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 Abstract 

Cyclosporin A (CsA); an immunosuppressive agent, is broadly used for the 

remedy of autoimmune diseases and after organ transplantations. However, 

its medical and experimental use is restrained with the aid of quite few side 

effects, such as nephrotoxicity, cardiotoxicity, hypertension and 

hepatotoxicity. Despite its toxicity, CsA remains to be one of the most 

usually used immunosuppressive agent due to its therapeutic efficacy. The 

key mechanisms involved in organ damage caused by CsA include altered 

redox homeostasis and chronic systemic inflammation. Indeed, various 

mechanisms have been suggested for CsA induced hepatotoxicity along with 

the development of reactive oxygen species, oxidative stress, and hepatic 

antioxidant system depletion. In some of the side findings, many mechanisms 

concerned have been appreciably explored and explained. Nevertheless, the 

mechanisms underlying CsA-mediated hepatotoxicity are not utterly 

understood. This review discusses CsA toxicity and its pathophysiology and 

role of oxidative stress in the initiation of the toxicity in addition to the 

different Therapeutic approaches for its toxicity. 

Keywords: Cyclosporin A; Hepatototoxicity; Inflammation; Oxidative 

stress; Wnt/β-catenin signaling. 

 

1. Cyclosporin A 

1.1. Background  

Cyclosporin A (CsA) discovery passed through set 

of stages. Starting from development as antifungal 

agent up to its attractive use as an 

immunosuppressive agent. CsA was discovered in 

the lab of Sandoz in Switzerland in 1972. Natural 

CsA was initially found within 50 soil samples in 

Norway collected by Hans Peter Frey within the 

Sandoz Screening program for natural antifungal 

antibiotics which started in 1958. One of these 

samples contained the fungus Tolypocladium 

inflatum (Kahan, 1999) which was isolated in 1970 

for screening of its antifungal metabolites, coming  

 to the discovery of CsA immunosuppression 

activity through a screening test by a Sandoz 

pharmacologist Hartmann F. Stähelin in 1972. CsA 

is also produced by other organisms (Fusarium 

spp., Neocosmospora spp.) as a secondary 

metabolite (Svarstad et al., 2000). 

In the Biological and Medical Research Division of 

Sandoz in Switzerland in 1976, Borel set up a series 

of experiments for the investigation of CsA 

capacity for inhibition of cell-mediated cytolysis. It 

was found that CsA, inhibited both in vitro 

cellmediated lysis as well as lymphocyte 

sensitization by allogeneic target cells considering 

its negative actions following in-vivo 

administration (Borel, 1976). In 1980s, CsA was  
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extensively studied on human to be clinically 

approved as an immunosuppressive agent in 

transplantation (European Multicentre Trial 

Group, 1983; Canadian Multicentre Transplant 

Study Group, 1986; Hariharan et al., 2000). 

Despite its adverse effects, CsA is still a backbone 

in organ transplantation (Shah et al., 2017). 

Improvement of life quality and survival of 

transplant patient are the most attractive features 

(Cid et al., 2003; Li et al., 2004). In addition, 

reducing morbidity, graft rejection, hospitalization 

by CsA treatment has another economical view. 

Moreover, CsA has relatively non-myelotoxic 

immunosuppressive effects, in contrast to 

azathioprine (AZA) and mycophenolate mofetil 

(MMF) (Rezzani, 2004). 

1.2. Chemical structure 

Cyclosporin A is a cyclic undecapeptide 

(C6H11N11O12) with a molecular weight of 

1203.63Da (Rezzani, 2004). As shown in Figure 1, 

its chemical structure comprises peculiar features. 

Two amino acids are unusual: 3-hydroxy-4-methyl-

2-methylamino-6-octonoic acid (MeBmt) at 

position 1 and a-aminobutyric acid (Abu) at 

position 2. Seven of the 11 main chain nitrogens are 

methylated: MeBmt 1, Sar 3, MeLeu 4, MeLeu 6, 

MeLeu 9, MeLeu 10 and MeVal 11. One residue is 

in the d configuration (d-Ala 8) (Altschuh, 2002).  

