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Abstract 

Burr Type III distribution have been mainly used in statistical modeling of 

events in a variety of applied mathematical contexts such as fracture 

roughness, life testing, meteorology, modeling crop prices, forestry, reliability 

analysis. Our aim of this work is to construct a bivariate Burr Type III 

distribution and some of its structural properties such as bivariate probability 

density function and it’s marginal, joint cumulative distribution and it’s 

marginal, reliability and hazard rate function are studied. The maximum 

likelihood estimators of the parameters are derived. The Bayes estimators of 

the parameters based on the squared error loss function and Bayesian 

prediction of the future observations are presented. The performance of the 

proposed bivariate distribution is examined using a simulation study. Finally, 

one data set under the proposed distributions to illustrate their flexibility for 

real-life applications is analyzed. 

 

Keywords: Inverted Weibull; Gamma Distributions; Bivariate 

Distributions; Compounding, Maximum Likelihood Estimation; Bayes 

Estimation; Bayesian Prediction. 

1. Introduction  
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            In this paper, a bivariate Burr Type III (BBIII) distribution is 

considered based on AL-Hussaini and Ateya (2005). Among the features 

bivariate distribution are important both on theoretical and applied grounds. 

Their uses in bivariate analysis that have been applied to a variety of 

disciplines are numerous.  

 In the statistical literature, several methodologies of constructing 

bivariate and multivariate distributions based on marginal and conditional 

distributions were proposed by Kotz et al. (2000), Arnold et al. (1999; 

2001),Balakrishnan and Lai (2009), Mahmoud et al.(2021) and among others.  

 Domma (2009) extended some results related to the dependence 

structure of the bivariate Burr Type III distribution; proposed by Rodriguez 

(1980) using copula representations of bivariate distributions. Headrick et al. 

(2010) presented method for simulating univariate and multivariate Burr Type 

III and Type XII distributions with specified correlation matrices. The 

methodology is based on the derivation of the parametric forms of a 

probability density function (pdf) and cumulative distribution function (cdf) 

for this family of distributions. Ismail and Khalid (2015) used some copulas 

as Ali-Mikhail-Haq (AMH), Clayton and Gumbel on uncensored data to joint 

specific Burr Type III and XII distributions using theorem and algorithm of 

construction the copula Capitani et al. (2016) showed a bivariate Burr III 

copula to the trivariate case. This copula seems to be very general and 

analytically manageable and it provides an alternative to the commonly 

employed elliptical copulas (such as the Gaussian or the Student, sons since 

they have, roughly the same number of parameters. They showed that the 

trivariate Burr-III copula is, in general, able to capture the dependence 

structure implicit in observed trivariate data. Ogana et al. (2018) considered 

Frank and Plackett copulas, the two copulas evaluated on seven distributions 

models using data from temperate and tropical forests, one of these 

distributions is Burr Type III distribution. Azizi and Sayyareh (2019) 
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constructed bivariate Burr Type III by using Marshall-Olkin (1967) technique; 

they presented some properties and estimated the parameters using maximum 

likelihood (ML) method.  

One of the objectives of this paper is to construct BBIII distribution; 

based on the method suggested by AL-Hussaini and Ateya (2005). It 

could be useful in studying reliability maintainability of complicated 

systems. AL-Hussaini and Ateya (2005) considered a class of 

multivariate distributions. The same technique can be used to introduce 

and construct bivariate Burr Type III distribution, and some properties 

are studied. 

In Section 2, a construction of BBIII distribution based on AL-Hussaini 

and Ateya (2005) technique is introduced, also some properties of the 

distribution are obtained. Maximum likelihood estimation and 

prediction are considered in Section 3. In Section 4, a numerical 

illustration for ML estimation is introduced. In Section 5, Bayesian 

estimation and two-sample prediction is presented. In Section 6,  

a numerical illustration for Bayesian estimation and prediction is given. 

2. Bivariate Burr Type III Distribution 

 This section aims to construct bivariate Burr Type III distribution by 

applying same technique introduced by AL-Hussaini and Ateya (2005), but in 

this study special case, bivariate is considered .Also, in this section, some 

properties and description of this distribution are discussed. 

