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ABSTRACT 

In this paper an artificial Neural Network (NN) is used to control an aircraft along a 
predetermined trajectory. The inverse dynamics concept is used. Two NN models are 
used: one for forward identification NNI) nd he ther ne or nverse odel 
identification and forward control (NNC). After training of both models the NNC is 
used as a forward controller to the aircraft model. The simulation results shows good 
agreement between required and achieved trajectory. 

KEY WORDS 

Aircraft, Neural Networks, Inverse Dynamics, Trajectory Control 

1. INTRODUCTION 

The concept of aircraft trajectory control was imported from the field of robotics. The 
term 'trajectory control' can be interchanged with the term 'inverse dynamics'. The 
use of inverse dynamics approach to aircraft maneuvers was started thirty years ago, 
but many advances have been made since this date. This approach was 'found to 
give answers to the questions like "How an airplane should be controlled when its 
flight maneuver is given?" In 1959, Etkin introduced, to the first time, the inverse 
problems of aircraft maneuvers [1]. He gave an application to single degree of 
freedom pure rolling maneuver. In 1981, a pioneer work was done by Meyer et al. [2] 
who used the concept of nonlinear inverse dynamics to construct a transformation 
from natural nonlinear representation of the system into an equivalent linear 
constant-coefficient reference model. In 1993, Al-Bahi and Abdel-Rahman presented 
a general formulaton of the inverse problem [3]. The method was applied to the case 
of circular loop prescribed maneuvers. In 1994, Al-Bahi and Abdel-Rahman 
presented a generalized technique for inverse simulation along predetermined 
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trajectory [4]. The prescribed technique can be given either in analytic form or as a 
succession of points. 
Recently, neural networks approach was employed to find the exact inverse 
neurocontroller of the aircraft [5]. The main interesting feature of the neural networks 
is its ability to learn. This method is superior to the previous methods in many 
aspects: the mathematical model is not needed and any changes in the system 
parameters can be tracked and overcome, so, It can be used with high uncertainties, 
actuator sluggishness, and battle damaged or partially missing control surfaces. 
In this work the NN was employed to perform online trajectory control. Two NN 
models were used the first one is called the neuroidentifier (NNI) and the other is 
called the neurocontroller (NNC). 

2. AIRCRAFT MODEL 

The used aircraft model is a single input single output (SISO) discrete linear system. 
It models the longitudinal dynamics of a fighter aircraft trimmed at horizontal steady 
level flight with constant velocity and altitude [6] pp. 173. 
The input of the model is the elevator deflection angle (Se) and the output is the pitch 
rate (q). The model is given as a transfer function in the s-domain, as: 

—10.45s(s + 0.9871)(s + 0.02179) 	deg/ s 

+ 1.204 ± j1.492Xs + 0.007654 ±10.07812) deg (1) 

3. ON-LINE CONTROL SCHEME 

In order to achieve on-line control, a neural network model, called neuroidentifier 
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Fig.l. Basic scheme of NN on-line control 
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(NNI), is selected, implemented and used to identify the aircraft forward dynamics 
online. An arbitrary-chosen teaching signal is used as a control input to activate the 
dynamics of the aircraft model. The neuroidentifier is put in the learn mode. At every 
time step a learning algorithm, called dynamic back propagation (DBP), is used to 
adjust the weights of the neuroidentifier to minimize the local error between the 
neuroidentifier and the aircraft model responses. This local learning is assumed to 
minimize the overall error between the aircraft and the neuroidentifier. After the 
complete learning process, another neural network model, called neurocontroller, is 
constructed to model the inverse dynamics of the aircraft online. The neurocontroller 
is put as a feedfQrward controller. The neurocontroller is put in learn mode. The 
dynamic backpropagation is used to minimize the error between the neurocontroller 
input, which is the desired output, and the actual output of the aircraft model. To 
avoid disturbances to the aircraft during the learning phase of the neurocontroller, the 
output of the neuroidentifier is used instead of it. The neurocontroller uses the 
jacobian or sensivity matrix computed by the neuroidentifier to compute the error in 
the control-input signal. When the local error between the desired and achieved 
output tends to zero the learning of the neurocontroller is completed. The 
neurocontroller is then used to control the aircraft over two specified trajectories. 
Good agreement is noticed between the specified and achieved trajectories. 
The three phases of operation of the above 
scheme can be summered as: 

Identification of the forward dynamics of 
the NC. 	(learn NNI) 

II. Identification of the inverse dynamics 
model of the NC. (learn NNC) 

///.Control of the aircraft over the specified 
trajectory. 	(test NNC) 

