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Abstract 

This paper is concerned with introducing the most used 

penalized regression methods, including ridge regression 

(RR), least absolute shrinkage and selection operator 

(LASSO), and elastic net (EN) regression for estimating the 

linear regression model. These models are used in two cases 

low and high-dimensional data when data is contain outliers 

when the explanatory variables have collinearity among 

them. The Monte Carlo simulation study is conducted to 

evaluate and compare the performance of these estimators. 

The simulation results indicate that the obtained estimators 

using EN are efficient and reliable than the other estimators. 

 

Keywords: penalized regression; Ridge regression; least 

absolute shrinkage and selection operator;  Elastic net; High-
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1. Introduction 

Regression analysis is the most useful statistical technique 

for analyzing multifaceted data in numerous fields such as 

science, engineering, and social sciences. Regression analysis 

is used to study the relationship between the response 

variable  and one or more explanatory variables  which is 

called linear regression model [Adegoke, (2016)]. The case 

of one explanatory variable is called simple linear regression 

model while the case with two or more explanatory variables 

is called multiple linear regression model. The assumptions 

of the linear regression model are:  

1. The response variable is normally distributed as 

 
.and variance with mean  

2. The linearity of the model, (i.e., a linear relationship 

between the response variable and the explanatory 

variables). 

The general form of multiple linear regression model is 

formulated as follows: 

 

where Y is an (n×1) vector of response variable, X is 

an (n×k) design matrix of explanatory variables, β is a 

(k×1) vector of unknown parameters and Є is an (n×1) 

vector of random errors with mean zero and fixed 

variance  

I) ][  

The OLS estimator is given by: 
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                                (2)          

Where  is the transpose of the matrix . 

The goal of linear regression is to fit a straight line to few 

points minimizing the sum of squared residuals. Regression 

models are used for many purposes, such as analysis of 

variance (ANOVA), estimating the parameters, prediction 

and selection of the variables. 

 The ordinary least square (OLS) method is the best 

linear unbiased estimators (BLUE). But data analysts pointed 

out some deficiencies of the OLS with respect to prediction 

accuracy and interpretation, the OLS may not exist if the 

design matrix is singular [Neter et al. (2005)]. 

Hoerl and Kennard (1962) introduced the RR 

estimators as an alternative to OLS estimators in the presence 

of multicollinearity. It leads to estimators which have mean 

square error (MSE) smaller than the estimators of OLS. 

Tibshirani (1996) proposed LASSO to overcome the 

deficiencies of OLS such as prediction and interpretation of 

the reduced model. It is a powerful method that perform two 

main tasks: regularization and selection of variables. 

Zou and Hastie (2005) proposed a new regularization 

and selection of variables method, it is called EN. They 

viewed the EN as a generalization of the LASSO which 

overcomes the limitations of the second one. This method is 

very useful when  or there are many correlated 

variables. 

Tibshirani (1997) proposed a new method for selection 

of variables and shrinkage in Cox’s proportional hazards 
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model. This method is diffident of the LASSO proposed by 

Tibshirani, designed for the linear regression context. 

Osborne et al. (2000) proposed a new approach to 

selection of variables in least squares problems.   

          Fan and Li (2001) proposed a selection of variables 

method via penalized likelihood approaches. The algorithm 

gives estimators with good statistical properties. 

Hui and Zou (2006) proposed a new version of the 

LASSO called the adaptive LASSO. for simultaneous 

estimation and selection of variables, where adaptive weights 

are used for penalizing different coefficients in the  

penalty. 

Hebiri and Van (2011) introduced the LASSO-Type 

estimator which consists of two penalty terms: a  

penalty term which ensures sparsity and a quadratic penalty 

term which captures some structure in the regression vector. 

This estimator satisfies good theoretical properties, 

specifically when the LASSO estimator might fail.  

Arslan (2012) introduced the weighted least absolute 

deviation WLAD-LASSO method to improve the robustness 

of the OLS and least–sum of absolute deviations (LAD) 

based on LASSO method.  