Assume that  have conditional upon a common scale parameter , 

independent inverted Weibull (IW) distributions with pdf given by 
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It was assumed that  is a positive random variable following the gamma (a, 

b) distribution with pdf  given by 

 

The joint pdf of BBIII can be obtained as follows: 

 

The joint pdf can be written as follows 

 

In this case . Then the joint pdf can be obtained as follows: 

 

 

The contour plots of the joint pdf of the BBIII distribution for different parameter 

values are presented in Figure 1. 
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Figure 1: The surface plots of the joint pdf of the BBIII 
distribution for different parameter values: 
(1.a)  
 (1.b) , 
 (1.c)  and  
(1.d) . 
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Figure 1: The contour plots of the joint pdf of the BBIII 
distribution for different parameter values: 
(1.e)  
 (1.f) , 
 (1.g)  and  
(1.h) . 

And the joint cdf of the BBIII is given by 
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The marginal cdf of the BBIII distribution can be written as 

And the joint reliability function (rf) of the BBIII distribution is given as follows 

 

The joint hazard rate function (hrf) can be defined as 

 
If BBIII, then for all values for  and  both components of 

 are decreasing function of  and .The contour plots of the joint hrf of 
the BBIII distribution for different parameter values are presented in Figure 2.  
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Figure 2: The surface plots of the joint hrf of the BBIII distribution 
for different parameter values: 
(2.a)  
 (2.b) , 
 (2.c)  and   
(2.d) . 

 
Figure 2: The contour plots of the joint hrf of the BBIII 
distribution for different parameter values: 
(2.e)  
 (2.f) , 
 (2.g)  and   
(2.h) . 
The mixed moments of the BBIII distribution  

In this case , and from (1), if 

, then . 

A BBIII density function is given by (4) can be used to catch the mixed 

moments of order  for BBIII distribution can be shown as 
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the mixed moments of order  for BBIII distribution can be 

shown, using (9), to be given by  

 

where   is the beta function. It follows that, 

for univariate case, 

 
The correlation coefficient  can be computed by using (10) and (11) 

with the appropriate choices of   and . 

3. Maximum Likelihood Method 
In this section, the ML estimation of the vector of parameters 

  for BBIII distribution is introduced. 
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3.1 Maximum likelihood estimators of the parameters 

The likelihood function of BBIII distribution can be derived directly using 

the pdf in (4) but compounding  and can be applied to 

make the ML estimation easier, hence 

 

 

 
The log likelihood function is given by 

 

 
The ML estimators of the parameters are obtained by differentiating with 

respect to the parameters, setting to zero and then solving the resulting system of 

likelihood equations, given by 
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and 

 

where . 

The previous equations cannot be solved analytically. It can be evaluated 

numerically to obtain the ML estimators. 

The invariance property of the ML estimators can be applied to obtain the ML 
estimators for the  and by replacing the parameters in (7) and (8) 
by their ML estimators 

and 

 

 hence the  and  can be calculated numerically. 

4 Numerical Illustrations 

This section aims to investigate the precision of the theoretical results of 
estimation on the basis of simulation study and example data set.  
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4.1 Simulation study 

In this subsection, a simulation study is conducted to illustrate the performance of 

the presented ML estimates on the basis of generated data from the BBIII 

distribution. The ML averages of the estimates, rf and hrf based on complete 

sample are computed. Moreover, confidence intervals (CIs) of the parameters, rf 

and hrf are calculated. Simulation studies are performed using Mathematica 11 for 

illustrating the obtained results. 

The steps of the simulation procedure based on complete sample data are as 

follows: 

a) For given values of (where ), random 

samples of size n are generated from the BBIII distribution. 

b) For each sample size sort the s, such 

that . 

c) Repeat the previous two steps N times where N represents a fixed number 

of simulated samples. 

The Newton-Raphson method can be applied; the ML averages and the CIs of the 

parameters are obtained. Also, the rf, hrf and their CIs are calculated using the ML 

averages of the parameters. 

Evaluating the performance of the estimates is considered through some 

measurements of accuracy. In order to study the precision and variation of the 

estimates, it is convenient to use the estimated risk 

  . 
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Simulation results of ML estimates are displayed in Tables 1 and 2, where N = 

10000 is the number of repetitions and samples of size (n=30, 50, 100), in the 

complete sample case, and the population parameter values  

 
are. 

Tables 1 and 2 give the ML averages, ERs, and CIs of the unknown parameters. 

While Tables 3 and 4 present the ML averages, ERs and CIs of the rf and hrf for 

different values of time . 