Notes: 
In real conditions, the learning phases, phase I 
and phase II, occurred during normal flight 
conditions with aircraft controlled by another 
(conventional, non-intelligent) control system. 	 6  
In the off-design conditions, emergency, the 
scheme learns the deviations and controls the 
aircraft along the predetermined trajectory. For 
study purpose we give the aircraft a teaching 
signal (sinusoidal or pulse) as control input 
u(k)and desired output yd(k) during learning 
phases (phase I and II). 
For the purpose of robustness, NNI continues 
to learn in both the phase II and phase III for 
online adaptation of the aircraft inverse. 
The approach for control and system 

of on-line NN control identification using diagonal recurrent neural 	Fig.2. Flow chart  
network (DRNN) [12-15] is used in this work. A 
system identifier, called the diagonal recurrent neurocontroller (DRNI) identifies the 
unknown plant, the neurocontroller is used to drive the unknown dynamic: system 

Call Plant Simulation 
u(kT —)y(kT) 

Calculating contri Error 
ec=  d - 

calculate the plantjacobian J 
using NNI - 

calculate the error in plant inpt t e 

6  
 Backward the error e„in the NNC  

and calculate the weight updtit 

update the weights of the NN(J 

k=k+ 	.j 

(.;=Stop 



Proceedings of the eh ASAT Conference, 4-6 May 1999 
	Paper AF-05 	52 

such that the error between plant and desired output is minimized. A generalized 
algorithm, called the dynamic backpropagation (DBP), is developed to train both 
DRNC and DRNI. 

4. NEURAL NETWORKS MODEL 

A recurrent neural network (RNN) is defined as a feedforward network which allows 
feedback for some of the nodes, i.e., the output of a node becomes input to a node in 
a preceding or in the same layer [7-10]. The output of a RNN, therefore, depends not 
only on the inputs to the network, but also on the current state of the network. Thus, 
the RNN is a (nonlinear) dynamic network, while the FFNN is a static network. The 
RNNs have important capabilities not found in FFNN, such as their dynamics and the 
ability to store information for later use. Of particular interest is their ability to deal 
with time varying input or output through their own natural temporal operation [11]. 
Thus the RNN is a dynamic mapping and is better suited for dynamic systems than 
the FFNN. 

4.1. Structure 

With the objective of a simple RNN and a shorter training time for the neural network 
model, a diagonal recurrent neural network (DRNN), Fig.3, is developed [15]. It can 
be shown that the DRNN model is a dynamic mapping in a way the Fully connected 
Recurrent NN (FRNN) is dynamic. Since there is no interlinks among neurons in the 
hidden layer, the DRNN has considerably fewer weights than the FRNN and the 
network is simplified considerably. The hidden layer is a recurrent one, but the output 
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Fig.3. Structure of DRNN 

of every neuron in the hidden layer is fed-backed only to itself [12-15]. DRNN shows 
good characteristics in identification and control of nonlinear dynamic systems. 
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4.2. Processing Algorithm (Forward Computation) 

S , (k)=1W,` I ,(k) +W f X j (k —1) (2)  

X j (k)= f(S j(k)) (3)  

0(k)=1W X j (k) (4)  

Where for each discrete time k, li(k) is the ith  input to the DRNN, S1(k) is the sum of 
inputs to the jth  recurrent neuron, XJ(k) is the output of the jth  recurrent neuron, and 
0(k) is the output of the DRNN. The bias term can be included as one of the inputs 
as usual. Here f(.) is the usual sigmoid function, and WI, WD, and W°, a-e input, 
recurrent, and output weight vectors, respectively, in Nn', ard  and 9ect. 

4.3. Learning Algorithm 

The NNC error is defined as: 

1 
= —2 (Y d(k) —  Y(k))2  

And for NNI: 

E,,, = 2(y(k)— y,u (k))2  

Where ym(k) = 0(k) of (4). The gradient of error in (5) with respect to an arbitrary 
weight vector WEN" is represented by: 

OE, 
--ec(k)y„(k)

a(k) 

	

ow 	elv 

= —ec(k)y,,(k)
(39(k)  

where ec(k)=yd(k)-y(k) is the error between the desired and output responses of the 
(k)  

plant, and the factor y„(k) = 
a(k) 

represents the sensitivity of the plant with respect 

to its input. 
Since the plant is normally unknown, the sensitivity needs to be estimated for DRNC. 
However, in the case of the DRNI, the gradient of error in (6) simply becomes: 

OE„, 

	

— —e„, 	 „,( 	 (k)
41n(k) 

— —e k) 
 

oW 	OW 	Jr/ 
where em(k)=y(k)-ym(k) is the error between the plant and the DRNI responses. 
The output gradient a0(k)/ aW is common for both DRNC and DRNI. 