Fonti and Belitser (2017) explained and discussed the 

use of the LASSO method to select the explanatory variables 

when applying the LASSO to a linear regression model, 

generalized linear model and logistic regression model for a 

high-dimensional dataset.  

Melkumova and Shatskikh (2017) introduced the 

comparison of RR and LASSO estimators. All the required 
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calculations are performed using the R software for statistical 

computations.  

Huang et al. (2018) proposed a constructive approach 

for estimating sparse, high-dimensional linear regression 

models.  

Emmert-Streib and Dehmer (2019) introduced high-

dimensional LASSO-Based computational regression 

models: regularization, shrinkage, and selection.  

Weigeetet al. (2019) applied LASSO regression 

method to analyze the influencing factors of vegetable price 

and more accurate results have been achieved which are 

based on cucumber price data and influencing factor data.  

Januavianiet al. (2019) introduced the LASSO method 

to predict Indonesian foreign exchange deposit data. 

This paper is organized as follows. The penalized 

regression methods are discussed in Section (2). Section (3) 

is devoted to the Monte Carlo simulation study. Some 

concluding remarks are presented in Section (4). 

 

2. Penalized Regression Methods 

Penalized regression methods keep all the predictor 

variables in the model but constrain (regularize) the 

regression coefficients by shrinking them toward zero. If the 

amount of shrinkage is large enough, these methods can also 

perform as selection of variables by shrinking some 

coefficients to zero. These methods are formulated in the 

constrained minimization form, where the solution for the 

vector of regression coefficients, is obtained by minimizing 

the sum squares of regression (SSR) subject to a penalty on 

the regression coefficients. The shrinkage (tuning) parameter 
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t determines the amount of shrinkage on the regression 

coefficients. In the last decade, many different penalized 

regression methods have been proposed. The LASSO method 

(Tibshirani1996), adaptive LASSO (Zou 2006) and Elastic 

Net (Zou and Hastie 2005) are the most popular. For each 

method, the penalty t imposed on the regression coefficients 

takes a different form [Hui and Zou, (2006)]. 

 

2.1 Ridge Regression 

RR method is to remedy multicollinearity problems by 

modifying the method of OLS to allow biased estimators of 

the regression coefficients. The advantage of a RR method 

can be reduce the variance by paying the price of an 

increasing bias. This can be improve the prediction of 

accuracy of a model. This works is appropriate  in situations 

where the OLS estimators have a high variance  . A 

disadvantage of the RR is that it does not shrink coefficients 

to zero and, does not taking the select the variables.  

The RR estimator can be viewed as an OLS estimator with an 

additional penalty imposed on the coefficient vector. 

The general form of the minimum of the penalized residual 

sum squares is given as :  

                         

 
The model can be formulated as follows: 

 
where  = ,  is the vector of the 

standardized ridge regression coefficients, , 
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and  is called the regularization parameter, is the 

tuning or regularization parameter that controls the shrinkage 

of coefficients [Emmert-Streib and Dehmer, (2019)]. 

 

2.2 LASSO Regression 

LASSO is a regularization and selection of variables 

method for statistical models which minimizes the sum of 

squared errors, with an upper bound on the sum of the 

absolute values of the model parameters. The estimator is 

defined by the solution for the  optimization problem  

                    

 
where  is the upper bound for the sum of the coefficients. 

This optimization problem is equivalent to the parameter 

estimator as follows 

 

 
where  = and  is the parameter that 

controls the strength of the penalty. The larger value of , 

means the greater in the amount of shrinkage. The relation 

between  and the upper bound  is a reverse relationship as  

tends to ∞, the problem becomes an ordinary least square and 

 equals 0. Vice versa as  equals 0, all coefficients shrink to 

0 and  tends to ∞. When minimizing the optimization 

problem some coefficients are shrank to zero, , 
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for some values of (depending on the value of the parameter 

). In this case the explanatory variables with coefficients 

equal to zero are excluded from the model.  

