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Abstract 

In Statistical theory, inclusion of an additional parameter to 
standard distributions is a usual practice. Mahdavi and Kundu (2017) 
presented a method, called alpha power transformation, for including 
an extra parameter in continuous distribution. Basically, the idea was 
introduced to incorporate skewness to the baseline distribution. In this 
paper, the parameters of the alpha-power Pareto distribution, reliability 
and hazard rate functions are estimated under progressive censoring 
Type-II scheme with random removal. The model parameters are 
estimated using the maximum likelihood estimation method. Further, 
the asymptotic confidence intervals for the model parameters are 
discussed. Maximum likelihood prediction (point and bounds) is 
considered for future order statistics under progressive Type-II 
censored informative samples. Numerical study is given and some 
interesting comparisons are presented to illustrate the theoretical 
results. Moreover, the results are applied to real data sets. 
 
Keywords: alpha-power Pareto distribution; progressive Type-II censored 
samples; maximum likelihood method; asymptotic Fisher information matrix; 
two-sample prediction; maximum likelihood prediction. 
 
1. Introduction 

Life-testing and reliability experiments contain many situations 
where units are removed or lost from the test before failure. In many 



 
 

 

–    

 

46 
 

scenarios, the removal of units before failure is very often procedure 
due to limitations of time and cost associated with the experiment. The 
data of such tests or experiments are called censored data. There are 
different types of censoring schemes which include right, left, interval 
censoring, single or multiple censoring and Type-I or Type-II 
censoring. The most common censoring schemes are Type-I and Type-
II censoring, but the conventional Type-I and Type-II censoring 
schemes do not have the flexibility of allowing removal of units at 
points other than the terminal point of the experiment. In Type-I 
censoring a life test is conducted for a fixed-time period while in Type-
II censoring an experiment terminates when a prescribed number of 
units fail. Type-I and Type-II censoring schemes have probably found 
the most extensive applications in these situations. For example, units 
may break accidently in an industrial experiment, individuals may drop 
out of the study in a clinical trial, or they have to be terminated early 
due to lack of funds. Also, some products have to be withdrawn for 
more thorough inspection or saved for use as test specimens in other 
studies. One drawback of these schemes is that live units can be 
removed only at the end of the experiment. However in much life 
testing experiment, it is desired to withdraw live units from the 
experiment at time points other than the final termination point of the 
test. For this reason, the progressive censoring possesses such 
flexibility and thus allows in between removals of units as well. 
Different inferential procedures based on progressively censored 
samples have been discussed by several authors, including 
Balakrishnan (2007) and Balakrishnan and Aggarwala (2000). The 
most popular one is known as the progressive Type-II censoring 
scheme and it can be briefly described as follows:  

Considering  identical units are put to test and the lifetime 
distribution of the  units is denoted by .The integer 

 is fixed at the beginning of the experiment and 
are  pre-fixed integers 

satisfying . At the time of the first failure 
  units are chosen randomly from the remaining  units 
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and they are removed from the experiment. Similarly at the time of the 
second failure   of the remaining  units are 
removed from the test and so on. Finally, when the -th failure is 
observed the experiment is terminated and the remaining surviving 
units  with  are removed, see 
Figure 1. Here (  is known as the censoring scheme and it 
is prefixed before the experiment starts. [For more details about the 
progressive Type-II censoring scheme, see, Balakrishnan and 
Aggarwala (2000), Balakrishnan and Cramer (2014), Almetwally et al. 
(2018), Almetwally and Almongy (2018), Karakoca and Pekgör (2019) 
and Alshenawy et al.  (2020)].  

