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ABSTRACT 

A new perturbation approach, based on the second-order theory, has been 
developed for application to nonproportionally damped, asymmetric vibration 
systems. The approach significantly truncates the computational procedure of the 
first- and second-order perturbations that are necessary for calculating the perturbed 
eigenproperties. This is accomplished by calculating these perturbations from the 
outcomes of solving the eigenproblem of a single, symmetric, positive-definite matrix 
representing the unperturbed system. Two numerical examples in addition to a 
practical rotor-bearing system are used to demonstrate the capabilities of the 
proposed method. The results of the exemplified problem show that the proposed 
method is comparable to other existing methods that implement exact techniques. 
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1. INTRODUCTION 

The eigenvalue problem is the heart of the linear vibration theory, and its solution 
provides the vibration analyst with rich foundation about the behavior of his system 
from the stability and response points of view. This is the reason of the eigenvalue 
problem being always under focus of continuous, intensive research activity 
everywhere. In the absence of dissipative forces, generally, the linear dynamic 
systems possess classical normal modes [11. In other words, they have a complete 
set of real orthogonal eigenvectors that can transform the system into a diagonal 
form. This form is very delicate for applying the powerful modal superposition method 
to response calculations. So many structure problems are lightly damped, and can be 
assumed to have symmetric damping matrix that is proportional to symmetric mass 
and stiffness matrices. The self-adjoint eigensolution is then an easy task to achieve 
by powerful tools [21 because the system classical normal modes are conserved for 
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proportionally damped systems. These tools become unacceptable even for lightly 
damped systems having symmetric viscous damping matrices of distribution 
dissimilar to that of symmetric mass and stiffness matrices. The system is then called 
nonclassically damped, and response predictions urge using other techniques. A 
common procedure in the analysis of such systems is to neglect the off-diagonal 
elements of the associated modal damping matrix. Some other methods for modal 
and response calculations of nonclassically damped are available in the literature [3-
6]. 

In modern vibration practices [7,8], active damping and fully active vibration control 
techniques, normally, lead to asymmetric damping and stiffness matrices. Moreover, 
introducing circulatory forces and gyroscopic moments can further complicate the 
eigenvalue problem, as it becomes quadratic and asymmetric one. This necessitates 
the use of other methods like the pioneering Duncan's formulation [9) in which the 
concept of trivial identity was introduced by Duncan to linearize the problem. But, 
before going to algorithms that counts on Duncan's formulation or any other methods 
as in references [10-13], asymmetric systems might possess classical normal modes, 
and must be checked for their existence. Thus one can avoid complexity in 
computations and consumption in time, especially, in large-scale models. Conditions 
under which classical normal modes exist in asymmetric systems are presented in 
references [14-16]. 

First- and second-order perturbation techniques have been proven effective in both 
eigensolution calculations and eigensolution reanalysis problems [17-20]. Meirovitch 
and Ryland [21) made a second-order perturbation theory developed for the 
generalized eigensystem 	= Au , fruitful for application to lightly damped 
gyroscopic systems with symmetric mass, damping and stiffness matrices. Chung 
and Lee [22] extended the theory for application to the generalized eigenproblem 
Bu = ?Au of heavy, but weakly nonproportional damped systems. Although the 
matrix A in the basic perturbation theory and the matrices A and B in its extension 
have no restriction except that they must be real, simplifications are necessary to 
make this theory attractive for application to large scale systems where hundreds or 
thousands of degrees of freedom can be considered. Basically, the theory requires 
the calculation of eigenvalues and right and left eigenvectors of the unperturbed 
system. This will be the gate for any simplification to be significant. 

This paper presents an approach by which the eigensolution by using the second-
order perturbation theory when applied to asymmetric system can be based on the 
solution of unperturbed conservative system formulated in a highly standard 
eigenvalue problem of single, symmetric positive definite matrix. Numerical examples 
will be presented to demonstrate the method in a detailed manner. 

