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ABSTRACT 

Equivalent plate modeling techniques based on Ritz analysis with simple 
polynomials proved to be efficient tools for structural modeling of wings in the 
preliminary design stage. 	This paper describes a formulation of wing 
equivalent plate modeling in which it is simple to obtain analytic, explicit 
expressions for terms of the stiffness and geometric stiffness matrices without 
the need to perform numerical integration. The explicit expressions for the 
terms of the stiffness and geometric stiffness matrices are used for the 
buckling analysis of trapezoidal fiber composite wing skin panels. The 
formulation based on Ritz analysis using simple polynomials leads to explicit 
(axpressions for the analytic sensitivities of the stiffness and geometric 
stiffness matrices with respect to layer thickness, fiber orientations, and panel 
shape. 	Integration of the resulting buckling analysis based on the equivalent 
plate approach is discussed. To assess the new capability, test cases were 
chosen to address the convergence rate with increased polynomial order, the 
accuracy of analysis results for panels of general shape and the integration of 
wing box structural analysis with panel buckling analysis for fast structural 
analysis of airplane wings. 
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NOMENCLATURE 

[A]: in-plane local stiffness matrix for panel 
A : cross-sectional area of spar 
As1, As2: coefficients of linear cross-sectional area of a spar 
AR: cross-sectional area of rib 

AR2,: coefficients of linear cross-sectional; area of a rib 
[D]: out-of-plane local stiffness matrix of panel 
d (x, y): wing depth distribution 
FB (x, y): weight function ensuring zero displacement on panel boundary 
[F1 ], [F2], [F3]: matrices containing admissible functions and their derivatives 
fp  (x,y) : admissible functions 
H (i): ith  coefficient in the polynomial series for wing depth 
h (x,y) : total thickness of panel 
ITR: integral of a simple polynomial term over the trapezoidal panel area 
[K]: stiffness matrix 
[KG]: geometric stiffness matrix 
{k}: matrix of function derivatives 

nqw,pw  : powers of x and y for elements of {k} 
[N]: 2x2 matrix for in-plane loads 
N., Ny, N.y: in-plane loads per unit length 
[Qi]: material properties matrix 
{q}: vector of generalized displacements for panel 
R, S: coefficients of front line or aft line of panel 
ilk: the ith  coefficient in the polynomial series for thickness of the kth  layer 

(x,y) : thickness of the ith  layer 
Ui, Vi: shape dependent coefficients of FB 
w (x,y) : panel out-of-plane displacements 
xA, xF: aft and forward x coordinates of rib edges 
xFL, xFR, xAL, XAR : x coordinates of the vertices of a wing trapezoid 

Ex, Ey, yxy : skin engineering strains 
ax, ay, oxy : skin layer stresses 
0 : fiber orientation angle 
X : buckling eigenvalues 

Subscripts 

A : aft (rear) 
F : front 
L : left 
R : right 

INTRODUCTION 

In the context of air-Jame preliminary design, as aerodynamic and structural 
characteristics of rai evolving configuration change, optimization with respect 
to shape is eF.)ential. Yet, the automated preliminary design synthesis of 
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wing structures, in which the wing planform shape is varied and control 
surfaces are sized and moved to their optimal locations, is still a challenge. 

The equivalent plate models for low aspect ratio thin wings were used for wing 
aeroelastic tailoring optimization, parametric studies, and multidisciplinary 
synthesis, [1-2]. What makes the equivalent plate approach desirable in the 
context of wing preliminary design and optimization are the ease and speed of 
data preparation for new configurations, the high computational efficiency and 
the ease of manipulation of the Ritz displacement functions used. 

Equivalent plate models, however, need modification before their true 
potential can be realized for wing shape optimization. For effective, reliable 
behavior sensitivity analysis, the. ability to calculate analytical derivatives with 
respect to shape as well as sizing design variables is important. This is even 
more important when Ritz functions used are simple polynomials. Simple 
polynomial Ritz functions lead to substantial saving in computing time as well 
as to numerical ill conditioning of the resulting equations when the order of 
polynomials is increased. Experience reported in references [3] and [4] 
shows that useful analysis results can be obtained with an equivalent plate 
model based on simple polynomial before the static and dynamic solutions 
become ill conditioned. 

Buckling of skin panels in thin-walled structures is one of the most important 
failure modes to be considered in wing design synthesis. A large number of 
literature's exist today on the buckling of isotropic and anisotropic panels, [5]. 
While the study of isolated panels of rectangular shape has reached certain 
maturity, research addressing the buckling of panels functioning as 
components in a larger structural system is still evolving. In the complete 
structure, such as an airplane wing, buckling can occur locally or globally. 
The need to assess global behavior and local behavior simultaneously, leads 
to computationally intensive analysis. The complex global-local interactions 
can also make buckling constraints highly non-linear in terms of the structural 
design variables. Thus, in the context of airframe structural optimization, 
proper representation of buckling constraints is a major challenge, and is an 
area of active research, [6-9]. 

When wing planform becomes subject to design optimization in addition to 
sizing of structural members, or when variation of the internal structure is 
allowed, the panel buckling becomes more complex. In the general case, 
panels are rarely rectangular. 	They are usually trapezoidal in shape. 
Moreover, while in high aspect ratio wings it may be acceptable to assume 
unidirectional compression on the skin panels, in low aspect ratio wings, 
panels are usually loaded by in-plane loads in a 'combined manner. 
Therefore, it is important to develop an efficient buckling analysis 
methodology applicable to trapezoidal panels in combined in-plane loading. 
Such a methodology should be design oriented, i.e., issues of sensitivity 
analysis and approximation concepts should be addressed. 