For cyclosporin A, changes of amino acids at 

positions 4, 6 and 11 lead to a complete loss of 

immunosuppressive activity. Whereas, changes at 

amino acids 1 retained immunosuppressive activity 

for CsA metabolites (Rezzani, 2004). 

Figure 1. Chemical structure of CsA (Rezzani, 2004). 

1.3. Mechanism of action 

Cyclosporin A is classified as calcineurin inhibitor  

 (CNI) or reversible inhibitor of T cells activation, 

particularly, T helper cells (Tedesco and 

Haragsim, 2012). As demonstrated in Figure 2, 

CsA can bind to an intracellular protein called 

immunophilin (Cyclophilin A) (CY) (Matsuda et 

al., 2000). CsA-CY complex effectively inhibit the 

dephosphorylating action of calcineurin 

“Calcium/calmodulin-dependent serine threonine 

protein phosphatase” (Liu et al., 1991). 

Subsequently, CsA-CY-Calcineurin complex 

prevents dephosphorylation of nuclear factor of 

activated T-lymphocytes (NFATs), which in turn, 

prevents the nuclear translocation of NFAT 

(Rezzani, 2004). This is believed to abort activation 

of nuclear factors involved in the gene transcription 

for interleukin-2 (IL-2) and other cytokines, 

including interferon, which subsequently, prevent 

overall immune response (Tedesco and Haragsim, 

2012). 

 

Figure 2. CsA mechanism of action (Rezzani, 2006). 

1.4. Therapeutic indication & dosing 

regimen 

Cyclosporin A has been indicated for prevention of 

organ rejection after solid organ transplantation 

(Rezzani, 2006), uveitis (Nussenblatt, 1988), 

rheumatoid arthritis (Yoshinoya et al., 1988), 

psoriasis nephrotic syndrome (Reynolds and Al-

Daraji, 2002), autoimmune diseases (Bach, 1999) 

and neurological autoimmune diseases (Belendiuk 

and Solch, 1988). 

At dosing level, oral approved dose of CsA is 5 – 

10 mg/kg, whereas, I.V. approved dose is 1.5 – 2.5 

mg/kg daily. These doses were recommended for 

prevention of acute rejection and in conversion 

protocols “i.e. patients with inefficacy of other 

immunosuppressive agents”. I.V. route is 

preferable, particularly, with poor oral absorbed 

formulations of CsA (Sandimmune®).  
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It is interesting to mention that liver transplant 

patients may have a slight impairment in bile 

formation early after transplantation, which in turn, 

decrease absorption and/or biliary excretion of some 

medications “i.e. digoxin and Sandimmune®”. 

However, absorption of the oral CsA (Neoral®) is 

independent on bile which allows oral route for 

liver transplant patients at a dose 10 – 15 mg/kg/day 

(Rezzani, 2004). 

1.5. Adverse effects 

Generally, the toxic effects induced by CsA can be 

divided into acute and chronic actions (Calne, 

2002). Previously, it has been reported that CsA 

induce several toxic effects in both transplant and 

non-transplant situations (Rezzani, 2006). The most 

notably side effects of CsA are nephrotoxicity 

(Olyaei et al., 2001), neurotoxicity, hepatotoxicity, 

hypertension, hyperkalemia, hirsutism 

(Hypertrichosis), gingival hyperplasia, anemia, 

diarrhea, infections, hyperlipidemia, 

hypomagnesaemia, hyperglycemia, hyperuricemia, 

gout, paresthesia, thrombotic microangiopathy and 

cardiovascular disorders. It is interesting to note that 

these effects could be abrogated via dose reduction, 

however, CsA discontinuation is still remaining the 

best protocol to avoid these toxic effects (Tedesco 

and Haragsim, 2012). 

These effects may be due to decrease calcineurin 

levels in nonlymphocytic tissues (Williams and 

Haragsim, 2006). Others revealed that alterations 

in the renal tubular functions induced by CsA may 

be the underlying etiology for electrolyte 

disturbances “i.e. homeostasis (Naesens et al., 

2009). 

Additionally, CsA induces histomorphological 

toxicities in different organs including thymus 

gland, kidney, liver, heart, pancreas and nervous 

system resulting in multiple organ failure (Rezzani, 

2006). 