2. NEW FORMULATION 

Consider the free vibration problem of a general linear discrete system described by 
vector differential equation 

Mij(i)+ (C + G)ii(i)+ (K H)q(i) = 0 	 (1) 
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where M, C , and K are nxn real asymmetrz matrices. M is the mass matrix, C 
is the damping matrix, K is the stiffness matrix, G is an n x n real skew symmetric 
gyroscopic matrix, 11 is an nx a real skew symmetric circulatory matrix, and q(t) is a 
real n x 1 vector of generalized coordinates. Note here that G is of conservative 
nature, while 11 is a dissipative one. If the trivial identity 

(K + H)q-(K + 	= 0 	 (2) 

adjoins Eq. (1), the 2n associated eigenvalue problem and its adjoint will be: 

Bui  = 	, 	Brv, = 	i =1, 2,.. 2n 	 (3) 

where q = e1411 is substituted into Eq. (1) and (2) for exponential form solutions, 	is 
the Rh eigenvalue, u, and vi  are the corresponding right and left eigenvectors, 
respectively, of the non-self-adjoint eigenvalue problem (3). The biorthogonality of 
right and left eigenvectors provides 

vT Au, = u71Av, = 2a15 j  , 

=u;Bv, 2a,A.,8, , ij =1, 2, , 2n 	 (4) 

where ai  is the scale factor of the ith eigenvector, So  is the Kronecker delta. A and 
8 are real asymmetric matrices defined by 

A-
[ +H 0 

11=
[ 0 -K-H] 

(5) 0 M]' K+H C+G 

Since any real asymmetric matrix can be regarded as a summation of two real 
matrices one of them symmetric and the other one is skew symmetric, the 
asymmetric matrices M , C and K can be written as follows: 

M Mo  + M g , C = Co  +Cg , K =Ko+ Kg 	 (6) 

where Mo  , Co  and K0 are symmetric matrices, and Mg , C8  and Kg  are skew 
symmetric ones. For instance, the calculated symmetric and skew symmetric parts of 
the damping matrix are: 

Co =(C+CT )/2, Cg  =(C-C T )/2 	 (7) 

It should be mentioned here that the skew symmetric matrix Cg  represents the 
conservative part of the damping matrix [23.24]. Normally, the true damping is 
contained into the symmetric part Co  of the asymmetric damping matrix C [23,24]. It 
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will be further assumed that Mo  and K0  are positive definite. For perturbation 
purposes, if Eq. (6) is substituted into Eq. (5), one can write the matrices in Eq. (5) as 

A - Ao  + .41 , B = Bo + 	 (8) 

where A0  and Bo  are considered as unperturbed matrices, and A, and B1  are 
considered as perturbation matrices. The matrices A and B are then called the 
perturbed matrices. An order of magnitude condition is considered here [22], which 
states that the elements of the matrices Al  and B1  are one order of magnitude 
smaller than the elements of AO and Bo . The following formulation is suggested for 
the matrices in Eq. (8): 

r 0 	-K0 1 
= LK0 G+C g  

KT — HT 0 	 0 	K T  + H 
 A1 = [ g 	

Mg ] 	 Kg H 	Co j  

where K0 and M0  are assumed symmetric positive definite matrices, A0  and Bo  
will be symmetric positive definite and skew symmetric, respectively. While the 
matrices Al  and B, are skew symmetric and symmetric non-negative definite, 
respectively. The reason for suggesting that new matrix formulation in Eqs. (9) and 
(10) is that the unperturbed and perturbation matrices are either symmetric or skew 
symmetric. In other words, the skew symmetric matrix .9)  is a perturbation to the 
symmetric matrix .90  while the symmetric matrix B1  is a perturbation to the skew 
symmetric matrix Bo . This permits taking advantages of this arrangement in the 
modified perturbation theory that will be presented later on. Note also here that the 
unperturbed matrices A0  and B0  represent the conservative gyroscopic part of the 
original perturbed system A and B . 