2.3 Elastic Net Regression 

The EN is a regularized regression method which 

overcomes the limitations of the LASSO. This method is 

very useful when  or there are many correlated 

variables. The EN as a generalization of the LASSO, to be a 

valuable tool for model fitting and feature extraction. 

The EN criterion is defined by 

                  

                  

 

 
Which depends on two regularized parameters . The 

EN penalty is a convex combination of the LASSO and ridge 

penalty and, in constraint form, it is given by 

  .  

When  the EN tend to RR and, at  the EN tend to 

LASSO. There are advantages of the EN given as follows: 

- A group of correlated variables can be selected without 

arbitrary omissions. 

- The number of selected variables is no longer limited by the 

sample size [Karl and Simar, (2015)]. 

This paper is concerned with introducing 

regularization and selection of variables method as a 
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generalization of the LASSO which combines the two 

penalties  and . This objective depend on the  

realizes which is the advantages of the LASSO method and 

 realizes is tent to the advantages of the ridge method. The 

generalized method will be applied to Low-dimensional data 

and High-dimensional data and will be compare to the 

LASSO and ridge method. 

3.The Monte Carlo Simulation Study 

In this section, a Monte Carlo simulation study is 

conducted to evaluate and compare the performance of (OLS, 

RR, LASSO and, EN) estimators. Programs R are used to 

solve the numerical analysis by some packages (MASS, LM 

ridge, … 

The simulated dataset is carried out based on eq.(1), with the 

following simulation settings: 

1. Different sample sizes are selected as: 

 in the case of Low-dimensional data 

and  in the case of High-dimensional data. 

2. Different number of the explanatory variables as 

 for Low-dimensional datasets, while 

 for High-dimensional in datasets. 

3. The true value of the intercept equals one ( ), and the 

true values of  as: , and . 

When using models which depend on choosing explanatory 

variables the used method in the simulation aim to determine 

the significant variables in which half of the explanatory 

variables can be set as non-significant to test the mechanism 

for selecting the explanatory variables in the proposed model 



 

 

 2020 ونيو والعشرون ي الرابعالعدد  جامعة الأزهر –المجلة العلمية لقطاع كليات التجارة 

 

80 

 

used in the present simulation and the non-significant ones 

are discarded from the simulation.  

4. The explanatory variables are generated from multivariate 

normal , where diag ( ) = 1 and off-diag ( ) = 

, where  and . Note that when this means 

that the model has a multicollinearity problem. 

5. The error is generated from the standard MND. 

6. For generating some outlier values in the model, 

some values are replaced randomly (according to the 

selected ratio of outlier values: and ) in y with 

other values generated from MND as 

 where IQR is inter quartile 

range.  

7. All Monte Carlo experiments involved 500 replications 

and all the results of all separate experiments are obtained by 

precisely the same series of random numbers. 

In this paper, the root mean squared error (RMSE), mean 

absolute error (MAE) and are used as the criteria of 

judgment: 

 
The simulation results are recorded in Tables 1 – 22. These 

Tables represent the RMSE, MAE and,  when the selected 

variables for the estimators in the different factors ( , , and 

outliers). From tables 1 – 16 represent the results of the 

various estimators in case of Low-dimensional data. From 

tables 17 – 22 represent the results of the various estimators 
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in case of High-dimensional data. The LASSO and EN 

methods are used in High- dimensional. 