1.5.1. CsA- induced nephrotoxicity 

The first detected nephrotoxicity induced by CsA 

was in 1978 (Calne et al., 1978). Two types of 

nephrotoxicity could be induced by CsA, (acute and 

chronic). Several clinical studies attempted to 

demonstrate the underlying reason of acute 

nephrotoxicity. However, there are multiple reasons 

which might all contribute to this side effect. It was 

observed that activation of the renal sympathetic  

 
nervous system concurrently with stimulation of 

plasma renin activity lead to subsequent, activation 

of Renin-Angiotensin-Aldosterone System (RAAS) 

followed by the characterized features of CsA-

induced acute nephrotoxicity (Rezzani, 2004). This 

effect has been linked, later, with the imbalance in 

vasoconstrictor factors (i.e. endothelin and 

thromboxane) and vasodilator factors (i.e. 

prostacyclin, prostaglandin E2, and nitric oxide) 

(Hortelano et al., 2000). Another mechanism was 

strongly proved which revealed the involvement of 

ROS in different tissues (Akool et al., 2012). 

On the other hand, chronic nephrotoxicity induced 

by CsA has been reported in several clinical trials 

which is directly related to the long-term 

administration of CsA (Nankivell et al., 2004).  

The main histopathologic feature of CsA-induced 

nephrotoxicity is arteriolar hyalinosis with 

interstitial striped fibrosis (Naesens et al., 2009).  

Collectively, pro-inflammatory and pro-fibrotic 

effects induced by CsA thought to be due to the 

upregulation of transforming growth factor-beta 

(TGF-β) induced by CsA (Rezzani, 2004) either 

directly via ROS – TGF-β – canonical Smad 

pathway (Akool et al. , 2008) or indirectly via 

induction of angiotensin II (Naesens et al., 2009).  

Another report mentioned that the lower expression 

of CYP3A4 and CYP3A5 (Joy et al., 2007) are 

correlated to hasten the development of CsA-

induced chronic nephrotoxicity (Hesselink et al., 

2010). Moreover, concomitant administration of 

non-steroidal anti-inflammatory agents (NSAIDs), 

aminoglycosides and various anti-fungal agents 

with CsA increase the risk of nephrotoxicity 

(Rezzani, 2004). 

1.5.2. CsA- induced neurological disorders 

It was found that 50% of patients received CsA 

suffer from neurological complications of CsA, 

particularly, high dosing therapy. The main 

neurological disorders induced by CsA include 

seizures (Rezzani, 2004), tremor, neuralgia, 

paraesthesia, confusion, ataxia, hemiplegia (Vellodi 

et al., 1987), transient cortical blindness (Rubin 

and Kang, 1987) and occipital seizure (Gijtenbeek 

et al., 1999). 

Other contributing factors reported to hasten 

convulsions induced by CsA, are fluid retention, 

hypertension, high-dose steroids, graft dysfunction  
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and demyelination. In addition, hypomagnesemia 

(Rezzani, 2004) and hypercholesterolemia (de 

Groen et al., 1987) are other factors that might 

predispose convulsions. It is believed that CsA 

metabolites are the underlying reason for this type 

of disorders (Kunzendorf et al., 1989). 

1.5.3. CsA- induced hypertension 

Hypertension induced by CsA is characterized by 

increase in systemic vascular resistance within days 

to weeks of administration (Taler et al., 1999), 

disturbed circadian rhythm, lack of the normal 

nocturnal fall in blood pressure (Reeves et al., 

1986), nocturnal headache and nocturnal urination. 

The most severe form detected at night and 

characterized by accelerated hypertension with 

retinal hemorrhages, central nervous system 

symptoms, left ventricular hypertrophy, lacunar 

stroke and microalbuminuria (Rezzani, 2004).  

Although, the increase of systolic blood pressure 

induced by CsA didn’t affect the urinary output, 

creatinine clearance has been significantly 

decreased. In addition, the lipid peroxidation by-

products markedly increased indicating presence of 

oxidative damage induced by CsA (Rezzani, 2006).  

