.271	37.183	37.034	36.909	36.725	36.605	36.525	36.371	36.246	

Table (12): Effect of within row spacing on leaf stevioside content (Plants originated from root rizomes).

L.S.D at 5\% For:

BW: 0.273
BWC :0.549

Table (15): Interaction effect of plant density and cutting dates on carbohydrates content (Plants originated from seedlings).

No. of Plants		Between rows cm (B)	Within rows cm (W)	5/9/98	5/12/98 5/3/99		5/5/99	Cutting dates (C)			5/3/2000	5/5/2000	5/7/2000	Mean	
m^{2}	$\begin{aligned} & \text { Fed. } \\ & \left(10^{3}\right) \end{aligned}$						5/7/99	5/9/99	5/12/99						
5.71	24	87.5	20	42.353	42.410	42.330		42.443	42.322	42.200	42.043	42.012	41.880	41.783	42.178
7.14	30	70.0	20	41.916	41.802	41.715	41.630	41.565	41.548	41.395	41.459	41.438	41.265	41.573	
7.62	32	87.5	15	42.288	42.106	42.090	41.953	41.915	41.283	41.771	41.720	41.670	41.611	41.841	
8.57	36	58.3	20	42.740	42.625	42.613	42.478	42.348	42.185	41.533	41.509	41.472	41.415	42.092	
9.52	40	70.0	15	41.698	41.513	41.346	41.257	41.352	41.262	41.176	41.495	41.375	41.289	41.376	
11.43	48	58.3	15	42.733	42.657	42.557	42.433	42.248	42.226	42.189	41.830	41.783	41.650	42.231	
Mean				42.288	42.186	42.109	42.032	41.958	41.784	41.685	41.671	41.603	41.502		

L.S.D at 5% For: \quad BW: N.S.

BWC: N.S.
Table (16): Interaction effect of plant density and cutting dates on

Table (18): Interaction effect of plant density on stevioside content (Plants orignated from root rizomes)

No. of Plants		$\begin{gathered} \text { Between } \\ \text { rows cm (B) } \end{gathered}$	Within rows cm (W)	5/9/98	5/12/98 5/3/99		5/5/99	Cutting dates (C)			5/3/2000	5/5/2000	5/7/2000	Mean	
m^{2}	Fed. $\left(10^{3}\right)$						5/7/99	5/9/99	5/12/99 5						
5.71	24	87.5	20	37.325	37.050	37.025		36.775	36.625	36.500	36.500	36.325	36.075	36.000	36.620
7.14	30	70.0	20	37.525	37.275	37.100	37.000	36.875	36.550	36.700	36.575	36.475	36.325	36.840	
7.62	32	87.5	15	38.450	38.225	38.125	38.000	37.850	37.675	37.350	37.450	37.275	37.150	37.755	
8.57	36	58.3	20	37.725	37.500	37.350	37.225	36.975	36.925	36.800	36.600	36.475	36.325	36.990	
9.52	40	70.0	15	36.900	36.700	36.650	36.400	36.475	36.225	36.075	35.950	35.825	35.625	36.283	
11.43	48	58.3	15	37.225	36.875	36.850	36.800	36.650	36.475	36.200	36.250	36.100	36.050	36.548	
Mean				37.525	37.271	37.183	37.033	36.908	36.725	36.604	36.525	36.371	36.246		
L.S.D	\%			C : N	N.S.								BWC	N.S	