 

Figure 1: The plot of steps of progressive Type-II censoring scheme 

Pareto distribution is a well-known distribution used to model heavy 
tailed phenomena. It has many applications in actuarial science, 
survival analysis, economics, life testing, hydrology, finance, 
telecommunication, reliability analysis, physics and engineering. Pareto 
distribution is successfully used by Philbrick (1985) for projection of 
losses in an insurance company, real state and liability experience of 
hospitals. Farshchian (2010) applied Pareto distribution to model sea 
clutter intensity returns. Levy (2003) used Pareto distribution for 
investigation of wealth in society. Castillo (1997) considered 
generalized form of Pareto distribution to model exceedances over a 
margin in flood control. Many types of Pareto distribution and its 
generalization are available in literature. 
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More recently, Mahdavi and Kundu (2017) presented a method, 
called alpha power transformation, for including an extra parameter in 
continuous distribution. Basically, the idea was introduced to 
incorporate skewness to the baseline distribution. Ihtisham et al. (2019) 
proposed more flexible distribution, by introducing an additional 
parameter to Basic Pareto distribution, to obtain an adequate fit. They 
studied the distribution, termed as alpha power Pareto (APP) 
distribution, which is derived using the alpha power transformation. 
Also, they presented mathematical and statistical properties of APP 
distribution along with application to two real lifetime data and 
provided graphical illustrations of the dimensions of APP distribution. 
Therefore, they estimated the parameters, using maximum likelihood 
(ML) method.  

This paper deals with the APP distribution based on progressive 
Type-II censored samples since it has not been applied in all the 
previous literature. The objective of this paper is to obtain the ML 
estimators for the unknown parameters, reliability function (rf) and 
hazard rate function (hrf) for APP distribution based on progressive 
Type-II censored samples and confidence intervals for the parameters 
are constructed. Also, the ML prediction point and bounds are 
considered for future order statistics under progressive Type-II 
censored informative samples.  

The rest of this paper is organized as follows: Section 2 presents 
a brief summary about the APP distribution. The statistical inference 
for APP distribution based on progressive Type-II censored samples is 
obtained in Section 3. A numerical study simulation and two real 
dataset are performed to investigate the precision of ML estimates in 
Section 4. Finally, some general conclusions are introduced in Section 
5. 

 
2. The Alpha Power Pareto Distribution  

This section, presents a brief summary about the APP 
distribution based on progressive Type-II censored samples.  
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Ihtisham et al. (2019) constructed a distribution with two 
parameters 

 Assume a random variable X that follows the APP distribution, 
denoted by X ~ APP (α, ). The cumulative distribution function (cdf) 
and the probability density function (pdf) for APP distribution are 
respectively written as: 

(1) 

and 
(2) 

 
where  is a shape parameter,  is a scale parameter and the pdf of 
APP distribution in (1)  is decreasing function for α < 1 and uni-modal 
and positively skewed for α <1.  
The rf of the APP distribution, based on (1), is given by 

 (3) 

and  

the hrf of the APP distribution based on (2) and (3), is given by  

  (4) 

the hrf of APP distribution in (4) is increasing, decreasing shapes.  
Also, the rhrf, which is known by the dual of the hrf; describes the 
probability of an immediate past failure, given that the unit has already 
failed at time , as opposed to the immediate future failure. The rhrf is 
given by  

(5) 
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3. Maximum Likelihood Estimation and Predication  

In this section, the estimation of the unknown parameters, rf and 
hrf for APP distribution under progressive Type-II censored samples is 
discussed in Subsection 3.1.  The ML point and confidence interval are 
obtained in Subsection 3.2, 3.3, respectively. Also, two-sample 
prediction is considered in Subsection 3.4. 
  
3.1 Maximum likelihood estimation 

      Let denote a progressive Type-II censored 
sample obtained from APP (  distribution. The likelihood function 
(LF) is given by 

      (6) 

where  denotes an 
observed value of  
  and 

 

Then substituting (1) and (2) in (6) yields 
 

(7) 

3.1.1 Point estimation 

The ML estimator of  and are obtained by maximizing the 
logarithm of the likelihood function, denoted by  which can be written 
in the form 
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                 (8) 

The first partial derivatives of the logarithm of the likelihood function 
with respect to  and are given below: 

(9) 

 
and 

 
The ML estimators are obtained by setting (9)-(10) to zeros. The 
system of non-linear equations can be solved numerically using 
Newton-Raphson method, to obtain the ML estimators of  and .  
Depending on the invariance property of the ML estimators, then, the 
ML estimators of the rf, hrf and rhrf are obtained by replacing the 
parameters  and in (3), (4) and (5), respectively by their ML 
estimators. 
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Hence, for a given value of , the ML estimators of  and 
 are as follows: 

      

(11)                                               

 

, (12) 

and 

 ,          

                       (13) 

Remarks: 

 If 
and  equals   all the results obtained for 

progressive Type-II censored sample reduced to the complete 
sample case.  