3. GENERAL PERTURBATION THEORY 

The unperturbed eigenvalue problem is assumed to have known eigensolution. In 
general, the accuracy of the perturbation process is pertinent to the accuracy of the 
unperturbed solution. The unperturbed eigenproblem and its adjoint one can be 
expressed as follows: 

KoU oi = 0 i Ao II 0 , /34- v 0i  = koiAOvoi, 	I = 1, 2„ 2n 	(11) 

where koi  is the ith eigenvalue, and tioi  and voi  are iths right and left eigenvectors, 
respectively. The biorthogonality property of the right and left eigenvectors satisfies 
the following relations: 

= [K0  0 A0  
[ 0 mc, ' 
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T • 	T A  V 0 ?ION =U0 jflOV Oi -= 2ai8y 

T VoT  rnUoi = Uo -00Vo• = 2a •Xo.S.• i j =1 2 . 2n. 	 (12) 

To produce the perturbed eigenvalues in terms of the unperturbed ones, one can 
express the solution of the perturbed eigenvalues as follows: 

Xo;  + X i;  + 	+... i =1, 2, ... n (13a)  

Oi = 1101 +111i + U2i +  •••• i = 1, 2, 2n (13b)  

vi  = voi  + Nth  + v2i  + =1, 2, ... 2n (13c)  

The order of any particular term in Eq. (13) is characterized by the first subscript. For 
example, ?,l; , u11  and v1;  are one order of magnitude smaller than ?,0; , taw  and v 0, , 
respectively. Substituting Eqs. (8) and (13) into (4) gives, after collection by order of 
magnitude, the perturbation systems as summarized in (Eqs. (A1) : (A3)) Appendix 
A. The first-order perturbations ul  and v1  can be expressed as a linear combinations 
of u0  and v 0  , respectively, because they span the same space: 

2n 

Uli = lcikuOk 	V1i = E ik vOk 
k=1 	 k=1 

i =1, 2, 	2n 	 (14a,b) 

where Elk and y ik  are small first order coefficients. Similarly, the eigenvectors u2  
and v2  can be expressed as: 

2n 	 2n 

U2i = Eiikuok 	v2i = E7ikV0k 
k=1 	 k=1 

i =1, 2, ...., 2n 	 (15a,b) 

where -Eik and yik  are small second order coefficients. The solutions for first and 
second order perturbation problems are summarized in Appendix A. Euations (A4) 
and (A5) solve for the first order perturbation problem while Eqs. (A6) : (A8) solve for 
the second order one. 

3. MODIFIED PERTURBATION THEORY 

The conservative gyroscopic system that is represented by the matrices AO  and Bo 
in Eq. (9) is considered as the unperturbed system of equations. If the outcomes of 
the eigenvalue problem (11) of the unperturbed system (9) satisfy the orthogonality 
conditions (12), then one can say that the first- and second-order perturbation 
solutions (Eqs. (A4) : (A8)) are possible. Unfortunately, the results of the second 
order perturbation theory derived by Chung and Lee [22], although they are quite 
general with a single restriction that A and B must be real, are not liable for 
application to the unperturbed system (11). In other words, the solution of the 
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unperturbed (11) with the matrices Ao  and Bo  as given in Eq. (9), violates the 
orthogonality arrangements as given by Eq. (12) and, consequently, mismatches the 
formulation requirements of the second-order perturbation theory. The task now is to 
modify this theory to make it liable for application to unperturbed systems like the one 
considered in this study. The following theorem will clarify this issue. 

Theorem I: The solution of the unperturbed eigenproblem (11), with the matrices Ao  
and Bo as defined in Eq. (9), mismatches the formulation requirements of Eq. (12) 
that led to the solution results (Eqs. (A4) : (A8)) of the general perturbation theory as 
derived by Chung and Lee 1221 Thus, the solution of the first- and second-order 
perturbation problems (Eqs. (A2) and (A3)) is not possible by using Eqs. (A4) : (A8) 
unless —up)  replaces v01  in Eqs. (A4) and (A5) with the sign reversed at the right 
hand sides of Eqs. (A6) : (A8). 