Table	1 

ML	averages,	estimated	risk,	variances,	estimated	risks	and	95%	

confidence intervals of the 

parameters

 

 parameters Averages Var ER UL LL Length 

 1.2627 0.0005 0.0270 1.3075 1.2179 0.0895 

 2.3198 0.0015 0.1038 2.3958 2.2437 0.1521 

 1.5182 0.0001 0.0004 1.5389 1.4974 0.0414 

 2.4492 0.0035 0.0657 2.5666 2.3318 0.2347 

 1.9232 0.0000 0.0006 1.9314 1.9149 0.0165 

30 

 3.1319 0.0002 0.0012 3.1582 3.1058 0.0525 

 1.1951 0.0002 0.0093 1.2272 1.1631 0.0640 

 2.1744 0.0016 0.0319 2.2523 2.0965 0.1558 

 1.5287 0.0009 0.0018 1.5905 1.4669 0.1235 

 2.2602 0.0006 0.0042 2.3089 2.2113 0.0977 

 1.9104 0.0003 0.0004 1.9442 1.8768 0.0674 

50 

 3.1087 0.0002 0.0003 3.1372 3.0801 0.0570 

 1.2794 0.0001 0.0323 1.2945 1.2643 0.0303 

 2.3849 0.0038 0.1519 2.5063 2.5063 0.2427 

 1.5481 0.0047 0.0069 1.6822 1.6822 0.2631 

 2.5434 0.0108 0.1287 2.7466 2.7466 0.4064 

 1.9398 0.0009 0.0025 1.9982 1.9986 0.1168 

100 

 3.2093 0.0047 0.0166 3.3435 3.0752 0.2683 
 



 

  157 

–  

 
Table	2 

ML	averages,	estimated	risk,	variances,	estimated	risks	and	95%	

confidence intervals of the 

parameters

 

 

 
parameters Averages Var ER UL LL Length 

 1.1818 0.0018 0.0158 1.2651 1.0986 0.1665 

 2.0442 0.0034 0.0277 2.1595 1.9289 0.2305 

 1.6009 0.00003 0.00003 1.6121 1.5898 0.0222 

 2.3087 0.00004 0.0001 2.3209 2.2966 0.0244 

 2.2224 0.0001 0.0006 2.2446 2.2003 0.0442 

 
 

30 
 
 

 3.5347 0.0003 0.0015 3.5666 3.5027 0.0638 

 1.1756 0.0009 0.0164 1.2361 1.1152 0.1209 

 2.0315 0.0021 0.0305 2.1211 1.9420 01791 

 1.5998 0.00002 0.00002 1.6093 1.5903 0.0190 

 2.3019 0.00001 0.00002 2.3092 2.2947 0.0144 

 2.2221 0.0001 0.0005 2.2369 2.2073 0.0296 

 
 

50 

 3.5348 0.0001 0.0013 3.5568 3.5129 0.0439 

 1.1860 0.0001 0.0131 1.2063 1.1657 0.0405 

 2.0463 0.0001 0.0238 2.0737 2.0189 0.0548 

 1.5995 9.0931e-
6 

9.3773e-
6 

1.6054 1.5935 0.0118 

 2.2986 0.00001 0.00001 2.3053 2.2919 0.0134 

 2.2186 4.8589e-
6 

0.0004 2.2229 2.2144 0.0086 

 
 

100 

 3.5295 6.6373e-
6 

0.0009 3.5346 3.5245 0.0101 
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Table	3 

ML averages, relative absolute biases, variances, estimated risks and 

95%	 

confidence intervals of the reliability and hazard rate functions  

 

 
Table	4 

ML averages, relative absolute biases, variances, estimated risks and 

95%	 

confidence intervals of the reliability and hazard rate functions  

 

4.2 Example of data set 

In this example, a data set is analyzed from a Sankaran-Nair bivariate Pareto 

distribution [see Sankaran-Nair (1993) and Sankaran and Kundu (2014)]. The 

generated data set for n=30 is: 

