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ABSTRACT 

In the present paper modified modelling techniques are generated for 

computing dynamic characteristics of laminated composite structures with 

more accurate results and with relatively small time of computation. 

A comparison between the traditonal finite element model and the 

present improved dynamic models is introduced through a case of 

longitudinal vibration of fixed - free composite structural rod. The results 
show the efficiency of the present techniques for dynamic modelling of 
composite structures. 

Key words : Composite structures, Dynamic modelling, /vIatrix computer 
method. 

/L. INTRODUCTION 

Modelling of complex large structures is one of the fundamental 

activities of researchers as analysis, synthesis and measurments. The 

development and improvement of dynamic models of complex structures of 

isotropic nature are subjects of numerous scientific work. They include 

economic and accurate solutions in terms of different advanced techniques 
such as condensation, finite element and finite difference. Unfortunately, the 

volume of references available concerning modelling and applications of 

these advanced techniques to large composite structures implies a lack of 

adhesive structures in the methodology of developing and improving of 
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modelling and analysis for various composite structural problems. 

The predominant aim of the present work is to provide efficient and 
simple tools for the development and analysis of dynamic models of fiber 
reinforced laminated composite structures. The proposed modelling 
techniques are based on an improved finite dynamic composite element 
(F.D.E.) in conjunction with the dynamic correction technique to reach for 
hand accurate results and reduced time of computations. For illustrating the 
efficiency of the developed techniques, the longitudnal vibrating fixed - free 
composite rod is considered. The comparison between the computed results 
of the proposed and traditional techniques for various samples of fiber 
reinforced laminated composite rods proves the efficiency of the present 
techniques as regard to the proper selection of the prescribed degree of 
accuracy and the small time of computation. 

2. PROBLEM STATEMENT 

One of the major factors for the proper modelling of the: dynamic 
behaviour of fiber reinforced composite structure is the proper simulation of 
the elastic characteristics of its building material. An algorithm has been 
proposed within the frame of the present work for specification elastic 
characteristics of composite structures. The algorithm includes modelling of 

a general longitudinal composite rod in terms of the extensional stress strain 
relations given as : 

where Ec  is the equivalent modulus of extensional elasticity of composite rod. 

The second algorithem is focused on modelling of extensional stress 
strain relation of longitudinal composite rod of symmetrical nature. For a 

general extensional state of elastic deformation, the equivalent apparent 
Youngs modulus Ec  for various code numbers are also computed by using the 
proper condensation technique. The influences of the code numbers and 

particularly the lamina orientations on the elastic characteristics of structural 

composite models have been investigated theoretically [8]. The analysis have 
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revealed that the change of outer lamina orientations for three laye►r's 

structures have the pre-dominant effects on the stiffness modulus and on the 

dynamic nature of composite structures compared with the orientation of 
inner lamina as represented in Figures 2 and 3 respectively. In Figure 3 the 
models have been studied for six code numbers [0 / 0 / 0], [0 / 30 / 0], [0 / 45 

/ 0] [0 / 90 / 0], [45 /- 45 / 0] and [45 / 0 / 45] for two levels of fiber volume 
fraction namely Vf = 15 % and 45 %. The interrelationships are presented by 

means of various curves to simulate the dynamic nature of fiber reinforced 
composite structural beam. 

Three phases of mathematical models of composite structures are 
introduced herein as 

(1) Finite element method (F.E.M) for composite structures. 
(2) Dynamic element method of composite structures (D.E.M). 
(3) Modified formula for composite element method (M.F.M). 

To demonstrate the considerable improvement in the accuracy of the 

computed natural frequencies by the utilization of the present techniques the 

results are tabulated and listed out in various curves as shown later. 

2.1. The first phase (Finite element method, F.E.M) 

For computing the natural frequencies of the composite rod the total 
mass and stiffness materices are constructed using the traditional polynomial 

static displacements function to satisfy its static strain displacements and 
stress - strain relationships. The standard form to compute the eigen value is 
given by 

( [KJ (1)2  [M0] rql r0-1.  

where [K] : is the global mass matrix of an assembly of composite structural 
rod. 

[K0] : is the global stiffness matrix of an assembly of composite 
structural rod. 

I q : is the global physical displacement vector. 