Proof: Since Ao  is symmetric positive definite and Bo  is skew symmetric, the 
eigenvalues of the unperturbed eigensystem (11) will be pure imaginary complex 
conjugate pairs and the eigenvectors will also be complex conjugate pairs with the 
following properties [211: 

42 , = 27.0 2 ,_ 1  r = 1,  2,  n (16)  

u02,  , 	r = 1, 2, (17)  

vor =e0, , r = 1, 2, ,, n (18)  

where Xo  and u0  are the complex conjugate of Ao  and u0 , respectively. Equation 
(18) indicates that the left eigenvectors are exactly the complex conjugates of the 
right eigenvectors. This is due to the nature of the unperturbed eigensystem in which 
A0  is symmetric and Bo  is skew symmetric. Also, Eq. (18) simply states that there is 
no necessity to solve the unperturbed eigenvalue problem twice to have right and left 
eigenvectors because they are complex conjugates. Now consider the 
biorthogonality related Eqs (12) upon which the results of the general second order 
perturbation theory in the preceding section are derived. And consider an 
unperturbed eigenproblem of order 2n = 2 having 2 eigenvalues, 2 right eigenvectors 
and 2 left eigenvectors. Taking into consideration that the unperturbed system is 
conservative, and upon using Eqs. (17) and (18), the following orthogonality 
conditions hold true: 

U61A0U 01 = 21.11611 	1.11:1A0U 	= 0 

02.40110 = 0 , u02A0u02 2a2622 
	 (19) 

V 00001 = 4.0001 = 1170.22101101 = 0 , 

41A01102 = 114.1A01102 - 1102 A0u02 = 2412612 
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T A 	—T A 	 T A = 2a1521 vO2P10'.01 = 1102"Ou01 =UOIr'01101 

.,T A 	—T A 	T A 
• 02'201102 = 1102'701102 = U OVIOU O2 = 

If one considers the Kronecker product properties 

8  {1 for i j 

41 	0 for i m j 

for application to Eqs. (19) and (20), it follows that the results of the biorthogonality 
multiplications in Eqs. (19), if arranged in a matrix form, lead to a diagonal matrix, 
while the multiplications in Eqs. (20) will lead to a matrix of zero elements. On the 
basis of this result, one can conclude that using the left eigenvector v0  in the 
biorthogonality relations does not justify the arrangements of Eq. (12), and hence a 
mismatch occurs in the formulation of the second order perturbation theory leading to 
incorrect computations if the solution results (Eqs. (A4) through (A8)) are used in 
their current form. This proves the first part of the Theorem I. As a result to this, -u0  

should replace v0  in the formulation starting with Eq. (13c), which will be modified to 

= 1 0;  + 	+1112;  + 

Or in a more convenient form to the perturbation process: 

2n 
2n 	 2n 

EYikuOk 	U2; = EYikuok 	r =1, 2 •••• 
k=1 	 k=1 

(22)  

(23)  

n 	 (24a,b) 

The assumption made to develop Eqs. (22) : (24) is mainly based on the nature of 
the unperturbed system (11) in which the left eigenvectors are the complex 
conjugates of the right eigenvectors. If one substitutes Eqs. (8), (13a), (13b) and (23) 
into Eq. (4) and then collects by the order of magnitudes, then three sets of problems 
of different perturbation orders result: 

ul'iAouoi  = 
T jO0U0i = 2aiXoiSji , 	 = 1, 2, 	2n 

	 (25) 

0(1): - u6p4outi  —u701/Aluoi  — VT./km(4 =0 

-41B0uli 	—iirjBouoi  = 2aiki18 	J, j  =1,2......2n 	(26) 

61( 	Ur) A0112 — jAlUli 	j AOU1i—u ri Al U Oi — ijj AO U Oi = 0 

..T 	 T igt 	 —T D 
u0pas0 al 2i — uOizol 	— 'Jason — 	-112 	= 

= 1, 2, .. 2n (27) 

(20)  

(21)  
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where 6(0), o(1) and 6(2) indicate the modified zero-, first- and second- order 
perturbation problems, respectively. Substituting Eqs. (14a), (15a) and (24a) into 
(26), with orthogonality relations like (19) being utilized, the first-order perturbation 
solution is provided as in Eqs (A4) and (A5) except that -uoi  replaces vol  in these 
equations. Similarly, the substitution of Eqs. (14b), (15b) and (24b) into Eq. (27), and 
upon the use of orthogonality relations as in Eqs. (19), the second-order solution will 
be the same as that in Eqs. (A6) : (A8), except that the sign of all terms at the right 
hand sides of these equation is reversed. This completes the proof of theorem I. 