(0.252, 8.400), (1.105, 0.458), (0.427, 1.602), (12.491, 2.383), (0.260, 0.106), 

(0.240, 1.769), (4.888, 0.758), (0.870, 0.572), (0.036, 0.254), (1.537, 0.023), 

(1.508,0.535), (0.239, 1.4120), (0.173, 0.011), (1.090, 1.278), (6.002, 0.017), 

(0.897, 2.032), (0.690, 0.138), (1.883, 0.398), (0.960, 0.257), (0.561, 0.573), 

 
Rf and hrf Averages RAB Var ER UL LL Length 

 0.6557 0.0048 0.00002 0.0087 0.6649 0.6465 0.0185 30 

 0.0262 0.0369 1.1389e-6 0.0539 0.0282 0.0242 0.0042 

 0.6536 0.0059 0.00001 0.0059 0.6609 0.6463 0.0146 50 

 0.0261 0.0446 5.4239e-7 0.0446 0.0276 0.0247 0.0029 

 0.6541 0.0024 2.8845e-6 0.0036 0.6574 0.6507 0.0067 100 

 0.0267 0.0152 1.3802e-7 0.0204 0.0275 0.0260 0.0015 

 
Rf and hrf Averages RAB var ER UL LL Length 

 0.8986 0.2579 0.0021 0.0113 0.9879 0.8093 0.1785 30 

 0.0003 0.9185 1.4194e-7 0.2667 0.0011 0.0000 0.0011 

 0.8623 0.2072 0.0015 0.0073 0.9386 0.7859 0.1527 50 

 0.0002 0.9450 7.6895e-8 0.2454 0.0008 0.0000 0.0008 

 0.8444 0.1820 0.00004 0.0056 0.8568 0.8319 0.0249 100 

 0.0006 0.8579 1.2118e-8 0.2353 0.0008 0.0004 0.0004 
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(5.370, 0.325), (0.167, 0.260), (13.602, 0.364), (3.922, 0.938), (0.132, 0.547), 

(0.603,0.102), (0.226, 0.481), (0.143, 0.779), (0.643, 0.071), (0.349, 1.586). 

The Kolmogorov–Smirnov goodness of fit test is applied to check the validity of 

the fitted model. The p values are given, respectively 0.808 and 0.393. The p value 

showed that the model fits the data very well.  

Tables 5 and 6 display the ML estimates, ERs of the unknown parameters. While 

Table and 8 presents ML estimates, ERs and CIs of the rf and hrf for different 

values of time . 

Table	5 
ML estimates and estimated risks for the parameters for the data set 

 
Table	6 

ML estimates and estimated risks for the parameters for the data set 

 Parameters Estimate ER 
a 1.3178 0.0003 
b 2.4302 0.0529 

 2.4194 0.6714 

 2.3623 0.0039 

 2.5304 0.1092 

 
 

30 

 3.7374 0.0564 
 

 Parameters Estimate ER 

a 0.9734 0.0160 
b 1.9088 0.0083 

 2.0172 0..2676 

 2.2851 0.0072 

 2.1185 0.0477 

 
 

30 

 3.2789 0.0320 
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Table	7 

ML estimates and estimated risks of the reliability and  

hazard rate functions for the data set 

 
Table	8 

ML estimates and estimated risks of the reliability and  

hazard rate functions for the data set 

 Rf and hrf Estimates ER 

 0.7009 0.008 
30 

 0.0379 0.4419 
 

4.3 Concluding remarks 
From the tables we notice that: 

1- It is noticed, from the Tables 1 and 2 that the ML averages are very close to the 

population parameter values as the sample size increases. Also, ER is decreasing 

when the sample size is increasing. This is indicative of the fact that the estimates 

are consistent and approaches the true parameter values as the sample size 

increases. 

2- The lengths of the CIs of the parameters become narrower as the sample size 

increases. 

3- The ML averages for the rf and hrf performs better as the sample size increases, 

[see Tables 3 and 4]. 

4- The ML interval includes the estimates [between the lower limit (LL) and upper 

limit (UL)]. 

 
Rf and hrf Estimates ER 

 0.7139 0.0094 
30 

 0.0285 0.4758 
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5. Bayesian Method  

In this section Bayesian estimation and prediction for the vector of the parameters 
for the BBIII distribution will be derived under the 

SEL function using informative prior. 
5.1 Bayes estimators of the parameters  

Assuming that  and  are independent, then a prior density 

function of  is given by 

 

 
and 

 
So that 

 

 
and 

 

Substituting from (17-19) in (16) and using the likelihood function (12) the posterior 

density function will separate into three posteriors, which are  

 

 
and 
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by using (20-22), assuming that  and  are independent, 
posterior density function of   is given by 

The Bayes estimators of the parameters are the posterior means 

 
Which can be evaluate numerically to obtain the Bayes estimates for the 
parameters. 
The Bayes estimators of the  and can be obtained using (7), (8) 
and (23), respectively, as given below 

 
and 

 
Equations (24) and (25) can be calculated numerically to obtain the Bayes 
estimates of rf and hrf based on SEL function. 