 If 
and  then progressive 

Type-II censored sampling reduces to traditional Type-II censoring. 
 
 
3.1.2 Confidence intervals 
  
The asymptotic variance covariance matrix (AVCM) of the estimators 

 and  are obtained depending on the inverse asymptotic Fisher 
information matrix (AFIM) using the second partial derivatives of the 
logarithm of the likelihood function. 
The AFIM can be written as follows: 
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,      

where (14) 
 
where  . 

For large sample size, the ML estimators under regularity conditions 
are consistent and asymptotically unbiased as well as asymptotically 
normally distributed. Therefore, the asymptotic confidence interval 
(ACI) for the parameters; , can be obtained by 

 where  is the th 

standard normal percentile. The two-sided approximate  
the confidence intervals are  

,and     (15)                                                 

Where is the standard deviation 

and  respectively. 

3.2 Maximum likelihood prediction  

In this subsection two-sample prediction is considered. ML 
point and interval prediction for a future observation based on 
progressive Type-II censored sample for APP distribution are 
discussed. 

Assuming that  are the first m ordered 

life times in a random sample of n components progressive Type-II 
censored sample whose failure times are identically distributed as a 
random variable X having the pdf for an item tested which is an 
informative sample, and that  is a future independent 

random sample (of size r) from the same distribution. Our aim is to 
predict a statistic in the future sample based on the informative sample 
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[see Kaminsky and Rhodin (1985), Ateya and Mohammed (2018) and 
Raqab et al. (2019)].  

For the future sample of size r, let  denotes the  order 

statistic, , then the pdf of  is given by 

,      (16) 

,                                                           

using the binomial expansion theorem for , yields 

,  (17) 

and substituting (1) and (2) into (17), then one can obtain the pdf of  
 order statistic for an item tested at accelerated conditions: 

      

               (18) 

Assuming that the parameters are unknown and independent, and 
then the ML prediction density (MLPD) of  given can be 

obtained using the conditional pdf of the order statistic which is 
given by (18) after replacing the vector of parameters  by their ML 
estimators  as follows: 

  



 
 

 

–    

 

55 
 

                                   (19) 

where 

              (20) 

3.2.1. Point predication  
 
The ML predictor (MLP) for the future observation based 

on progressive Type-II censored sample can be derived using (19) as 
follows: 

          (21)   
 
3.2.2 Interval prediction  
 
 A  ML predictive bound (MLPB) for the future 
observation , such that are 

given by: 

,   (22)  

and 

      (23) 

Substituting (19) in (22) and (23), the MLPB are obtained as follows: 
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                               (24) 

and 

  
                                            (25) 

Remark: 

If   and  in (21), one can predict the minimum observable, 

, and the median observable when is odd, . 

4. Numerical Illustration 

       This section aims to investigate the precision of the theoretical 
results of estimation on basis of the simulated and real data. 

4.1 Simulation study       

In this subsection, a simulation study is conducted to illustrate the 
performance of the presented ML estimates on the basis of generated 
data from the APP distribution. The ML averages of the parameters, rf 
and hrf based on progressive Type-II censoring scheme are computed. 
Moreover, CIs of the parameters, rf and hrf are calculated. Simulation 
studies are performed using Mathcad 15 for illustrating the obtained 
results. 
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Applying the algorithm in Balakrishnan and Sandhu (1995), the 
following steps are used to generate a progressive Type-II censored 
sample from the APP distribution as follows: 

Step 1: Generate  independent  random 
variables . 

Step 2: For given values of the progressive censoring 
scheme , set 

    for  

Step 3: Set  

Then,  are progressive Type-II censored sample of 
size  from  distribution. 

Step 4: For given values of the parameters  and , the inverse cdf 
method, can be used to generate  progressive Type-II censored 
sample from APP whose cdf is given by (1). Thus, by solving the 
nonlinear equation 

  

the resulting set, ( ) is the required progressive Type-II 
censored sample of size  from APP distribution and this obtained 
sample is ordered. 