(1) 
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The element stiffness matrix [ke] and mass matrix [me] of the eth element 

of the assembly are constructed in terms of the equivalent apparent moduts 

(Ec) as 

[ ke ] = 	{b(x)fr  . Ec  . [b(x)] . dv 
v 

[ me — 	[a (x)]T  • Pc  . [a (x)] . dv 

where e = 1, 	n, 
and n = number of elements of the assembly 

[b(x)) is the strain displacement matrix of beam element. 

[a(x)] is the matrix of shape function of beam element. 

pc 	is the mass density of composite rod element. 

The proposed expression of the apparent Young's modulus of elasticity 

of axial loading composite beam is given by 

Ec  = 	Ac  

Where A:cì  : is the condensed extensional stiffness modulus of fiber reinforced 

one-dimensional lamina 

t : is the thickness of rod layers 

The values of Ac  and pc  depend on different parameters mainly fiber 

volume fraction (v f) and variation in lamina orientation (0) as shown in Fig. 2 

and the form [Ref. 1,2] can be expressed as 

[  A*  = A11 Ajl ± (Al2 A26 - Al6 A22)2  
A22 	A-.)-) (A36 - A22 A66) 

.(2) 

(3) 

(4) 



Proceedings of the 8th  ASAT Conference, 4-6 May 1999 	Paper SM-02 	191 

Note that : 

Pc Pf • vf Pm - vm 
pf  is the mass density of fibers material. 

Pm is the density of matrix material. 
vf  is the fiber volume fraction. 

vm is the matrix volume fraction. 

2.2. The second phase (modelling dynamic element method technique of 
composite structures (D.E.M) : 

To improve the accuracy of vibrating composite models the dynamic 
element method utilizes the dynamic displacement function instead of the 
static displacement function (considered in the first phase). This yields 
higher order dynamic correction terms for the element stiffness and mass 
matrices. The matrix frequency depends on the dynamic shape function [Ref. 
3,4], which can be employed to develop the frequency dependent stiffness and 
mass matrices of vibrating structure composite rod and the eigenvalue 
problem is then modified as 

([1(0] - 0)2 [MO] - [Rs])1 1= rol 
where [Mo] represents the static mass matrix 

[K4 represents the static stiffness matrix 

[Rs] represehts the dynamic correction matrix. 

The general form of the dynamic correction matrix can be written (as 
shown later) as 

[Rs] = 	(a)2s[m2s] - 0.T4s [kas]) 

(5)  

(6)  

where s = 0 is associated with the static displacement function and s >0 is the 
number of the retained dynamic corrections parameters. 
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2.3. The Third phase (Modified formula method for longitudinal vibrating 

composite structures M.F.M). 

The third phase can be Considered as a modification of the natural 

frequencies formula of an uniform isotropic sandwich rod (by introducing 

parameters concerning fiber orientation of composite lamina). It is known 

that the traditional form of the ith frequency [Ref. 5] may be given by 

fi 	 E )2  for i — 1,2, ...m 
2nL P 

where Xi is the dimensionless parameter depending on boundary conditions. 

E : is the modulus of elasticity of isotropic structural rod. 

L : is the length of the rod. 

p : is the mass density of the rod material, 

m : is the number of modes. 

For modifications of the modulus of elasticity and mass density of 

composite rod Ec  and pc  are introduced in the later expression and the 

modified form is then expressed as 

(7) 

fi X.  	E c 
2711., if Pc_ 

It is obvious that the previous 

composite structural rod dependg on 
.r.action (V f), „,riatioy, 	lamina 

vibration. 

equation of the -di natural frequency of 

different parameters mainly fiber volume 

orientation (0) and order of the mode of 

2 
	 [81 

3. A CASE STUDY : Computation of longitudinal natural frequencies of 
composite rod. 

For illustrating the accuracy of the developed technique the longitudinal 
vibration of fixed free structural composite rod of an uniform cross section is 

considered. In view of the first phase the structural composite rod of length 
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L is discretized into eight elements interconnected at seven nodes as shown in 
Figure 4. Each node is represented by a single degree of freedom for 
describing the longitudinal vibration of the assembly as shown in the figure. 
qi and q2 represent the nodal translatory displacements in the X-direction at 
nodes 1 and 2 of the element respectively. .Assuming that the displacement 
U(x) of a field point within the element varies linearly in X direction we 
have: 

1_1(x) = [1 	X] 1  Fen   (9) 
C21 

Thus 

Ux  (x) = [a (x)] 

Applying the boundary conditions we have 

	  (10) 

Note that, the strain - displacement relationship for axial element is given by 

, thus 

= {1) )] • 	IE (-1  121   (12) 

In view of equation (2) the element stiffness matrix [Ke] can then be 
expressed as 

qi 
q2. 

