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ABSTRACT 
The supersonic flow over a cone is of great. practical importance in applied aerodynamics; Nose cones of many 
high-speed missiles and projectiles are approximately conical, as are the nose regions of fuselages of most 
supersonic airplanes. In the present work. a numerical technique for solving the Taylor-and-Maccoll conical flow 
equation is introduced. Results of the present technique are verified against results of other key researchers. An 
excellent agreement was found in all cases. The inputs of the present code are the free stream Mach number and 
the cone half angle. The output includes the velocity field, the pressure field, the shock wave angle, and the stream 
lines directions. The running time on a Pentium 75Mhz is around 2 CPU-seconds for each case. 
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1. INTRODUCTION 

When a cone at zero angle-of-attack is flown by a supersonic flow, the problem is axi-
symmetric. Moreover, it is proven that the flow properties are constant along a ray from the 
cone vertex. Thus, alth.ough the problem appears to be three dimensional, it is actually one-
dimensional. Accordingly, its governing equation is an ordinary differential equation (ODE) 
rather than the partial d.eferential equations common in the Aerodynamics era. 
As mentioned before, the supersonic flow over cone is of great practical importance in applied 
aerodynamics; the nose cones of many high-speed missiles and projectiles are approximately 
conical, as are the nose regions of fuselages of most supersonic airplanes. Also, it can be used 
as a starting solution for bodies of revolution when the Mach angle is smaller than the body 
nose angle. 
The first solution for the supersonic flow over a cone was obtained by Busemann in 1929 [1] 
long before supersonic flow became fashionable. This solution was essentially graphical, and 
illustrated some of the important physical phenomena. A few years later, in 1933, G.I.Taylor 
and J.W.Maccol [2] represented a numerical solution, which is a hallmark in the evolution of 
compressible flow. Since then, many researchers attacked the problem numerically to make 
tables for the supersonic flow around cones at zero angle of attack [1-3]. 

The governing equation of this problem is a second order ODE, which needs two boundary 
conditions for the system to be well posed. One of them is easy to figure out, the rigid body 
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B.C.. But, the second one is not obvious. Actually, there are two choices. 1) To choose the 
tangential speed on the cone surface, then get the corresponding shock angle and free stream 
Mach number as a result. 2) To choose the shock wave angle, then get the tangential speed on 
the cone surface and free stream Mach number as a result. In the present approach, there is no 
intention to make tables. But, the objective is to make an efficient numerical model and 
computer code that is capable of predicting the conical flow for the direct problem (given the 
free stream Mach number, and the cone semi-vertex angle solve the problem). Hence, 
integrating this code with another codes to solve real engineering problems. This is done by 
adopting the B.C. choice (1), and iterating to get the desired free stream Mach number. In 
another wards, the powerful computing facility, that is made available recently, is utilized to 
solve the direct problem. (The running time on a Pentium 75Mhz is around 2CPU seconds for 
each case.) 
Results of the present technique are verified against key results [1, 5, and 6]. Excellent 
agreement was found in most cases. 

2. THEORETICAL BACKGROUND 

2.1. GOVERNING EQUATIONS: 
The governing equation of the conical flow is obtained by applying the continuity equation, 
Eulle:-'s equation, and the adiabatic process thermodynamic relations in spherical coordinates 
(figs. 1 and 2). Also, the conical flow assumptions are used: 

a) Axisymmitric flow —= 0 
oco 

b) Flow properties are constant along a ray from the cone vertex 	= 0 

c) 'notational flow V x V 0 

The result is the Taylor-Maccoll equation for the solution of conical flow [5] 
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Note that it is an ordinary differential equation, with only one dependent variable, V, . Its 
solution gives V, = 
The normal velocity can be calculated using the relation optioned from the continuity equation: 

dV  V= 
(19 

and the pressure field is evaluated using the relation[1]: 
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2.2. BOUNDARY CONDITIONS: 
Equation (1) is a second order ODE that needs two boundary conditions for the mathematical 
model to be well posed. 

a) Solid Cone Surface: 
This is the common non-penetrable surface B.C., Which states that no flow is going through the 
surface: 

(IV When 9= 9,.
9 d9 

= =0 

b) Shock Wave Condition: 
By studding the shock polar, one can prove graphically a relation between the shock wave 
angle and the velocity vectors:[5] 
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Equations (2 and 3) form a complete but inconvenient set of boundary conditions for the 
differential equation (1). A major difficulty being that we have no direct method for detecting 
the shock wave angle 95  before solving the problem. Accordingly, some sort of iteration has to 
be used. Moreover, the differential equation (1) is nonlinear, second order, and with variable 
coefficients. That makes a closed analytic solution for that system is not an option. In the next 
section, a numerical technique for solving the above system is introduced and discussed. 

Figure 1.a: Spherical coordinate system 

(2)  

2 

(3)  
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Figure I .b: Spherical coordinate system for a cone 

Figure 2: Geometry for the numerical solution of flow over a cone 
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3 NUMERICAL TECHNIQUE 

As mentioned in the previous section, equations 2 and 3 form a complete but inconvenient set 
of boundary conditions for equation 1. A major difficulty being that we have no direct method 
for determining the shock angle. Hence we cannot assign both M. & 9, and get a direct 
solution. 
Two methods for attacking this problem are possible: 
1. The direct method (shock capturing), in which the cone semi-vertex angle is assigned, and 

the shock angle is obtained as a result. 
2. The indirect method (shock fitting), in which the shock wave angle is assigned and the 

corresponding cone angle is obtained as a result. 