4. SIMPLIFIED UNPERTURBED CALCULATIONS 

Although a contribution is made to the second order perturbation theory in the 
preceding section, the vibration analyst is still in need to a powerful tool by which an 
unperturbed eigensolution can be systematically generated and a considerable save 
in time can be ultimately achieved for large scale systems. Once again, the special 
form of the unperturbed conservative gyroscopic system can be utilized. Meirovitch 
[25,26] has shown that a conservative gyroscopic eigensystem like the one of Eq. 
(11) can be transformed into a highly standard eigenvalue problem of a single, real, 
positive definite symmetric matrix. The resulting eigenvalues and eigenvectors of this 
problem will be real. So many fast, efficient algorithms are available for solving the 
later problem. The procedure of transformation is as follows: 

Consider the following unperturbed eigenvalue problem for a conservative gyroscopic 
system where the eigenvalues are normally pure imaginary: 

- Bollo = itO0A0U0 , A(7).  = Ao >- 0 , B = -BT 	(28) 

The complex eigensolution of (28) can be expressed as: 

s, 	 up,  
= "floor 	= 	± iy , 	r =1, 2, 	 n 	(29) 

To transform the problem from complex to a real form u0 = x0  + iy0  is substituted 
into Eq. (28). Then both the real and imaginary part on both sides are equated to give 

-Boxo = cooiloYo ,  +BoYo = woAoxo , 	(30a,b) 

Solving Eqs. (30a,b) together, provides 

Al;x0  = 4400, BP)))  = XoAoYo 	Xo =wa 	(31) 

where 

Bo*  = Bo Ali I  Bo , 	 (32) 
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is a symmetric positive definite matrix. Since A0 is symmetric positive it can be 
decomposed by Cholesky decomposition as follows: 

	

A0 = 	QT  Q 	 (33) 

where Q is a 2n x 2n nonsingular, orthogonal matrix such that Q-1  = QT . By using 

the linear transformation 

	

Qs = , 	= z Y ' 
	 (34) 

the eigenvalue problem of equation (31) can be reduced to the following standard 
real one: 

	

AO'z = oz , 	A.0 --e.)6 	 (35) 

where the last two equations implicitly means that z is the same as zy ,  , and 

-IAp = (QT 	=)T B•Q- 	 (36) 

The two eigenvalue problems (31) and (35) have the same eigenvalues with each 
eigenvalue of Ap retains the multiplicity of two. This multiplicity is expressed as in 
Eq. (16). By analogy with Eq. (34), the real and imaginary part of u0  can be 

expressed as follows: 

=Q 	Yo, 	r 	2,  
	 (37) 

Thus the complex eigensolution of Eq. (29), can be reconstructed from the solution of 
a highly standard eigenvalue problem of single, symmetric positive definite matrix 
with real eigenvalues and eigenvectors. This, of course, leads to a marginal reduction 
in the computational time. This reduction becomes more effective as the order of the 
problem increases. Another idea for future work is that the first and second order 
perturbation solutions in equations (A4) through (A8) can be related directly to the 
calculated real eigenvectors (37) rather than reconstructing the complex eigenvector 
from these real ones. This will save a great part in core of the computer used. 