{ ike  _ 	1 '1 —1  -11 
1 
	  (13) 

Similarly the element mass matrix [me  J can be calculated with the help of 
Eqn. (3) and the following equation : 

	  (14) 

I 
[rn 	cP AL 	2 

3 1 
2 
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where A is the cross - sectional area of the composite rod. The natural 
frequencies of the assembly can then be calculated by Eqn. (1). 

In view of the phase 2 the dynamic element modelling of the element is 
identified by two harmonic end displacements : 

Ul 	= q i .elmt and u2 (t) = q2.ei31 	 (15) 

The nodal displacement vector can then be expressed as 

FL-141= [k. ju'2  ((tt l = 11-211  . clot 

The axial displacement of a field point ux  (x, w, t) is expressed in an 
expanded form of circular frequency co, so that 

u, (x, w, t) = [ a (x, co) ] Fuji  	(17) 

in which [a (x, co)] represents the matrix of frequency dependent shape 
functions [Ref. 3] given by 

[a (x, w)] = [a. (x) + w . [a l  (x)] + co2  . [a2  (x)] + 
00 

= 	COr  . [a, (x)]   (18) 

By substituting Eqn. (18) into the equation of motion of the uniform 

extensional continuous rod, (Appendix), the element mass and stiffness 
matrices of the composite rod can then be given respectively as 

[me] = (m.) + 0)2  (m2) + 0)4  (m4) + 	 

[key = 	([b (x, co)]r  • Ec  • [b (x, cl)])d, 

= (k.)+ co4  (k4) + co8  (k8) + 

in which 

(16) 

(19)  

(20)  
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1 (Mr) = Pc 	( i kr (XT.  • [aN-r (X)]) .dv 
r--o,2,4 

1N 
(kr) = Ec 	( / (br (x)T  - (bN-r (x)) - 

r-I,4,8 
v 

dv 

(21) 

	  (22) 

The latter expressions can be then substituted in the correction matrix 

given by Eqn. (6) to improve the accuracy of the computed natural.  

frequencies. 

4. RESULTS AND DISCUSSION 

In the numerical work the elastic parameters and natural frequencies of 

longitudinal vibration of fixed free glass fiber reinforced 3-laminated 

composite beam have been computed for various case studies. Three dynamic 

modelling techniques F.E.M1, D.E.M and M.F.M are applied for computing the 

modulus of elasticity and natural frequencies for different six composite 

structure with code numbers [(0 / 0 / 0), (0 / 30 / 0), (0 / 45 / 0), (0 / 90 / 0), 

(45 / 0 / 45) and (45 - 45 / 0)] and for two fiber volume fractions Vf = 15 % 
and 45 %. 

The nond-;imensional results of the first four modes of vibration are listed 

out in Tahle 1, and compared with modified formula technique, for 

illustratinfg the efficiency of the proposed techniques as shown in Figs. (5, 6, 

7). The., percentage errors with respect to the modified formula are.plotted in 
terms of the number of elements and of the various order of dynamic 

corr.•ctions, which are defined by the pair (a, b), respectively, versus the 
cc imputing time. 

From the stand point view of computational time it can be noticed that 

the consumed time of computation either for the pair (1, 5) or (2, 0) is the 

same and equal to 5 sec. while the ultilization of the pair (1, 5) yields more 

accurate results compared with the pair (2, 0). Similarly, the computing time 
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for the pairs (2, 1) and (3, 0) is the same and equals to (13 sec.), while the 

error percentage of (2, 1) is less by 10 times of the error associated with the 

pair (3, 0). In that way the pairs (2, 5), (3, 1) and (4, 0) consume the same 

computing time (66 sec) taking into account that the pair (2, 5) offers the 

lowest error percentage compared with the other two cases. 

It means that the influence of increasing the order of dynamic correction 

parameters is pre-dominant with respect to the refinement of the mesh or the 

increasing number of elements. Hence the required accuracy for each case 

can be chosen with the shortest computing time. As example, for the specific 

percentage error from 1 % to 10 %, the pair (1, 1) is preferred compared with 

the pair (2, 0) and (3, 0) due to the shortest time of compution as illustrated 

in Fig. 5. Without loss the generality the shortest time of computation for the 

specified accuracy, vice versa, can be then selected by listing the proper pair 

for the specified mode. 