Step 5: Repeat all the previous steps N times where N represents a 
fixed number of simulated samples. 

a) Evaluating the performance of the estimates is considered 
through some measurements of accuracy. In order to study the 
precision and variation of the estimates, it is convenient to use 
the estimated risk  
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ER 

=  

 and standard error 

(SE) .  
b) The ML predictor points and interval for a future observation 

from the APP distribution based on progressive Type-II 
censored sample are computed for the two-sample case. 

c) Simulation results of ML estimates are displayed in Tables 2-8, 
where  
N = 2000 is the number of repetitions and the samples of size 
(n=30, 60, 100). For each sample size,  set of 
different samples schemes, where 

Scheme I:  and  
Scheme II: .  

Scheme III: .  

The best scheme is the scheme which minimizes the ERs, SEs and 
length of CIs of the estimates. Tables 2-4 display the ML averages, 
ERs, SEs and CIs of the unknown parameters based on progressive 
Type-II censoring under different samples schemes. While Tables 5-7 
present the ML averages, ERs, SEs and CIs of the rf and hrf based on 
progressive Type-II censoring under different samples schemes. Table 
8 gives the ML averages of rf and hrf under different time  at 
different samples size based on progressive Type-II censoring under 
different samples schemes. 

4.2 Application to real life data 

The main aim of this subsection is to demonstrate how the 
proposed APP distribution based on progressive Type-II censoring can 
be used in practice. The real lifetime data set is used for this purpose. 
Ihtisham et al. (2019) tested this data using Kolmogorov-Smirnov 
goodness of fit test through Adequacy Model package of R software, to 
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check the performance of APP distribution. The dataset have been 
analyzed to demonstrate the performance of the proposed model. 

The data set consists of 40 wind related catastrophes used by 
Hogg and Klugman (1984). It includes claims of $2,000,000. The 
sorted values, observed in millions are: 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 
3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 8, 8, 9, 15, 17, 22, 23, 24, 24, 25, 27, 32, 
43. 
  
The K-S test statistic is 0.16 with the p-value = 0.0.2497, the p value 
showed that the proposed model fits the data very well. 

Table 11 displays the ML estimates and SEs of the unknown 
parameters for the real data set based on progressive Type-II censoring 
under different samples schemes. 

Table 1: ML averages, estimated risks, relative absolute biases, 
standard errors and 95% confidence intervals of the APP parameters 

based on progressive Type II censoring under Scheme I (N=800,  ,  
 

N Parameters  Averages ERs  RAB SE LL UL Length 

30  
 

0.508 
0.092 

0.019 
4.782E-3 

0.371 
2.057 

0.138 
0.092 

0.507 
0.076 

0.508 
0.107 

0.001 
0.031 

60  
 

0.502 
0.083 

0.017 
3.833 E-3 

0.356 
1.752 

0.132 
0.062 

0.501 
0.071 

0.502 
0.094 

0.001 
0.023 

100  
 

0.499 
0.089 

0.017 
5.330 E-3 

0.349 
1.961 

0.129 
0.073 

0.499 
0.077 

0.499 
0.100 

0.000 
0.023 
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Table 2: ML averages, estimated risks, relative absolute biases, 
standard errors and 95% confidence intervals of the APP parameters 

based on progressive Type II censoring under Scheme II (N=800,  
,   

N Parameters  Averages ERs  RAB SE LL UL Length 

30  
 

0.509 
0.091 

0.019 
4.603 E-3 

0.375 
2.043 

0.139 
0.068 

0.508 
0.077 

0.509 
0.106 

0.001 
0.029 

60  
 

0.502 
0.084 

0.017 
3.925 E-3 

0.356 
1.784 

0.132 
0.063 

0.501 
0.072 

0.502 
0.095 

0.001 
0.023 

100  
 

0.499 
0.087 

0.017 
5.090 E-3 

0.349 
1.914 

0.129 
0.071 

0.498 
0.076 

0.500 
0.099 

0.002 
0.023 

  
Table 3: ML averages, estimated risks, relative absolute biases, 

standard errors and 95% confidence intervals of the APP parameters 
based on progressive Type II censoring under Scheme III (N=800, 