5. RESULTS AND DISCUSSIONS 

A little problem is to be highlighted first. A hard condition has to be met by any 
eigenvalue problem in order to be solved by the perturbation method developed in 
this paper. The entries of the perturbation matrices A1  and B should be one order 
of magnitude smaller than the entries of the unperturbed matrices A0 and B0. This 
implicitly means, according to Eqs. (9) and (10) that the entries of the symmetric 
damping matrix Co  should be one order of magnitude smaller than the entries of the 
skew symmetric damping matrix cg. The situation is hard to meet for some 
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applications. Consequently, the theory will not be applicable for those applications. 
To avoid such a situation, the symmetric damping matrix Co  can be divided as 
follows: 

Co  =Cop  +Copp 	 (38) 

where Cop  is the part of the symmetric damping matrix Co that is proportional to the 

distribution of the mass and stiffness matrices such that:  

Cop  = UM°  +(3K0 	 (39) 

where a and 13 are proportionality constants. Cone  is the nonproportional part that 

will replace Co  in Eq. (10) such that the modified formulation matrices will be: 

Ko  0 1 

B0 	

0 	- Ko 
Ao =[ 

0 M0 J' 	- LK0 G + Cop  + Cd 

[
- Ko -111 	0

, Bi = 1-  0 	Kgi 4, HT 

o 	 Kg  +H 	Co pp  

Or, equivalently, the last two equations can be rewritten as follows: 

Ao =[ 0 mo l, B0= 
K 	0 1 

-KT  -HT  0 
Cg 	

, 	=[ 
	KK6+ H -=[ 

=[K0  +H 	Conp  

With these alternating arrangement in the modified formulation matrices of Eqs. (40) . 
(43), most of the nonclassically damped systems that do not meet the order of 
magnitude condition can be solved by the perturbation technique developed in this 
paper. 

Examplel: 
The following hypothetical 2-DOF system is used to show the accuracy of solutions 
obtained by the current method in comparison with those obtained by exact methods. 
This example slightly violates the condition that the entries of Al and B1  are one 
order of magnitude smaller than the entries of the matrices A0  and Bo . This is just to 

0 - K0 

K0 G *Co p  

(40)  

(41)  

(42)  

(43)  
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show that the method presented here is capable of producing acceptable solutions 
even when this hard cond tion is violated. The matrices in Eq. (1) are given by: 

M 

	

5 	2 

	

[ 
3 	6.51 	C  - [0.

1 
 3 

0.5] 
I 

G 
[ 0 
+ 4 

- 
0 

, 	K 
[4 
0 

01 
5_1 

H 
 =[

0 -11  

+1 0 

According to Eqs. (6) and (7), the resulting nx n formulation matrices are : 

M°  - [2.5 	6.51 

0 
Cg =[- 0.1 

Mg 

+ 0 

[+ 0.5 

' 	K° 
4 

[ 0 

5 
0 

0 
5 ] 

Co 
1 

K  
' 	g 

[ 1 

0 
[0 

0141

. 
  

0 
(11 

The 2n x 2n formulation matrices in Eqs. (8), (9) and (10) are then given by: 

4 0 0 0 0 0 -4 0 

0 5 0 0 0 0 0 -5 
A0 = 

0 0 5 2.5 
Bo = 

+ 4 0 0 - 3.9 

0 0 2.5 6.5_ 0 +5 +3.9 0 _ 

   

0 0 0 +I 

0 0 -1 0 
0 -1 1 0.4 
+ 1 0 0.4 	1 

AI = 

0 -1 
+1 0 
0 0 
0 0 

0 	0 
0 	0 

= 
0 	- 0.5 

+0.5 	0 _ 

  

   

    

Comparing the entries of the matrices A1  and B1  with those of the matrices Ao  and 

Bo one notices that they violate the condition as mentioned above. The solution 
results are shown in Table 1. The computed damping ratios for the two modes are 
actually contained into the symmetric damping matrix Co , and are given by 

= 0.086 and 	= 0.207 , respectively. The results show a significant matching 
between the second order perturbation results and those obtained by exact methods. 
Accuracy to the third decimal is achieved by the current method when compared to 
the exact one even with the order of magnitude condition is violated. 