From qualitative and quantative analysis of the computed values of 

stiffness parameters versus the natural frequencies three parameters are to be 

considered, here as. 

1. Type of dynamic modelling technique 

2. Code number of rod 

3. Fiber volume fraction 

In view of dynamic modelling technique the modified formula shows 

more accurate values than those obtained from the two other REM and 

D.E.M as listed in Table (1). This is expected since the formula is derived on 

the base of eigen solution of continuous media and with the avoidence of 

matrices manipulators needed by F.E.M and D.E.M. Unfortunatdy, the 

applications of the formula_are restricted to simple structures subjected to 
basic boundary conditions. 

As stated before, the D.E.M shows good results, and nearly closed to 

those obtained by the modified formula, in comparison to the results obtained 

by F.E.M as shown in Table (1). 

With respect to the code number, the rod orientation sequence plays 



Proceedings of the 8th ASAT Conference, 4-6 May 1999 	Paper SM-02 	197 

important factor in computed values of the stiffness modulus A*, as 
illustrated in Fig. 2. The variations in either outer or inner lamina orientation 
have effective influences. It , is noticed that A* decreases curvilinearly as 
either outer or inner lamina orientation increases in the region 0 0 .‘ 64.2°, 

while it increases curvilinearly as the orientations increase in the region 
115.8° 5 180°. In the region 64.2° 5_ 0 5 115.8° the changes of angles of 
orientations have small effect on variation of A* (nearly constant). 

In Fig. 3 it is noticed that the rod coded (0 / 0 / 0) has the highest 
longitudinal natural frequencies due to the great stiffness at such orientation 

sequence. The result is that an ascending linear relations exist between 
natural frequencies and equivalent stiffness modulus for various modes as 
shown in Fig. (3). Also it is shown that as the inner lamina deviates from 0° 
to 90° the computed natural frequencies decrease as the deviations increase as 
indicated in the case of the samples of the coded numbers (0 / 0 / 0), (0 / 30 / 
0), (0 / 45 / 0) and (0 / 90 / 0). It is evident that the lowest natural 
frequencies are associated with the lamina orientation of angle 45° since the 
shear stress reaches its maximum values. 

Refferred to the last parameter, the spectrum of the results of natural 
frequencies increases by increasing the rod fiber volume of fraction from 15 
% to 45 %. This is expected since the highest volume fractions, the highest 
stiffness of composite rod will be reached. 

5. CONCLUSION 

1. From the accuracy and consumed time of computation stand point of view it 

is noticed that the high order of dynamic correction parameters has a 
dominant effect on 'the efficiency of the simulation of the eigen nature of 
composite structures compared with the fine mesh or the increase number of 
finite elements of the assembly. 

Thus, without loss the generality the (M.F.M) provides more accurate 
results for a broad class of simple composite structures. 

2. In the case of lamina of three layers Fig. 2 the variations in the 

orientations of the outer lamina have great influences on the values of the 
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stiffness and of eigen frequencies of the assembly compared with the 

variations in the orientations of the inner lamina. 

3. As the current angle of orientations of lamina increases from zero as the 

natural frequencies decrease. It means that as the number of lamina of zero 

orientation increases as both the stiffness and frequencies increase, Fig. 3. 

4. There exists a stationary state at which the variations of angles of 
orientations of either outer or inner lamina have negliable effects on both the 

stiffness and the natural frequencies. This statement is bounded by the angles 

of orientation 62° < 0 < 120° as shown in Fig. 2. 
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Table (1) : Percentage errors for different mathematical dynamic models 

Refared value of the first natural frequency (1.570796327) 

Mathematical model 
runcated order b 	  

Dynamic 

Na of element a 	Static Re 	R1 	 R3 
	

R4 
	 Its 

Values in ( ) represent the percenrage errors 
Values in [ ] represent the computing time. 
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Fig. (2) : Effect of variation in lamina orientation on the 
condensed extensional stiffness modulus of the 
code no. Pt/ 9/ A] at two levels of fiber volume 
fraction; V 1  - 15% and 45%. 



40000 — 

2 30000 

Fourth mode 

•• 
cl 

• 
, o 

Third mode 

■ 

_Fri st mode 

20000 - 

10000 

0 

• 

ti 

ou 
0 

a-i 

s.  
0 
• 
a 
• 
O 

0/ 0/0) 
0/30/0) 
0/43/0) 
0/90/0) 

43/ 0 /43) 
431.431 	) 

Vr  

Vr  

45% 

15% 

• 

- 

(b) axial displacement function, 
u.(x) within a beam clement. 