Continues uncontrolled hypertension might lead to 

vascular injury including microangiopathic 

hemolysis, encephalopathy and seizures (Textor et 

al., 1994). Interestingly, it was reported that sodium 

intake might modulate hypertension induced by 

CsA (Singer et al., 1994). However, these studies 

lack the history of hypertension for those patients 

(Rezzani, 2004). 

1.5.4. CsA- induced hepatotoxicity 

Experimental studies and clinical observations 

reveal that CsA can lead to drug-induced liver 

injury. In CsA induced liver injury, functional and 

morphological changes are observed. The functional 

changes include elevated serum levels of liver 

transaminases and alkaline phosphatase, cholestasis, 

hyperbilirubinemia, increased production of bile 

salts, and impaired secretion of lipids (Hillebrand, 

1999; Abboud and Kaplowitz, 2007). On the other 

hand, the morphological changes observed in 

experimental animals receiving CsA include 

impaired trabecular structure, hepatic sinus 

congestion and widening, activation of the Kupffer 

cells, passive congestion and oedema of portal 

tracts, mild mononuclear cell infiltrations within 

portal tracts, and degenerative changes in the  

 hepatocytes including their focal necrosis (Kurus 

et al., 2009; Akbulut et al., 2015). 

The mechanisms of CsA-induced liver injury 

involve the development of hypermetabolic state in 

the liver (Zhong et al., 2001) and inhibition of 

ATP-dependent transport of bilirubin and bile salts 

through the hepatocyte canalicular membranes as 

well as of bile secretion (Kadmon et al., 1993; 

Böhme et al., 1994). In addition, based on 

molecular mechanism(s), several studies mentioned 

that CsA induces oxidative stress via reduction of 

the antioxidant capacity (Rezzani et al., 2005). 

Obviously, an imbalance between oxidants and 

endogenously produced antioxidants have been 

implied in CsA-induced hepatotoxicity (Rezzani, 

2006). Furthermore, the toxic effects of CsA 

directly leads to oxidative stress and subsequent 

hepatic injury (Akool, 2015). Finally, the use of 

antioxidants in experimental animals exposed to 

CsA reduces liver functional and morphological 

damage, which confirms the involvement of 

oxidative stress as one of the mechanisms of 

hepatotoxicity (Rezzani, 2006). 

1.5.5. Pharmacological intervention on CsA 

hepatotoxicity 

Combination therapy of vitamin E and C have been 

reported as the first successful intervention for 

CsA-induced liver injury via increasing the 

antioxidant capacity (Durak et al., 2004). Also, 

taurine, 2-aminoethanolsulfonic acid, improves the 

hepatic function which deteriorated by CsA 

(Hagar, 2004). Melatonin also has a protective 

hepatic effect via inhibition of the stress protein 

expression (i.e. Heat shock protein 60, heat shock 

protein 72 and metallothionein) (Rezzani et al., 

2005). 

Considering these studies, quercetin plus vitamin E 

(Mostafavi-Pour et al., 2013), trapidil plus L-

arginine (Salem et al., 2010), trimetazidine plus 

vitamin E (Cristina et al., 2013), propolis (Seven 

et al., 2014), ellagic acid (Pari and Sivasankari, 

2008), N-acetylcysteine (Kaya et al., 2008), 

sulphated polysaccharides (Josephine et al., 2008), 

vildagliptin (El-Sherbeeny and Nader, 2016) and 

wheat germ oil (Akool, 2015) were all able to 

significantly ameliorate CsA-induced liver injury. 

Generally, these protocols involve the use of one or 

more immunosuppressive agents with more 

selective specific actions rather than CsA. This 

combination may include daclizumab (an IL-2  
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receptor blocker) plus MMF and corticosteroids or 

sirolimus along with MMF and corticosteroids 

(Larson et al., 2006). 

The highest graft survival, and lowest rate of 

biopsy-proven rejection detected with low-dose 

CsA when patients receive either standard therapy 

with CsA, MMF, and corticosteroids or undergo 

daclizumab induction, MMF and corticosteroids 

and either low-dose tacrolimus, low-dose CsA, or 

low dose sirolimus (Kuypers et al. , 2009).  