Table (1): The average estimators of RMSE, MAE, and, for OLS, RR, 

LASSO and, EN when there are no outliers = 0%, n = 75 and k=6 

Table (2): The average estimators of RMSE, MAE, and, for OLS, 

RR, LASSO and, EN when outliers = 0%, n = 100 and k = 6 

 Method RMSE MAE R2 
Selected 

variables 

0.00 

OLS 1.06406 0.85516 0.98911 ALL 

RR 1.24228 0.99892 0.98891 ALL 

LASSO 1.04973 0.84333 0.98951 5 

EN 1.05521 0.84755 0.98938 5 

0.95 

OLS 1.07274 0.86261 0.99578 ALL 

RR 1.46977 1.17778 0.99238 ALL 

LASSO 1.06127 0.85477 0.99594 4 

EN 1.05887 0.85224 0.99594 4 

 Method RMSE MAE R2 
Selected 

variables 

0.00 

OLS 1.08774 0.87559 0.98912 ALL 

RR 1.28059 1.03223 0.98882 ALL 

LASSO 1.07173 0.86166 0.98959 5 

EN 1.07347 0.86338 0.98960 5 

0.95 

OLS 1.09073 0.87878 0.99529 ALL 

RR 1.47048 1.18280 0.99175 ALL 

LASSO 1.06753 0.86040 0.99553 4 

EN 1.06228 0.85582 0.99557 4 
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Table (3): The average estimators of RMSE, MAE, and, for OLS, 

RR, LASSO and, EN when outliers = 0%, n = 200 and k = 6 

 Method RMSE MAE R2 Selected 

variables 

0.00 

OLS 1.03000 0.82500 0.98884 ALL 

RR 1.18740 0.95025 0.98872 ALL 

LASSO 1.02429 0.82036 0.98901 5 

EN 1.02478 0.82083 0.98901 5 

0.95 

OLS 1.01405 0.81164 0.99520 ALL 

RR 1.35902 1.09159 0.99159 ALL 

LASSO 1.00775 0.80639 0.99525 4 

EN 1.01216 0.81108 0.99526 4 

 

Table (4): The average estimators of RMSE, MAE, and, for OLS, 

RR, LASSO and, EN when outliers = 0%, n = 300 and k = 6 

 Method RMSE MAE R2 
Selected 

variables 

0.00 

OLS 1.02412 0.81885 0.98807 ALL 

RR 1.17060 0.93508 0.98796 ALL 

LASSO 1.02029 0.81575 0.98817 5 

EN 1.02077 0.81626 0.98817 5 

0.95 

OLS 1.02320 0.81795 0.99552 ALL 

RR 1.40080 1.11836 0.99193 ALL 

LASSO 1.02041 0.81579 0.99560 4 

EN 1.01983 0.81522 0.99558 4 

Tables 1 – 4 represent the result of the obtained 

estimators from applying the methods of OLS, ridge , 

LASSO and EN when there are no outliers using different 
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sample sizes as n= 75, 100,200,300 and number of 

explanatory variables is k = 6 in the case of low- dimensional 

data. When the coefficient of correlation  is equal to zero 

(there is no collinearity between the explanatory variables) 

the LASSO method has the smallest values for the measures 

RMSE, MAE. But when the value of (there is 

collinearity between the explanatory variables) it is noticed 

that the EN method has the smallest values for the measures 

RMSE, MAE. Also, the EN has the greatest value for  with 

the two values of  which means that this method can 

explains more variation which affect the dependent variable. 

In addition ,LASSO and EN are appropriate in selecting 

v a r i a b l e s . 

Table (5): The average estimators of RMSE, MAE, and, for OLS, 

RR, LASSO and, EN when outliers = 0%, n = 75 and k = 20 

 Method RMSE MAE R2 
Selected 

variables 

0.00 

OLS 1.36559 1.10059 0.99156 ALL 

RR 2.18326 1.75484 0.98539 ALL 

LASSO 1.29168 1.03990 0.99269 17 

EN 1.30642 1.05249 0.99243 18 

0.95 

OLS 1.35964 1.09464 0.99930 ALL 

RR 2.18177 1.75228 0.99819 ALL 

LASSO 1.90169 1.52565 0.99938 13 

EN 1.83949 1.47497 0.99935 13 
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Table (6): The average estimators of RMSE, MAE, and, for OLS, 