,   

N Parameters  Averages ERs  RAB SE LL UL Length 

30  
 

0.508 
0.091 

0.019 
4.730E-3 

0.372 
2.0338 

0.138 
0.069 

0.507 
0.076 

0.508 
0.107 

0.001 
0.031 

60  
 

0.501 
0.085 

0.017 
4.184E-3 

0.355 
1.82 

0.131 
0.065 

0.501 
0.072 

0.502 
0.097 

0.001 
0.025 

100  
 

0.499 
0.091 

0.017 
5.876E-3 

0.348 
2.037 

0.129 
0.077 

0.498 
0.079 

0.499 
0.104 

0.001 
0.025 

 
Table 4: ML averages, relative absolute biases, standard errors and 
95% confidence intervals of the reliability and hazard rate functions 

based on progressive Type II censoring under Scheme I (N=800, ,  
 

n rf and hrf  Averages RAB SE LL UL Length 

30  
 

0.857 
0.035 

0.091 
5.148 

1.838E-3 
1.295E-4 

0. 852 
0.034 

0.862 
0.035 

0.010 
0.001 

60  
 

0.870 
0.032 

0.077 
4.762 

2.09E-3 
1.447E-4 

0.864 
0.031 

0.876 
0.032 

0.012 
0.001 

100  
 

0.862 
0.034 

0.086 
5.037 

3.455E-3 
2.497E-4 

0.852 
0.033 

0.871 
0.035 

0.019 
0.002 
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Table 5: ML averages, relative absolute biases, standard errors and 
95% confidence intervals of the reliability and hazard rate functions 

based on progressive Type II censoring under Scheme II (N=800, ,  
 

N rf and hrf  Averages RAB SE LL UL Length 

30  
 

0.858 
0.035 

0.090 
5.127 

1.616 E-3 
1.130 E-4 

0.853 
0.034 

0. 862 
0.035 

0.009 
0.001 

60  
 

0.869 
0.037 

0.079 
4.811 

0.858 
0.035 

0.863 
0.037 

0.874 
0.038 

0.011 
0.001 

100  
 

0.879 
0.039 

0.075 
4.985 

2.707E-3 
3.323E-4 

0.872 
0.038 

0.886 
0.040 

0.014 
0.002 

 
Table 6: ML averages, relative absolute biases, standard errors and 
95% confidence intervals of the reliability and hazard rate functions 

based on progressive Type II censoring under Scheme III (N=800, 
,   

N rf and hrf  Averages RAB SE LL UL Length 

30  
 

0.87٤ 
0.0٤١ 

0.٠8٠ 
٥.١٣٢ 

١.5٢١ E-3 
١.8٢٩ E-4 

0.8٧٠ 
0.040 

0.8٧8 
0.04١ 

0.0٠8 
0.001 

60  
 

0.882 
0.038 

0.071 
4.858 

١. 866E-3 
2.٢42 E-4 

0.877 
0.037 

0.887 
0.038 

0.010 
0.001 

100  
 

0.87٤ 
0.0٤١ 

0.٠79 
٥.١47 

3.149 E-3 
3.937 E-4 

0.866 
0.040 

0.883 
0.042 

0.017 
0.002 
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Table 7: ML averages of the reliability and hazard rate functions under 
different time  different samples size based on progressive Type II 

censoring under different samples  
schemes (N=800, ,   

Average 
Scheme I Scheme II Scheme III n 

 
      

 3 0.873 0.041 0.874 0.041 0.874 0.041 
 3.5 0.857 0.035 0.858 0.035 0.858 0.035 

30 4 
4.5 

0.844 
0.832 

0.030 
0.027 

0.844 
0.833 

0.030 
0.027 

0.84٥ 
0.833 

0.030 
0.027 

        
 3 0.885 0.037 0.883 0.037 0.882 0.038 

60 3.5 0.870 0.032 0.869 0.032 0.887 0.032 
 4 

4.5 
0.858 
0.847 

0.028 
0.024 

0.856 
0.845 

0.028 
0.025 

0.855 
0.844 

0.028 
0.025 

        
 3 0.877 0.040 0.879 0.039 0.874 0.041 

100 3.5 0.862 0.034 0.864 0.033 0.859 0.035 
 4 

4.5 
0.849 
0.837 

0.030 
0.026 

0.851 
0.840 

0.029 
0.026 

0.845 
0.834 

0.030 
0.027 

 