(5)  

(6)  

(7)  

(8)  
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Dynamic Backpropagation For DRNI 

09(k) 
- X .(k) jo 

(9)  

X(k) 
(10)  cyfy JD - 	P (k) 

X(k) 
(11)  -WyQi(k) 

Where: 

X .(k) 	c .(k) 
P D 	 and QE, 	 ew 	ow, 

And satisfy 

P j(k) = f (S j )( X j(k -1) + 	P j(k -1)), 
131(0) = O. 

Qu(k)= (S j )(1,(k)+W Q,j(k -1)), 
Q0 (0) = O. 

The negative gradient of the error with respect to a weight vector in ;RN  is: 

gill .  in 5W 

The weights can be adjusted following a gradient method, i.e., the update rule of the 
weights becomes 

OE 
W (n +1)=W (n)+ 	-2ow) 	 (16) 

Where r1 is a learning rate. The equations (9)-(16) define the dynamic 
backpropagation algorithm (DBP) for DRNI. 

Dynamic Backpropagation For DRNC 

In the case of DRNC, from (7), the negative gradient of the error with respect to a 
weight vector in RN is 

-
(3E, 

= e (k)y
" 

(k)
a9(k)  

OW 	,(347  
Since the plant is normally unknown, the sensitivity term yu(k) is unknown. This 
unknown value can be estimated by using the DRNI. When the DRNI is trained, the 
dynamic behavior of the DRNI is close to the unknown plant, i.e., y(k) %kS ym(k), where ym,(k) is the output of the DRNI. 

(12)  

(13)  

(14)  

(15)  

(17) 
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Once the training process is done, we assume the sensitivity can be approximated as 

(k)  c3) (k)  
Y 	au(k) 	 m 	 (18) 

(k) gu(k) 

where u(k) is an input to the DRNI. 
Applying the chain rule to (18), and noting that ym(k)=O(k) of (4), 

n, 09(k) _v  a9(k) OX (k) 

	

5u(k) at(k) 	(7X j  a(k) 

v, c7) ((k) 
4  ° au(k) 

Also from (2)-(4): 

61X (k) 	 ,(k) 
	- (S (k)) 	 
cal(k) 	 ai() 

Since inputs to the DRNI are u(k) and y(k-1) (Fig.1), eq.(2) becomes: 

	

S j(k) = W JD  X j(k -1) + 	u(k)+W21jy(k -1) + W3̀  jb, 

where by is the bias for DRNI. Thus: 

623 j (k) w  
9u(k)  

From (19), (20), and (22), 

y u(k) 
ai((kk)) 

 - LW f (S
' 
 (k))Wi l  

0 

 

Where the variables and weights are those found in DRNI. 

SIMULATION AND RESULTS 

Due to the unavailability, to authors, of ready-made neurocontrol software package, a 
complete set of C++ library programs is built and developed during this work. It 
contains Matrix and Vector library, Chart drawing library, Numerical algorithms, ... 
and much more. All of these libraries are built using the Object-Oriented 
Programming concept, which has several advantages over the classical procedural-
oriented programming approach. 

(19)  

(20)  

(21)  

(22)  

(23)  
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1 	0.001 
h [in] 	

Trajectory 

Fig.4. Circular loop Trajectory (required and achieved) 

The simulation is performed on IBM PC-Pentium machine of 100 MHz speed. 
The simulation is carried out at integration step T=0.01 sec. 
The NNI structure is given as follows: 

- Input Layer: consists of 2 neurons (yk-/ uk) 

- Hidden Layer: consists of 7 neurons 
- Output Layer: consist of 1 neuron (yk) 

The NNC structure is given as: 
- Input Layer: consists of 3 neurons (yd, yk-1 uk) 

- Hidden Layer: consists of 9 neurons 
- Output Layer: consist of 1 neuron (uk) 

Fig.4 shows the required and achieved trajectories. 
The required and achieved pitch rate is shown in Fig.5. 
The control inputs generated by the NN controller is shown in Fig.6. 

The following remarks can be addressed from the computer simulation: 
• The inverse modeling it is not as easy as the forward identification 
• The problem of learning stability is generally highlighted. 
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CONCLUSION 

In this work the NN is used as a forward controller, using inverse dynamics concept, 
to control the aircraft along predetermined trajectory. Two NN models were used: one 
for forward identification of aircraft dynamics and the other for inverse modeling of the 
aircraft. After the complete training of both models, a predetermined trajectory, 
cir:..sular loop trajectory is given to the inverse controller as a pitch rate history. The 
achieved trajectory shows good agreement with the prescribed one. 
The study shows that the neural network is a very good tool in the field of 
identification and inverse dynamics control. It can even identify and control the 
aircraft while it runs without any time loss. Any changes in the plant dynamics could 
be captured and reclaimed online. 
Dynamic or recurrent neural networks are much better than static neural networks in 
both identification and control. 
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