In addition, belatecept show better renal functions 

than CsA, however, there was a similar acute 

rejection (Vincenti et al., 2010). Despite all these 

attempts, these protocols didn’t improve the clinical 

status “i.e. allograft survival”, moreover, rates of 

acute rejection may be too great (Tedesco and 

Haragsim, 2012). 

2. Molecular mechanisms of 

hepatotoxicity induced by CsA 

2.1. Peroxisome Proliferator-Activated 

Receptor Gamma role in CsA hepatotoxicity 

Peroxisome Proliferator-activated receptors 

(PPARs) represent as a ligand-activated 

transcription factors which play a vital role in genes 

regulation in cell differentiation processes and a 

variety of metabolic pathways, mainly lipid and 

glucose homeostasis. In molecular terms, PPARs 

characterize a family of ligand-activated nuclear 

hormone receptors (NRs) belonging to the steroid 

receptor superfamily (Berger and Moller, 2002; 

Boitier et al., 2003). Once NRs interacted with the 

particular ligands, they are transferred to the 

nucleus, where they can alter their structure and 

also control gene transcription (Willson et al., 

2000; Rogue et al., 2010). 

The three-dimensional arrangement of PPARs 

includes a DNA binding domain within the N-

terminus and also a ligand binding domain within 

the C-terminus. Once they interacted with agonists, 

PPARs are translocated to the nucleus and form a 

heterodimer with another nuclear receptor which is 

termed the retinoid X receptor (RXR) (Figure 3). 

The RXR forms a heterodimer with a lot of other 

receptors (e.g., vitamin D or thyroid hormones). 

The particular DNA regions of target genes to 

facilitate unite with PPARs are called Peroxisome 

Proliferator hormone response elements (PPREs) 

(Berger and Moller, 2002).  

 
The PPREs are established in the promoters of 

PPAR responsive genes, for example the fatty 

acid-binding protein adipocyte Protein 2 (aP2). 

Generally, this process stimulates transcription of 

a variety of genes implicated in miscellaneous 

physiological plus pathophysiological processes 

(Willson et al., 2000).  

All PPARs members covers three isoforms: 

PPARα, PPARβ/δ and PPAR-γ (Berger and 

Moller, 2002). The particular three isotopes vary 

from each one in their tissue distributions, ligand 

specificities and physiological performances. 

Each of them possibly stimulates or suppresses 

special genes with only limited overlap in action  

(Willson et al., 2000) (Figure 4). 

Peroxisome proliferator activated receptor- γ is a 

member of the nuclear hormone receptor family 

that not only is prominently involved in 

adipogenesis and metabolic regulation, but also 

exerts an important role in the pathogenesis of 

CsA hepatotoxicity by interacting with three 

different mechanisms including oxidative stress, 

inflammation and Wnt/β-catenin signaling 

(Standiford et al., 2005). 

2.2. Oxidative stress 

There is a strong debate between authors about the 

mechanistic pathway(s) by which CsA induces its 

toxic actions. However, many authors develop 

different hypothesizes to reveal this ambiguity. It 

is interesting to note that the imbalance between 

ROS formation and defense antioxidant system 

greatly accepted and supported by several studies 

through the use of antioxidants in attempting to 

reduce toxic effects induced by CsA in different 

organs, for instance,  liver (Akool, 2015) and 

heart (Rezzani, 2006). The role of oxidative stress 

in chronic CsA treatment has been examined in 

several studies (Han et al. , 2006; Erarslan et al. 

, 2011). CsA induces intramitochondrial Ca++, 

increases oxidative stress and ROS production, 

and inhibits mitochondrial glucose metabolism 

(the Krebs cycle and oxidative phosphorylation) 

and ATP production (Serkova et al. , 2004). 

It is postulated that CsA is an uncoupler and 

inhibitor of the mitochondrial transport system. In 

addition, CsA induced ROS generation is 

activated by NADPH oxidase, xanthine oxidase, 

cytochrome P450, or decreased intracellular 

antioxidant systems (Jeon et al. , 2005). Increase 

in ROS results in lipid peroxidation and increases  
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Figure 3. PPAR-γ transcriptional activation. (1) Binding of activating ligands to PPAR-γ and to its dimer partner RXR; 

(2) following the ligand binding there are conformational changes of the receptors, resulting in re-arrangement of the 

transcriptional complex and changes in the associated transcriptional cofactors; (3) resulting from this reorganization, 

the transcriptional complex is activated and initiates changes in the expression of the regulated PPAR-γ target genes 

(Wang et al. , 2014). 