Table 1. Eigenvalues obtained by perturbation and by exact methods 

Exact solution 6(0) 6(0) + 6(1) 6(0) + 6(1) + 6(2) 

-0.1262± 1.4548 ±0.1287i -0.1287± 1.4736i -0.1287± 1.45451 
-0.1267 ± 0.5963 ±0.12661 -0.1266 ± 0.5924i -0.1266 ± 0.5962i 



0 -0.5 0 0 
+0.5 0 0 0 

	

Al = 
0 	0 0 0 

	

0 	0 0 0_ 

0 	0 	0 	+ 0.5 
0 	0 	- 0.5 	0 
0 -0.5 0.2 0.1 

+ 0.5 	0 	0.1 	0.15 

111 = 
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Example2: 
This example shows how to handle nonproportionally damped systems in cases 
where the matrix Co  does not justify the order of magnitude condition. The matrices 
in Eq. (1) are given by: 

	

M= 
 [3 0] c  = { 3 -1. 	 5 ] 

-
[ 0 - 4 

= 
0 

0 4 	1.6 41 
G 

+4 0 	
K 

0 7 

	

[ 	-0.5 
H = 

+0.5 0 

According to Eqs. (6) and (7), the resulting n x n formulation matrices are : 

= [3 0] 	= [0 
	

C0 = [ 3 0.1 
M0  0 4' Mg  0 0' 	0.1 4 

0 -1. 1 	[5 
	Kg 

 0 0
K0cg = [1.5 0 	= 0 7 ' 	g [0 01 

According to Eq. (39), with proportionality constants a =13= 0.35 , the proportional 
and nonproportional parts of the matrix Co are given by: 

c 
°P - [2. 

08 
3  0 

 .85 ] c°PP = [0.2 0.1 
0.1 0.15]' 

The 2n x 2n formulation matrices in Eqs. (8) (9) and (10) are then given by: 

Ao = 

5 0 0 0 
0 7 0 0 
0 0 3 0 B0=  
0 0 0 4_ 

0 	0 	-5 	0 - 
0 0 0 -7 
+4 0 2.8 -5.5 
0 +7 +5.5 3.85_ 

 

The calculated damping ratios of he two modes are 	= 0.38 and 42  = 0.30 , 
respectively. The results are shown in Table 2. The accuracy achieved in this 
example is also considerable. 
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Table 2. Eigenvalues obtained by perturbation arid by exact methods. 

Exact solution O(0) O(0)+O(1) 6(0) + 6(1)+6(2) 

-0.7220 ± 2.2559i ± 2.2842i -0.7244 ± 2.2842i -0.7248 ± 2.2840i 
-0.2780 ± 0.6681i ± 0.6678i -0.2755 ± 6648i -0.2775 ± 0.66811 

Example3: 
This example is devoted to a practical problem. A rotor shaft, supported on two 
identical, tilting 5-pad bearings with the bearing load acting between pads, is 
considered in this example as shown in Fig. 1. The bearing data are such that the 
preload factor is taken 0.66, the length is 0.025 m, the cliameter is 0.05 m, the radial 
clearance is 0.001 m, the lubricant viscosity is 0.069 N.sim. The bearing stiffness and 
damping coefficients are then taken by interpolation from the tabulated coefficients 
by Someya [27]. The disk mass (per bearing) 150.03 kg, the journal mass is 141.47 
kg, the bearing-support mass is 100.8 kg. The rotor stiffness is 49x 106  N/m and the 

support stiffness is 10 x107 . Damping is neglected in bcth the rotor and the support. 
The 6-DOF model considered here has been frequently used for studying the lateral 
vibration of rotors in two perpendicular x and y directions as shown in Fig. 1. The 
model equations of motion are reported by Abduljabbare et al. [28]. The rotor speed 
is considered to be 1230 rad/s. The results are shown in Table 3 where the 
perturbation approach developed in this paper is still hclding a reasonable accuracy 
in comparison with the exact method. 

Fig. 1 Rotor-bearing system model (after Abduljabbar et. Al. [28]) 
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Table 3. Eigenvalues obtained by perturbation and by exact methods.' 