RR, LASSO and, EN when outliers = 0%, n = 100 and k = 20 

 Method RMSE MAE R2 
Selected 

variables 

0.00 

OLS 1.24789 1.00096 0.99280 ALL 

RR 1.82679 1.46354 0.99023 ALL 

LASSO 1.20555 0.96734 0.99344 17 

EN 1.21485 0.97476 0.99326 18 

0.95 

OLS 1.24427 1.00038 0.99935 ALL 

RR 2.00654 1.60536 0.99832 ALL 

LASSO 1.73659 1.39706 0.99939 13 

EN 1.69774 1.36547 0.99937 14 

Table (7): The average estimators of RMSE, MAE, and, for OLS, 

RR, LASSO and, EN when outliers = 0%, n = 200 and k = 20 

 Method RMSE MAE R2 
Selected 

variables 

0.00 

OLS 1.10977 0.88736 0.99514 ALL 

RR 1.37944 1.10730 0.99479 ALL 

LASSO 1.08996 0.87211 0.99537 16 

EN 1.09219 0.87356 0.99532 17 

0.95 

OLS 1.10351 0.88335 0.99949 ALL 

RR 2.09226 1.67573 0.99821 ALL 

LASSO 1.62510 1.29316 0.99953 12 

EN 1.58834 1.26406 0.99952 12 
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Table (8): The average estimators of RMSE, MAE, and, for OLS, 

RR, LASSO and, EN when outliers = 0%, n = 300 and k = 20 

 Method RMSE MAE R2 
Selected 

variables 

0.00 

OLS 1.07169 0.85724 0.99508 ALL 

RR 1.31049 1.05029 0.99487 ALL 

LASSO 1.05941 0.84737 0.99524 16 

EN 1.06123 0.84877 0.99521 17 

0.95 

OLS 1.06710 0.85376 0.99953 ALL 

RR 2.03264 1.61117 0.99830 ALL 

LASSO 1.59312 1.26838 0.99955 12 

EN 1.56076 1.24245 0.99954 12 

Tables 5 - 8 represent the results of  the obtained 

estimators from applying the methods of OLS, ridge, LASSO 

and EN when there are no outliers using different sample 

sizes as  and the number of explanatory 

variables is  in the case of low- dimensional data. 

when the coefficient of correlation  is equal to zero (there 

is no collinearity between the explanatory variables) the 

LASSO method has the smallest values for the measures 

RMSE, MAE. But, when the value of (there is 

collinearity between the explanatory variables) the EN 

method has the smallest values for the measures RMSE, 

MAE. In addition, the LASSO has the compatible value of 

, also LASSO and EN is sufficient in selecting variables. 
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Table(9): The average estimators of RMSE, MAE, and, for OLS, 

RR, LASSO and, EN when outliers = 15%, n = 75,and k= 6 

 Method RMSE MAE R2 
Selected 

variables 

0.00 

OLS 21.96185 15.54582 0.14867 ALL 

RR 21.79081 15.35956 0.14933 ALL 

LASSO 21.25412 14.99399 0.15243 3 

EN 21.33063 14.97304 0.15203 5 

0.95 

OLS 42.91193 30.51059 0.08701 ALL 

RR 40.89547 28.47921 0.11096 ALL 

LASSO 40.20925 28.15167 0.13374 2 

EN 39.92546 28.00635 0.14295 3 

 

Table (10): The average estimators of RMSE, MAE, and, for OLS, 

RR, LASSO and, EN when outliers = 15%, n = 100 and k= 6 

 Method RMSE MAE R2 
Selected 

variables 

0.00 

OLS 22.89620 16.14534 0.11231 ALL 

RR 22.78355 16.04157 0.11350 ALL 

LASSO 22.42343 15.81424 0.11605 4 

EN 22.41558 15.76245 0.11604 5 

0.95 

OLS 34.71381 24.50302 0.10930 ALL 

RR 33.39004 23.41353 0.13821 ALL 

LASSO 33.10362 23.35253 0.15799 2 

EN 32.96437 23.22943 0.16496 3 
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Table (11): The average estimators of RMSE, MAE, and, for OLS, 