 

Figure 4. PPARs and their gene targets (Grygiel-Górniak, 2014). 

its products such as MDA. Moreover, CsA 

treatment reduces GSH, an important antioxidant 

(Ay et al. , 2007; Erarslan et al., 2011) which 

converts lipid peroxides to nontoxic products, thus 

maintaining the integrity of the mitochondria and 

cell membranes. It was previously demonstrated 

that CsA inhibits the glutathione reductase enzyme 

which is responsible for the regeneration of GSH. 

Therefore, the marked decreases in GSH not only 

were produced by engagement in ROS reduction 

but could also result from impaired regeneration by 

glutathione reductase (Korolczuk et al. , 2016). 

It has been shown previously that PPAR-γ exerts 

anti-oxidant and pleiotropic anti-inflammatory 

effects in the lung and liver (Standiford et al., 

2005) as the transcription of antioxidant and anti-

inflammatory genes were induced by PPAR-γ From 

this point, the inhibition in PPAR-γ levels induce  

 
oxidative stress (Reddy and Standiford, 2010). 

2.3. Inflammation 

Tissue damage produced by oxidative stress is 

further aggravated by inflammatory changes which 

primarily involve infiltration of neutrophils and 

macrophages at the site of injury. Both cell types 

have been shown to be present in abundance in 

necrotic granulomatous and portal regions in liver 

as well as in renal interstitial tissue in CsA treated 

animals (Abboud and Kaplowitz, 2007; Selcoki 

et al., 2007). Neutrophil infiltration has been 

shown to correlate with the tissue levels of 

Myeloperoxidase (MPO) enzyme. This enzyme is 

responsible for generating hypochlorous acid 

during the neutrophil burst reaction which 

consequently increases free radical generation and 

compounds tissue damage. An increase in the level  
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of MPO is concomitant with elevated tissue levels 

of TNF‐α and NF-κB; indicate the role of 

inflammatory cells in organ damage caused by CsA 

(Ying, 2008). 

Oxidative stress and infiltration are key features of 

the inflammatory process that involves the release 

of various mediators like TNF‐α and IL-1β which 

are well‐known to contribute to tissue damage. 

TNF‐α is one of the cytokines that plays an 

important role in bringing about organ toxicity in 

association with other tissue‐derived reactive 

moieties. It exacerbates the damage initiated by 

lipid peroxidation, mitochondrial dysfunction, and 

the resultant generation of short‐lived products like 

ROS and nitric oxide which is the main cause of 

CsA hepatotoxicity (Humphries et al., 1998). 

A key ligand-activated transcription factor up-

regulated by nuclear factor erythroid 2–related 

factor 2 (Nrf-2) is PPAR-γ (Cho et al., 2005). 

Notably, PPAR-γ enhances the transcription of anti-

inflammatory and antioxidant genes, several of 

which are also up-regulated by Nrf-2. Protective 

effects of Nrf-2 are not limited to primary oxidative 

injury, as Nrf-2 knockout mice display significantly 

increased mortality in states of systemic 

inflammation, such as sepsis (Thimmulappa et al., 

2016). This effect is likely accounted for by the 

ability of Nrf-2-induced genes to block both the 

direct injurious effects of oxidants and the 

stimulatory effects of oxidant stress on 

inflammatory gene transcription. In addition, 

PPAR-γ trans represses key proinflammatory 

transcription factors, including NF-κB, STAT6, and 

activating protein-1AP-1 (Becker et al., 2006). 

A comprehensive understanding of trans repressive 

mechanisms is in evolution. One mechanism 

involves competition for coactivator molecules that 

these transcription factors require, whereas other 

evidence suggests PPAR-γ may exert trans 

repressive activity by directly binding to NF-κB or 

by a process of Simulation (Gerry and Pascual, 

2008). 