Table 8: ML predictive and bounds of the future observation under 
two-sample prediction based on progressive Type II censoring under 

Scheme I 
(N=800,  ,   

 n s  LL UL Length 
1 0.786 0.716 0.857 0.141 30 

 13 101.219 0000 4041 4041 
1 0.612 0.606 0.618 0.012 60 

28 94.952 0000 1364 1364 
1 0.615 0.606 0.623 0.017 100 

28 85.386 0000 1424 1424 
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Table 9: ML predictive and bounds of the future observation under 
two-sample prediction based on progressive Type II censoring under 

Scheme II 
(N=800,  ,   

n s  LL UL Length 
1 0.781 0.722 0.840 0.018 30 

13 103.157 0000 3678 3678 
1 0.610 0.604 0.615 0.001 60 

28 97.252 0000 1347 1347 
1 0.616 0.607 0.625 0.018 100 

26 92.439 0000 1359 1359 
 

Table 10: ML predictive and bounds of the future observation 
under two-sample prediction based on progressive Type II censoring 

under Scheme III 
(N=800, ,  

n s  LL UL Length 
٠.٧٢١ ٠.٧٩١ ١ 0.8٠.١٤٠ ٦١ 30 

٤١٣٥ ٤١٣٥ ٠٠٠٠ ١٠٠.٦٧١ ١٣ 
1 0.609 0.604 0.614 0.010 60 

28 96.643 0000 1350 1350 
1 0.613 0.604 0.621 0.017 100 

28 85. 839 0000 1441 1441 
 

Table 11: ML estimates and standard errors of the parameters for 
the real data set based on progressive Type II censoring under 

different samples schemes 
(n=38,  , 0.489  

Application 
Scheme I Scheme II Scheme III 

 
Parameters 

Estimate SE Estimate SE Estimate SE 
 
 

0.489 
0.198 

0.708 
0.042 

0.488 
0.205 

0.740 
0.046 

0.489 
0.198 

0.708 
0.042 
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Table 12: ML averages of the reliability and hazard rate functions  
for the real data set under different time  based on progressive  

Type II censoring under different samples schemes 
 (n=38, , 0.489  

Application 
Scheme I Scheme II Scheme III 

 
 

      
5.0 0.653 0.051 0.643 0.053 0.653 0.051 
5.5 0.637 0.046 0.627 0.048 0.637 0.046 
6.0 0.623 0.042 0.613 0.043 0.623 0.042 
6.5 0.611 0.039 0.601 0.040 0.611 0.039 

 
Table 13: ML predictive of the future observation under  

two-sample prediction for the real data set based on  
progressive Type II censoring under different samples schemes 

 (n=37, , 0.489  
Application 

Scheme I Scheme II Scheme III 

      
1 0.567 1 0.565 1 0.567 

19 10.443 19 9.33 19 10.443 
 

5.3 Concluding remarks 

 It is noticed, from Tables 2-3, that the ML averages are very close 
to the initial values of the parameters as the sample size increases. 
Also, ERs and SEs are decreasing when the sample size is 
increasing. This is indicative of the fact that the estimates are 
consistent and approaches the population parameter values as the 
sample size increases. 

 The lengths of the CIs of the parameters, rf and hrf become 
narrower as the sample size increases.  

 From Table 7 the estimated values of the rf decreases when the 
time  increases, while the estimated values of the hrf are 
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monotonically decreasing then it gets approximately constant when 
the time  increases.  

 Scheme I is the best censoring scheme where it has the lowest ERs 
and SEs and the narrower lengths of the CIs. 

2. General Conclusion 

In this study, therefore the APP distribution is a very flexible 
reliability model. The ML estimators for the parameters, rf and hrf of 
the APP distribution based on progressive Type-II censored data are 
obtained. Monte Carlo simulation is performed. In general, ML 
estimators of the model parameters, rf and hrf when the sample size n 
increases, the ERs, REs and the lengths of the CIs decrease. Also, when 
the different values of time  increases, the rf decreases while the hrf 
monotonically decreases then it approximately stays constant. Point and 
bounds prediction using the ML prediction method for a future 
observation based on two-sample prediction are studied. From the 
results, one can clearly observe that the estimates have smaller ERs. As 
the sample size increases the ERs and the intervals of the parameters 
decrease. Moreover, the estimated values of the rf decreases when the 
time  increases. This indicates that the ML estimates provide 
asymptotically normally distributed and consistent estimators for the 
parameters. 