5.2 Two-sample Bayesian prediction  

Considering two-sample prediction, the two samples are assumed to be 

independent and drawn from the same distribution. In univariate case, the density 

of the s-th order statistic in the future sample is used to obtain the predictive 

density function of the s-th ordered statistic. In bivariate case where the first 

variable in the vector of bivariate distribution is the ordered observation and the 

second variable is their concomitant. Therefor the joint pdf of the ordered 

observations and the concomitants is needed to obtain the joint predictive density 

function of the future ordered observations and their concomitants. For a future 

bivariate sample of size , the joint pdf of future s-th ordered observation and its 
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s-th concomitant denoted by , , has the joint pdf 

which is given by (4) after replacing  by  and  by . For 

simplicity, it can be written as  instead of . Then the 

joint order statistic pdf of  can be derived as follows:   

 

 
using the binomial expansion to simplify the last term in the previous equation, 

one gets  

 
Thus, the joint pdf of  is  

 

 

 
where 

 

The Bayesian predictive density of ordered observations and their 

concomitants is given by (26). Substituting  given in (4) and 

 as in (5) in (26) after replacing  by  and  by  then 
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 the joint Bayesian predictive density of ordered observations and their 
concomitants is given by 

 
where 

 
and 

Substituting (23) and (28) in (30), yields the joint Bayesian predictive density 
of  is  

 
where 

 

 

 



 

  165 

–  

 

 
and 

 

The point predictors of future ordered observation and their concomitants 
 under SEL function can be equivalently obtained as 

follows  

 
and 

 

From (34) and (35), it is clear that the point predictors and  cannot be obtained 
in closed from, and then the joint Bayesian points predictors of future ordered 
observation is 

 
6. Numerical Illustration 

This section aims to investigate the precision of the theoretical results of 

Bayesian estimation and prediction on the basis of simulated and a data set. 

6.1 Simulation study 

In this subsection, a simulation study is conducted to illustrate the performance of 

the presented Bayes estimates on the basis of generated data from the BBIII 

distribution. Bayes averages of the parameters, rf and hrf based on complete 

sample are computed. Moreover, credible intervals of the parameters, rf and hrf are 
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calculated, Bayes point predictors for a future observation from the BBIII 

distribution are computed for the two-sample case. All simulation studies are 

performed using R programming language. 

Simulation algorithm 
I. In similar manner to the steps used in Subsection 4.1, different samples can be 
generated.  
II. Bayes estimates of and are obtained by following the given 
steps: 
1. Assuming the initial values of the distribution parameters and the value of the 

sample size n. 

2. Generate random samples of size (30, 50, and 100) from the population 

distribution under                                study as. 

3. Repeat Step 2 N times, where N=10000. 

4. If  is an estimate of based on sample  then the average 

estimate over the samples  

is given by   

5. The estimated risk of   over the N samples is given by  

 

Using Steps (4) and (5), 

compute , . 

In the case of two-sample Bayesian prediction  

1. Assuming the initial values of the distribution parameters and the value of the 

sample size n. 

2. Generate a bivariate random sample of size n, say  as shown in 

the beginning of this algorithm. 
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3. Follow steps in Subsection (5.2). 

Table 9displays the average estimates, ERs and variances of the  Bayes case based 

on samples of different size n and N=10000 repetitions with informative prior. The 

generated population parameters are 

( . The vector of hyper 

parameters is ( . 

Table 10 present the Bayes averages, ERs and credible intervals of rf and hrf for 

different values of the time  based on informative priors. 

The Bayes two-sample predictors under informative priors is presented in Table 

13. 

In Table 9, the hyper parameters are 

(  and the population 

parameters are ( , in case 

of the two sample prediction and using informative samples of different sizes. 
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Table 9 

Bayes	averages,	relative	absolute	biases,	estimated	risks	and	95%	
credible  

Intervals for the parameters, of BBIII using informative prior  
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Table 10 

Bayes	averages,	relative	absolute	biases,	estimated	risks	and	95%	
credible 

intervals of the reliability and hazard rate functions, using 
informative prior  

 

 
Table 13 

Bayes predictive, bounds (informative prior),  
relative absolute biases and estimated risks of the future 

observations 

 

 
6.2 Example of a data set 
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The data set which was given in Subsection 4.2 are analyzed to illustrate the 

theoretical results in Bayesian inference. 

Tables 11 and 12 present the Bayes averages and ERs, of the parameters, rf and 

hrf, for the example data based on complete sample under informative prior. 