Peroxisome Proliferator-activated receptor-γ is also 

expressed in various immune system-related cell 

types, particularly in antigen-presenting cells such 

as macrophages and dendritic cells. In these cells, 

PPAR-γ does not only regulate genes related to lipid 

metabolism, but also immunity and inflammation 

related (Sun et al., 2008; Yang et al., 2013). Also 

the anti-atherosclerosis activity of PPAR-γ  

 
activating thiazolidinediones observed in animal 

models is thought to be generated primarily 

through modulation of PPAR-γ regulated gene 

expression in macrophages (Burkart et al., 2007). 

In addition to its metabolic and anti-inflammatory 

properties, PPAR-γ also modulates proliferation 

and apoptosis of many cancers cell types, and is 

expressed in many human tumors including lung, 

breast, colon, prostate, and bladder cancer 

(Burkart et al., 2007). 

2.4. Up regulation of Wnt/β-Catenin 

Signaling 

Another important signaling pathway that is 

involved in development and/or progression of 

liver diseases is Wnt/β-catenin pathway (Monga, 

2015). It is considered as an evolutionarily 

conserved signaling pathway that has a 

fundamental role in regulating a variety of biologic 

processes such as organ development, tissue 

homeostasis, and pathogenesis of human diseases.  

On one side, the hepatocytes and liver-infiltrating 

macrophages are strongly considered as a source of 

Wnt ligands and hence, Wnt pathway has been 

suggested to have a role in liver inflammation and 

fibrosis progression in hepatotoxicity (Debebe et 

al., 2017). 

On the other side, Wnt/β-catenin pathway has a 

significant role in controlling metabolic plasticity 

of the liver, whereas, canonical Wnt signaling via 

β-catenin in the hepatocytes affects sinusoidal 

oxygen gradient, mitochondrial function and 

hepatic fatty acid oxidation as well as systemic 

adiposity (Behari et al., 2014). The connection 

between the WNT/β-catenin pathway and PPAR-γ 

concerns the TCF/LEF β-catenin domain in 

addition to a catenin binding domain within PPAR-

γ. In many mammalian cells, PPAR-γ and WNT/β-

catenin signaling perform in an opposite manner 

(Vallée et al., 2017). In several diseases, even if 

the WNT/β-catenin pathway is downregulated, 

PPAR-γ  appears to be significantly upregulated 

(Lecarpentier et al., 2014). This has been 

experimentally investigated in arrhythmogenic 

right ventricular cardiomyopathy (Djouadi et al., 

2009), osteoporosis disease, bipolar disorder, in 

addition to schizophrenia and certain 

neurodegenerative diseases (NDs) for example 

Alzheimer's disease (Vallée and Lecarpentier, 

2016). 

In other diseases, WNT/β-catenin signaling process 

is upregulated while PPAR-γ expression is  
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downregulated. This is the case of cancers, type 2 

diabetes, and certain NDs, such as amyotrophic 

lateral sclerosis Huntington's disease, multiple 

sclerosis, and Friedreich's ataxia (Vallée and 

Lecarpentier, 2016). In several cellular systems, β-

catenin is inhibited by PPAR-γ agonists (Vallée et 

al., 2017). It has moreover been shown that 

inhibition of the WNT/β-catenin pathway triggers 

activation of PPAR-γ (Garcia-Gras et al., 2006). 

Accordingly, PPAR-γ and Wnt/β-catenin signaling 

work in opposite directions. so, the decrease in the 

level of PPAR-γ, will preferentially drive β-catenin 

to upregulate Wnt/β-catenin signaling which in turn 

induces c-myc expression. An increase in c-myc 

expression leads to an increase in p53, which is the 

main cause of hepatic apoptosis (Vallée et al., 

2017). 

3. Conclusion 

CsA induces hepatotoxicity by inducing oxidative 

stress, inflammation and upregulation of Wnt/β-

catenin signaling. Oxidative stress is characterized 

by an imbalance in the production of ROS and 

antioxidants in the liver, causing cellular disruption. 

Sustained oxidative stress can trigger inflammation 

by activating the transcription of NF-κB that 

induces production of inflammatory mediators like 

TNF-α. Therefore, reducing inflammation and 

oxidative stress and inhibition of Wnt/β-catenin 

signaling is the main target to manage CsA 

hepatotoxicity. 
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