(a) axial degrees of freedom 
in x-axis 

Proceedings of the 8th  ASAT Conference, 4-6 May 1999 	Paper SM-02 	201 

0.00E 00 	 4.00E+7 	 11.001:.• 7 	 1.20E• • 

all1k1VICIlt condensed extensional stillness modulus. A* (NMI) 

Fig. (3) Qtlasilinear relationships between the condensed extensional 
stifness• modulus X and the first four longitudinal natural 
frequencies (by modified formula) for fixed-free GRP 3-laminated 
,composite beams. 

Fig. ( 4 : Discrctiscd hex-free extensional beam. 
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Hg. (5) : The accuracy of the computed first natural frequency by the utilization 
of the present technique. 
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APPENDIX 

Modelling of Extensional stress - strain Relations of LCB 

The fiber - reinforced shown in Fig. (1)  at which the distance from the 
neutral axis to the face between the Kth and K+1th layers in the rod is denoted 
by dK  (do = 0). The rod is subjected to a tensile force ox. A, where crx  is the: 
normal stress and A is the rod cross - sectional area. Each layer is then 
subjected to a tensile force of (ax)K , with (45x)K  and AK are the normal stress 
and cross - sectional area of the Kth layer respectively. The equilibrium of 
forces in the x-directional yields. 

N 
ox = (0.4)  . A. + 2 E (ax )k  AK  

k=1 

The series of AK is then expressed as 

 

[ A-1]  

 

AK dx+i-dK  
2 dN+1 

Ao 	dN+1 
} for k = 1,2 	 N 	 [A-2]  

Substituting  eqn (A-2) into equation (A-1) it gives 

 

N 
( cyx )K  (1:1K+1 - dK) 

dN+1 

 

[A-3] 

 

The normal stress of the_Kth lamina is then given by 

(0x)K = (Q 1K . (OK 	k=1,N 	  [A-4 ]  

Substituting  (Eq. A-4)  into (Eq. A-3) we get 
N 

Ec  . cx  . dN-Fi = E IQ IK • (cx)K • (dk+1 - dK) 
1(4) 

Assuming  the strain for each layer is invariant, i.e. 

cx = 	= (cx)1 = (cx)1{. 

[A-5] 

where, ax = Ec 



Proceedings of the Sth ASAT Conference, 4-6 May 1999 	Paper SM-02 	205 

The equation (A-5) is then reduced to 

N 1—. 
Ec  . dN+1 = 	IQ ix • (dk+1 - dK) 

K41 
	  [A-6] 

Thus 

Ec  = Z (OK . (dk+i  - dK )   [A-7] 

where t = 2dN+1  

Equation (A-7) represents the apparent modulus of elasticity, Ec  of fiber 
- reinforced subjected to tensile force. 

In dynamic state the equation of motion of an uniform extensional 
continuous rod is given by 

C2  a2 ux(x, 0, 
L.)„ kx, w,  , = 0 

a x2 

In terms of generalized coordinates, the later equation becomes. 

C2 	(x)] (q) . r.3 
&tot + (02 [ar  (x)] (q) = 0 

where C2  = 
Pc 

Equating to zero the coefficient of the same power of co in the last 
equation the result is that 

[a(x)] = 
, [al  (x)] = 0 

CZ  [a2 (x)] = - [a. (x)] 
[i3  (x)] = - [ai  (x)] 

Terms from [a0  (x)] to [a16 (x)] are derived in terms of dimensionless 
ratio x/1. The distribution of strain in the axial beam element is given by 
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— 	' au (x 	t)  
ax 

= E co2  [a, (x)] (q) . &um. 

= 	o.)2  [br  (x)] (q) . el6" 

= [b (x, (0)] . (L.A0) 

in which b (x, w) represents the frequency dependent strain displacement 

matrix 

The forgoing expression of dynamic shape function matrix [a (x, (0)] can 

be employed to develop the frequency dependent mass and stiffness matrices 

of the dynamic extensional beam element as follows. 

[me] — 1( [a (x, co)] ir . Pc • ( [a(x, co)] ) dv 

I Lice,: = 	( [b (x, (0)]r • E, [b (x, (.0)] ) dv f 
v 
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