Tables 13 and 14 display Bayes predictors, bounds, based on informative prior, 

also relative biases and estimated risks for the future observations for simulated 

samples and the data set. 

Table 11 
Bayes estimates, relative absolute biases, estimated risks and 

standard  
Deviations of the parameters for BBIII using informative prior for 

the data set 
parameters Estimate RAB bias ER sd 

 1.4983 0.0011 0.0017 3.2914e-6 0.0008 

 0.5497 0.0005 0.0003 3.4607e-7 0.0005 

 5.7993 0.0001 0.0007 8.1274e-7 0.0006 

 3.4993 0.0002 0.0009 1.8762e-6 0.0005 

 3.5991 0.0002 00007 8.4606e-7 0.0011 

 2.5003 0.0001 0.0003 4.2252e-7 0.0006 
 

Table 12 
Bayes estimates, relative absolute biases, estimated risks and 

standard  
deviations of the reliability and hazard rate functions for the data 

set 

 

 
 

Rf and hrf Estimate RAB bias ER sd 
 0.6679 0.0019 0.0013 3.0417e-6 0.0012 

 0.0098 0.0357 0.0003 2.9655e-7 0.0004 
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Table 14 

    Bayes predictive, bounds (informative prior) of the future 
observations, relative absolute  

biases, estimated risks, standard deviations, for the data set under two-
sample prediction  

 

 

6.3 Concluding remarks 

In this study, we observe the following 

1.  The variance of any of the estimates is inversely proportional to the sample size 

and that the variance of an estimate tends to zero as the sample size tends to 

infinity.  

2. The lengths of the CIs of the parameters become narrower as the sample size 

increases. 

3.  The Bayes averages for the rf and hrf performs better as the sample size 

increases. Also, ER is decreasing when the sample size is increasing. 

4. It is interesting to notice that if the variables of the prior density are 

independent and if the likelihood function factors out with respect to these 

variables then the variables of the posterior given data are also independent. 

That if   and if , 

 then 

 

s  Estimate RAB bias ER sd 

 4.0001 3.1085e-5 0.0001 1.5636e-7 0.0004 
1 

 7.0005 7.6529e-5 0.0005 5.8066e-7 0.0005 

 4.0019 0.0004 0.0019 4.8198e-6 00009 
12 

 6.9991 0.0001 0.0009 1.7419e-6 0.0009 

 3.9974 0.0006 0.0025 7.0428e-6 0.0008 
18 

 6.9988 0.0002 0.0012 2.0628e-6 0.0008 
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are independent, which the analysis will be 

easier. 

5. The likelihood function of the BBIII distribution can be derived using the pdf in 

(2.4) directly, but compounding of   and  can be applied to 

make the ML estimation easier. 

The results become better as the informative sample size gets larger. In all cases, 

the simulated percentage coverages are at least 95%. 
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  

 حيـث كـان الأسـاس تركيـب      BurrIIIتم تكوين توزيع ثنائي لتوزيع
ستخدام أسـلوب  إ  وذلك بGamma مع )e WeibullInvers(معكوس وايبل 
عرضـا  العمـل  حيث تناول هـذا    Hussaini -AL)2005(  مشابه لأسلوب

شتقاقها من خلال التوزيع الثنائي لبير مـن النـوع       إلبعض الخصائص التى تم     
وكذلك تم تقدير معالم التوزيع الجديد بطريقتى الإمكـان   )BBurrIII(الثالث  

كذلك تم التنبؤ بالمشاهدات المـستقبلية المرتبـة والمـشاهدات     .عظم وبييزالأ
 وقد تـم  Bayesian predictionطريقة بييز بؤ  بالتن ستخدامإالمصاحبة لها ب

 prior وأن التوزيـع القبلـى   ةفتراض أن جميع المعالم مجهولـة ومـستقل  إ

distribution    لكل منها يتبع توزيع جاما وقد تـم إيجـاد التوزيـع البعـدى  

sterior distributionPoًــضا ــة  وأي ــدال ــؤ البيزي      Bayesian ة التنب
predictive density  فى حالة التنبؤ بعينتـين sample prediction-Two .

داء أكما تم عمل دراسـة عدديـة لدراسـة          . للمشاهدات البيزية  التنبؤ    عمل مث
 لمعرفـة   مقدرات دالة الإمكان الأعظم وبييز وتم تطبيقها على بيانات حقيقيـة          

 Sankaran and Kunduستخدمها إستخدام بيانات إ وذلك ب تطبيقه عملياًمدى

)2014( . 