RR, LASSO and, EN when outliers = 15%, n = 200 and k= 6 

 Method RMSE MAE R2 
Selected 

variables 

0.00 

OLS 22.42146 15.64623 0.10198 ALL 

RR 22.36787 15.60029 0.10197 ALL 

LASSO 22.26792 15.58305 0.10407 4 

EN 22.22338 15.55020 0.10409 5 

0.95 

OLS 39.45112 27.65671 0.07698 ALL 

RR 38.95378 27.38085 0.08821 ALL 

LASSO 38.77864 27.31436 0.09990 2 

EN 38.64149 27.23241 0.10601 3 

 

 

Table(12): The average estimators of RMSE, MAE, and, for OLS, RR, 

LASSO and, EN when outliers = 15%, n = 300 and k= 6 

 Method RMSE MAE R2 
Selected 

variables 

0.00 

OLS 22.19938 15.48367 0.10129 ALL 

RR 22.16674 15.46751 0.10179 ALL 

LASSO 22.12442 15.47802 0.10288 5 

EN 22.10581 15.47234 0.10267 5 

0.95 

OLS 35.87823 25.05733 0.09712 ALL 

RR 35.49692 24.92147 0.10984 ALL 

LASSO 35.36313 24.87376 0.11689 3 

EN 35.35131 24.89073 0.11902 4 
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Tables 9 - 12 represent the results of the obtained 

estimators from applying the methods of OLS, ridge, LASSO 

and EN when there are 15% outliers using different sample 

sizes as n =75, 100, 200, 300 and number of explanatory 

variables is k = 6 in the case of low-dimensional data. when 

the coefficient of correlation is equal to zero (there is no 

collinearity between the explanatory variables) the EN 

method has the smallest values for the measures RMSE, 

MAE. But, when the value of (there is collinearity 

between the explanatory variables) the EN method has the 

smallest values for the measures RMSE, MAE. In addition, 

EN has the compatible value of , also LASSO and EN are 

appropriate in selecting variables. 

 

Table (13): The average estimators of RMSE, MAE, and, for OLS, 

RR, LASSO and, EN when outliers = 15%, n = 75and k= 20 

 Method RMSE MAE R2 
Selected 

variables 

0.00 

OLS 50.56980 38.80567 0.05190 ALL 

RR 48.36526 36.67422 0.05376 ALL 

LASSO 39.46258 28.48060 0.05380 3 

EN 42.44671 31.09004 0.05325 13 

0.95 

OLS 148.62944 114.21679 0.05886 ALL 

RR 118.25861 83.64788 0.09943 ALL 

LASSO 110.84558 77.68443 0.15016 3 

EN 110.20993 77.07346 0.15896 4 
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Table (14): The average estimators of RMSE, MAE, and, for OLS, 

RR, LASSO and, EN when outliers = 15%, n = 100 and k= 20 

 Method RMSE MAE R2 
Selected 

variables 

0.00 

OLS 46.23871 34.74597 0.04655 ALL 

RR 45.12440 33.68611 0.04570 ALL 

LASSO 39.66431 28.58847 0.04235 5 

EN 41.58705 30.19934 0.04496 13 

0.95 

OLS 138.93487 104.65616 0.05310 ALL 

RR 120.41259 85.59050 0.08220 ALL 

LASSO 113.91253 80.30376 0.12335 3 

EN 113.33949 79.88300 0.13192 4 

 

Table (15): The average estimators of RMSE, MAE, and, for OLS, 

RR, LASSO and, EN when outliers = 15%, n = 200 and k= 20  

 Method RMSE MAE R2 
Selected 

variables 

0.00 

OLS 43.12061 30.97939 0.05354 ALL 

RR 42.79971 30.67705 0.05372 ALL 

LASSO 41.05434 29.10741 0.05071 10 

EN 41.36831 29.27857 0.05111 14 

0.95 

OLS 116.60006 83.67337 0.06392 ALL 

RR 109.27017 76.23678 0.09564 ALL 

LASSO 106.66929 74.76825 0.12690 4 

EN 105.90301 74.52763 0.13708 5 
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Table (16): The average estimators of RMSE, MAE, and, for OLS, 