Exact solution 6(0) 6(0) + 6(1) 6(0) + 6(1) + 6(2) 
-0.0004 ± 0.14411 ± 0.14401 -0.0004 ± 0.14401 -0.0004 ± 0.14411 -0.0003 ± 0.14961 ±0.14961 -0.0003 ± 0.1496i -0.0003 ± 0.1496i 
-0.0211 ± 0.6182i  ±0.6159i -0.0211 ± 0.61591 -0.0213 ± 0.61831 -0.0118 ± 0.68151 ± 0.67891 -0.0121 ± 0.6789i -0.0124±0.6811i 
-0.0485± 0.94601 ± 0.9500i -0.0485± 0.95001 -0.0483± 0.94621 -0.1175± 1.12641 ± 1.13451 -0.1172± 1.1345i -0.1169± 1.1294i 

6. CONCLUSIONS 

A method is developed to get the general second-order perturbation theory fruitfully 
applicable to the solution of the eigenvalue problem of nonclassically, viscously 
damped system. The main contribution here is that the eigensolution of a highly 
standard eigenvalue problem of single, symmetric positive definite matrix is 
systematically employed to generate the eigensolution of an asymmetric non- 
proportionally damped eigenproblem. The later one primarily includes asymmetric 
damping, stiffness and mass matrices introduced by gyroscopic and circulatory 
effects. A high compatibility between solutions obtained by the current method and 
those obtained by exact method is justified. 
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APPENDIX A: GENERAL PERTURBATION RESULTS 

The perturbation results according to the order of magnitude as derived by Chung 
and Lee 120] are: 

0(0): v6p40u0i  = 2c t i8 # 
T la V oilaolloi = 2apt..0e5y , 	 i, j = I, 2, ...., 2n 	 (A1) 

0(1): vroliAou I;  + vorikuoi  + virjApuoi  =0 

E, 	 n 	T V oT  paollii + V 0T  jOilloi ÷ V voottoi = 2C0118# , 1,1 = 1, 2, ..... 2n (A2) 

0(2): sijil0u2i  + vr,jAiuu + vriAouli  + vriAinoi  + qiiiouoi  =0 
•,T B,„ .. 	, .,,T Ep. .., , ,,r D. .. 	, ..,T 0  .• 	, „T D .. • OiDOD2/ , v of.itaii 7' • li..•()%qi I' v ii..11.01 -I-  , 2 juomoi = 2aik2i6jj 

I, j = 1, 2„ 2n (A3) 

where 0(0), 0(1) and 0(2) indicate the zero-, first- and second-order perturbation 
problems, respectively. Note here that Eqs. (A1) are similar to Eq. (12) of the 
eigenvalue problem for the unperturbed system. Substituting equations (13) into 
equation (A2), and upon using equations (11) and (A1), one gets the first order 
perturbation solutions: 

J E#  = V 0 (Bi - ko jAI)Uoi  1 2(lX0i  koj  ) 
qm 

a 0' = V Of (01 -  &weal 	z.(60) - kw) , i  j,  i, j=1, 2, 	 2n 
T • Ell = 	= 	 nai 

Xti = vEi(Bi 	! 2ai  , 	 j, 1=1,2, 	 2n 

(A4)  

(A5)  

Substituting equations (14) into equation (A3), and upon using equations (11), (A4) 
and (A5), one can extract the second order perturbation solutions. When i * j, 

I 	 2n 	 2n 

	

a iio  = 	 a i Xil y it  a j kl i cif +Eaky jo:ikaoi - --X 0k) 4" EF-ikCk (A6) 
(Xcia - Xoj) 	 k=i 	 k=i 

1 	 2n 	 2n 

	

a A - 	 ad,ityi, ai Xii  se  + Eak yoa  NJ  - xok ) + Ey ftyk, (A7) 
(Xoj - koi) 	 k=i 	 k=i 

2n 

	

When i = 	 = Yii = 0.5  ElYikYki +each' akYikEik all 

k=1 

2n 
X2i = 	+60+ Eak`f 	A-0k 	, i =1, 2, ...., 2n 	(A8) 

k=1 
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