The main objective of the present work is to make a convenient solution of the direct problem 
available and easy to use within a larger problem. Accordingly, the direct method is adopted in 
the present work. 

3.1. ODE INTEGRATION SUBROUTINE: 
A standard predicting-correcting technique for integrating a system of first-order ordinary 
differential equations is used [8]. A FORTRAN subroutine (ODE) is also available in the U.S. 
Government Library on the Internet. This subroutine requires the system of equations to be 
written in the form: 

dy(i)  = f(t , y(1), y(2), ... y(neqns)) and i=1 to neqns 
dt 

Accordingly, equation (1) is non-dimensionalised by Vmax  and rewritten in the form: (NOTE: 
Starting from here, all velocities are non-dimensionalised by lc.) 

y(1)= V, 

Y(2) = 
dV 
d9 
d2v 

= 
[2y(1)(1 — y(1)2 ) + y(2)(1 — y(l)2) cot 9 — 7y(1)y(2)2  — y(2)3  cot 9] 

.Y(3)= d92r 	 (6y(2)2  —1 + y(1)2) 

Knowing V, at angle 9, one can proceed to new angle with the desired accuracy. 

(4) 

3.2. NUMERICAL PROCEDURE (suitable for computer programming): 

1- Read the free stream Mach number M me , and the cone semi-vertex angle 9, . 
2- Assume value for the radial velocity on the cone surface V, and solve (4) as IVP with 

steps, AD moving away from the cone surface until (3) is satisfied. The obtained angle is 
the shock wave angle corresponds to the chosen V„ on the surface. Also, calculate the 
corresponding Mach number after the shock wave M, using the following equation: 
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V = VV,' + Vs  = 	1  
2  +1 

(r 

	

3- Assume value for the radial velocity on the cone surface V 	solve (4) as IVP with 
steps A9 moving away from the cone surface until (3) is satisfied. The obtained angle is 
the shock wave angle corresponds to the chosen V,. on the surface. Also, calculate the 
coresponding Mach number after the shock wave M., using the following equation: 

1 IT = VV,.2  + V,: =  	
--- 

2 
 

(y -1)A42 +1 

4-Using Oblique-Shock-Relations [6], calculate the free stream Mach number corresponding 
to M, and ,9s obtained from step 2. 

M„, = Mr„ sin 9„. 
M„„ = 111„ sin 9, 

A4. ,1  ± 2
y — 1  A402 = 

2y  - A4, — I 
— I 

5-Compare the obtained Mach number with the required . Change the assumed value of the 
radial velocity on the cone surface V . and repeat 2-4 until you get the required Mach 
number. 

5. RESULTS AND VALIDATION 

In order to check the accuracy and the efficiency of the present technique, various test cases are 
calculated and compared with well-known results of the present research problem.  

5.1 The variation of pressure in the domain between the cone surface, and the 
shock wave: 

In figure 3, the pressure ratio obtained using the present technique is compared with that 
obtained by Taylor and Maccol [2]. For the shown results, the Mach number is M. = 1.52 , and 
the cone semi-vertex angle is 9, = 30°  The horizontal axis is the angle in degrees measured 
from the cone centerline. The vertical axis is the static pressure divided by the total pressure 
after lhe shock The running time to get these results was around 2 CPU-seconds on a Pentium 
75MHz computer. 
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Figure 3: Pressure versus angle measured from the cone center line for M,„ = 1.52 and 9, = 30° 

5.2 The variation of shock wave angle with Mach number: 
In figure 4, the variation of shock wave angle is drawn versus the free stream Mach number. 

	

Also, the cone angle appears in this figure as a parameter ( 	= 20°&30°). These results are 
obtained by choosing a fixed cone semi-vertex angle, then changing the free stream Mach 
number to see how this will affect the shock wave angle [5]. Each point on this graph cost 
around 2 CPU-seconds. Hence, the total running time to obtain these results was about one 
CPU-minuet. 
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Figure 4: Shock wave angle versus free stream Mach number for 9 = 20°&30° 
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Figure 5: Shock wave angle versus cone semi-vertex angle for Mc„, = 1.5&2 

5.3 Variation of shock wave angle with the cone semi-vertex angle: 
In figure 5, the variation of shock wave angle is drawn versus the cone semi-vertex angle. Also, 

	

the free stream Mach number appears in this figure as a parameter ( 	=1.5&2 ).These results 
are obtained by choosing a fixed free stream Mach number, then changing the cone semi-vertex 
angle to see how this will affect the shock wave angle [6]. Each point on this graph cost around 
2 CPU-seconds Hence, the total running time to obtain these results was about one CPU-
minuet. 

An excellent agreement was found in all test cases presented in this paper. The only exception 
is a convergence problem at high free stream Mach numbers, which will be studied in the 
future work. 

CONCLUSION 

An efficient numerical technique to solve the conical flow, based on Taylor and Maccol 
formulation, is introduced in this paper. Also, a FORTRAN computer code is built and tested. 
The results of the code are validated, and an excellent agreement was found. 
The present technique solves the direct problem (given Mach number and cone angle, predict 
the flow parameters). This comes to the contrast of other techniques that solves the indirect 
problem (given the shock angle and the Mach number, predict the flow pararnelers). This 
makes the present technique more suitable to integrate with sophisticated problems (bodies of 
revolution, supersonic intakes, ...etc.). 
The future work is to handle the angle of attack case, and the unsteady case. 
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