RR, LASSO and, EN when outliers = 15%, n = 300 and k= 20  

 Method RMSE MAE R2 
Selected 

variables 

0.00 

OLS 40.88605 28.84036 0.05755 ALL 

RR 40.71706 28.71606 0.05713 ALL 

LASSO 39.85579 28.04578 0.05414 12 

EN 39.91478 28.04950 0.05344 14 

0.95 

OLS 139.23361 98.33311 0.04825 ALL 

RR 133.52371 93.27302 0.07049 ALL 

LASSO 131.14743 92.26240 0.09307 4 

EN 130.65465 92.19347 0.10038 5 

 

Tables 13 - 16 represent the results of the obtained 

estimators from applying the methods of OLS, ridge, LASSO 

and EN when there are 15% of outliers using different 

sample sizes as n = 75, 100, 200, 300 and the number of 

explanatory variables is k = 20 in the case of low-

dimensional data. when the coefficient of correlation  is 

equal to zero (there is no collinearity between the 

explanatory variables) the LASSO method has the smallest 

values for the measures RMSE, MAE. But, when the value of 

(there is collinearity between the explanatory 

variables) the EN method has the smallest values for the 

measures RMSE, MAE. In addition, EN has the compatible 

value of  and it are appropriate in selecting variables. 
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Table(17): The average estimators of RMSE, MAE, and,  for LASSO 

and EN for HD data when outliers = 0% and k= 100 

  Method RMSE MAE R2 
Selected 

variables 

25 

0.00 

LASSO 25.06338 21.42706 0.09941 1 

EN 26.06660 22.14841 0.09422 35 

0.95 

LASSO 23.25811 19.20100 0.99576 29 

EN 10.46502 8.47863 0.99959 100 

50 

0.00 

LASSO 33.87210 26.97234 0.14755 28 

EN 29.91881 23.96333 0.27175 62 

0.95 

LASSO 18.12829 15.03965 0.99701 43 

EN 9.01871 7.48916 0.99971 100 

 

Table (18): The average estimators of RMSE, MAE, and,  for LASSO 

and EN for HD data when outliers = 0% and k= 200 

n  Method RMSE MAE R2 
Selected 

variables 

50 

0.00 

LASSO 55.35134 43.85659 0.04847 1 

EN 54.41400 43.57338 0.07972 83 

0.95 

LASSO 36.22438 29.63382 0.99431 54 

EN 15.17606 12.40342 0.99960 200 

100 

0.00 

LASSO 47.49083 38.94290 0.15968 43 

EN 45.05417 36.89456 0.20699 99 

0.95 

LASSO 29.13738 23.76127 0.99832 92 

EN 16.99362 14.08550 0.99982 200 
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Table(19): The average estimators of RMSE, MAE, and,  for LASSO 

and EN for HD data when outliers = 0% and k= 300 

n  Method RMSE MAE R2 
Selected 

variables 

100 

0.00 

LASSO 58.78577 47.58312 0.12074 44 

EN 55.90233 45.48068 0.17546 143 

0.95 

LASSO 44.77200 36.44241 0.99822 101 

EN 25.44278 21.03140 0.99988 300 

150 

0.00 

LASSO 60.00250 47.54373 0.13709 144 

EN 53.36222 42.09911 0.21074 168 

0.95 

LASSO 37.54366 30.54349 0.99857 124 

EN 23.36873 18.42799 0.99984 300 

 

Tables 17 - 19 represent the result of the obtained 

estimators from applying the methods of LASSO and EN 

when there are no outliers in the data using different sample 

sizes, the coefficient of correlation  and 

different number of explanatory variables in the case of high-

dimensional data. When the sample size is increased and 

when  between the explanatory variables it 

is noticed that EN method has the smallest values for the 

measures of RMSE and MAE which means it is the best 

method than LASSO method. Also, EN method has the 

greatest value of R2 than LASSO method which means that 

explains more variations than LASSO method and it is better 

in selecting variables. 
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Table (20): The average estimators of RMSE, MAE, and,  for LASSO 