 
 

 

–    

 

66 
 

References 

Almetwally, E. M. and Almongy, H. M. (2018). Bayesian estimation 
of the generalized power Weibull distribution parameters based on 
progressive censoring schemes. International Journal of Mathematical 
Archive. 9, 1-8. 
Almetwally, E. M., Mubarak, A. E. and Almongy, H. M. (2018). 
Bayesian and maximum likelihood estimation for the Weibull 
generalized exponential distribution parameters using progressive 
censoring schemes.   Pakistan Journal of Statistics and Operation 
Research. 14, 853-868. Doi: 10.18187/pjsor.v14i4.2600. 
Alshenawy, R. (2020). A new one parameter distribution: Properties 
and estimation with applications to complete and type II censored data. 
Journal Taibah Univ. Sci., 14, 11–18. 
Ateya, S., F. and Mohammed, H., S.  (2018). Prediction under Burr-
XII distribution based on generalized Type-II progressive hybrid 
censoring. Journal of the Egyptian Mathematical Society; 26, 491-508. 
Balakrishnan, N. (2007) Progressive censoring methodology: An 
appraisal. Test; 16, 211–259.  
Balakrishnan, N. and Aggarwala, R. (2000). Progressive Censoring: 
Theory, Methods and Applications. Boston, Birkhauser. 
Balakrishnan, N. and Cramer, E. (2014). The Art of Progressive 
Censoring: Applications to Reliability and Quality. Boston, Birkhauser; 
Doi: 10.1007/978-0-8176-4807-7.  
Balakrishnan, N. and Sandhu, R. A. (1995). A simple simulational 
algorithm for generating progressive Type-II censored samples. The 
American Statistician; 49, 2. 229-230. 
Castillo, E. and Hadi A. S. (1997) Fitting the generalized Pareto 
distribution to data. Journal of the American Statistical Association; 92, 
440, 1609–20. 
Farshchian M, Posner F L. The Pareto distribution for low grazing 
angle and high resolution X-band sea clutter. Naval Research Lab 
Washington DC; 2010. Alpha-Power Pareto distribution PLOS. 
Hogg R. and Klugman S.A. (1984).   Loss Distributions. New York: 
Wiley. 



 
 

 

–    

 

67 
 

Ihtisham S, Khalil A., Manzoor S. and Khan, S. A. and Ali, A. 
(2019) Alpha-Power Pareto distribution: Its properties and applications. 
PLOS ONE; 14, 6, 0218027. https://doi.org/10.1371/journal. 
pone.0218027.  
Kaminsky, K., S. and Rhodin, L, S. (1985). Maximum likelihood 
prediction. Annals of the Institute of Statistical Mathematics; 37, 507-
517. 
Karakoca, A. and Pekgör, A. (2019). Maximum likelihood estimation 
of the parameters of progressively Type-II censored samples from 
Weibull distribution using Genetic Algorithm. Academic Platform 
Journal of Engineering and Science; 7. Doi: 10.21541/apjes.452564. 
Levy, M. and Levy H. (2003) Investment talent and the Pareto wealth 
distribution: Theoretical and experimental analysis. Review of 
Economics and Statistics; 85, 3, 709–25. 
Mahdavi, A. and Kundu, D. (2017) A new method for generating 
distributions with an application to exponential distribution. 
Communications in Statistics-Theory and Methods; 46, 13, 6543–57.  
Philbrick, S. W. (1985). A practical guide to the single parameter 
Pareto distribution. PCAS LXXII; 44–85. 
Raqab, M. Z., Alkhalfan, L. A., Bdair, O. M. and Balakrishnan, N. 
(2019). Maximum likelihood prediction of records from 3-parameter 
Weibull distribution and some approximations.  Journal of 
Computational and Applied Mathematics, 356, 118-132 

 

 