and EN for HD data when outliers = 15% and k= 100 

n  Method RMSE MAE R2 
Selected 

variables 

25 

0.00 

LASSO 72.21272 51.62750 0.13598 4 

EN 72.27706 51.97192 0.14042 22 

0.95 

LASSO 484.99485 334.39289 0.35742 4 

EN 472.99445 323.91423 0.38549 17 

50 

0.00 

LASSO 106.27043 78.39640 0.06370 6 

EN 106.60289 78.61635 0.06826 14 

0.95 

LASSO 655.28613 455.06672 0.15213 5 

EN 641.76743 444.11853 0.17677 16 

 

Table(21): The average estimators of RMSE, MAE, and,  for LASSO 

and EN for HD data when outliers = 15% and k= 200 

n  Method RMSE MAE R2 
Selected 

variables 

50 

0.00 

LASSO 124.47083 92.72937 0.06354 7 

EN 125.08160 93.31391 0.06824 25 

0.95 

LASSO 1076.60643 748.09731 0.17620 7 

EN 1053.37536 729.24622 0.20620 28 

100 

0.00 

LASSO 140.24401 101.35687 0.03012 6 

EN 142.60531 103.46130 0.03146 13 

0.95 

LASSO 1209.49637 849.51524 0.12216 7 

EN 1191.96701 838.94223 0.14405 21 
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Table (22): The average estimators of RMSE, MAE, and,  for LASSO 

and EN for HD data when outliers = 15% and k= 300 

n  Method RMSE MAE R2 
Selected 

variables 

100 

0.00 

LASSO 174.31765 126.80075 0.03104 7 

EN 176.63074 128.99068 0.03233 16 

0.95 

LASSO 1914.42992 1346.29735 0.11670 8 

EN 1886.09733 1326.86802 0.13884 28 

150 

0.00 

LASSO 151.88982 110.03227 0.01951 8 

EN 153.79148 111.72149 0.01946 15 

0.95 

LASSO 1794.79567 1247.58636 0.10453 7 

EN 1771.07779 1235.90145 0.12219 19 

 

Tables 20 - 22 represent the result of the obtained 

estimators from applying the methods of LASSO and EN 

when there are 15% outliers using different sample sizes, the 

coefficient of correlation and different 

number of explanatory variables in the case of high-

dimensional data. When data has outliers, and the 

sample size is increased reflects the RMSE, MAE and R2 

value of LASSO and EN methods are relatively close, and 

the EN method is better in selecting variables. But, when the 

value of  the EN method has the smallest values for 

the measures RMSE, MAE. In addition, EN has the greatest 

value of  and it is better in selecting variables. 

4.Conclusions  
 

The simulation results indicate that the obtained 

estimators using EN are efficient and reliable than the other 



 

 

 2020 ونيو والعشرون ي الرابعالعدد  جامعة الأزهر –المجلة العلمية لقطاع كليات التجارة 

 

95 

 

estimators when the explanatory variables are highly 

correlated as well as the dataset contains outliers or not. It is 

concluded that the values of RMSE and MAE of EN 

estimators are smaller than the RMSE and MAE for the other 

estimators in both the two cases of low and high dimensional 

data. In addition, the EN method is better than LASSO when 

it used to be selecting variables. 

In this paper, the performance of EN estimator compared to 

and OLS, ridge, and LASSO estimators under different 

situations. The evaluation is based on using the measures of 

RMSE, MAE, and . Two cases are considered: low-

dimensional data and high-dimensional data based on 

providing an introduction of the regression analysis, 

illustration the penalized regression methods of most 

common. The Monte Carlo simulation study is conducted to 

evaluate and compare the performance of these estimators 

under different situations. The simulation results indicate that 

the obtained estimators using EN are efficient and reliable 

than the other estimators when the explanatory variables are 

highly correlated. Finally, we can say that the LASSO 

method helps us to choose a model with the most relevant 

features in general, it is advised to use the EN method with 

multicollinearity problems and high-dimensional datasets. 
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