This paper begins with a formulation of the equivalent plate approach that 
makes it possible to obtain analytic shape sensitivities of wing box structures. 
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It also shows how this formulation leads to the expressions of stiffness and 
geometric stiffness terms. The equations for panel buckling analysis are 
derived. Analytic sensitivities with respect to panel shape, thickness and fiber 
orientations are derived. Test cases and results of numerical evaluations 
concluded the work. 

MODELING USING SIMPLE POLYNOMIALS 

Wings can move along the fuselage, change sweep, chord and span. Spars 
and ribs move also as the internal structural layout is changed. Wings are 
made of collections of trapezoidal areas. A typical wing box trapezoid is 
shown in Fig.1. Its planform shape is defined by its left and right spanwise 
coordinates yL, yR and the x coordinates of its four edges xFL., XFR, xAL, XAR. Its 
depth is defined by a simple polynomial in x and y in the form: 

d(x, y) = E H(i) xml  yr' 
1=1 

(1) 

where H(i) are coefficients and mi, ni are exponents of x and y terms in the 
polynomial series. 

Figure. 1 also shows spars and ribs in the trapezoid. Spar geometry is 
defined by four shape variables, namely the (x,y) coordinates of the left and 
right edges in addition to the depth distribution that determines flange vertical 
distance from the midplane. Ribs, running parallel to the x-axis, are defined 
geometrically by three design variables each xF, xA and YRIB. 

The skins are made of NL unidirectional composite layers, and the thickness 
of each layer is described by a polynomial in x and y of the form: 

ti  (x, y) = I T1: xmk ynk 
	

i = 1„ NL 	(2) 
1(.1 

The powers mtk and ntk are x and y powers of the kth  term of the thickness 
series for the ith  layer. The coefficients T'k define the thickness of the ith  layer 
and they serve as sizing design variables for that layer. The exponents mtk 
and ntk are preassigned and can be selected to generate a complete 
polynomial or to represent a product of a polynomial in x by a polynomial in y, 
[4]. The overall thickness of skin panels is given by: 

NL 	NL NI 

h(x, y) =Eti(x,y) .y I Tix"4,  
1.1 KO 

Flange areas for spars and ribs are allowed to very linearly. In the case of a 
spar, the flange area AS  is defined in terms of the spanwise coordinate y, and 
in the case of a rib, the flange area AR  is a function of x: 

(3) 
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As(y).= A.T +A:y 	 (4) 
AR (x) = AR + A:x 	 (5) 

The coefficients AR, and As;  serve as sizing type design variables for the 
flange areas. 

Admissible Functions 

Fig.1 shows a trapezoidal panel defined by coordinates of its vertices in the x, 
y axes. The subscripts L and R denotes left and right sides, respectively. 
The subscripts F and A denote front and aft lines, respectively, and xF and xA 
are the x coordinates of the forward and rear points on a line parallel to the 
sides of the panel. Based on Fig.1, the equations for points on the front and 
rear lines can be written as: 

xF  (y) - 	 

	

XR.  yR  - XFR  yL 
+(

XFR - Xft 
	)y - RF + FY  YR YL 	YR + YL 

	

XAL  YR  - )(ARYL 	XAR 	XAL  xA(y) 	 + 	)y - RA  + SA  y 
YR + YL 	YR + YL 

The following function satisfies the zero displacement boundary conditions on 
the circumference of the panel; 

Fe  (x, y) = [x - SF)/ -RFP - SAY - RAD - YL. - Yid 	(8) 
Using Eqs. (6) and (7) and expanding in terms of x and y yields: 

FB  (Xs 	(U1 + U21/ + U3Y 2 )(V, + V2 x + V3 y + V4 x2  + V5xy + VeY2 ) 

and, using index notation: 
3 6 

Fa Y) E E ui vierynr+.; 

where the constants U1 and Vi are given in terms of panel vertex coordinates 
by: 

(-11, 1 = YLYR 
	U2  = --(YL + YR ) 	; U3  = 1 

= R ARF  ; V2  = -(R A  +RF) ; V3  = (RASF  + RFSA ) 

(6)  

(7)  

(9) 

(10) 

V4  = 1 	; V5  = -(SA  + SF) ; Vg  = SF SA 
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Powers of x and y corresponding to the constants Ui and Vi in Eq.(10) are 
given in Table 1. 

Multiplying the weight function FB(x,y) by a general simple polynomial series, 
admissible functions for the simply supported trapezoidal panel are obtained: 

Nw 
w(x, y) = FE  (x, y)E qp xmP yn° 	 (12) 

P=1  

where the coefficients qp  are the generalized displacements, and w(x,y) is the 
vertical displacement of the panel. Substituting the expression for FB(x,y) 
from Eq.(10), it is possible to write: 

Nw 3 6 

W(X1 y) = Clp I Eu,v,x(mNmPy(nrmi+q) 
p=1 	j=1 

The admissible functions are thus expressed in terms of simple polynomals, 
where the pll' admissible function is given by: 

3 6 

fp (x, Y) = E E u.vjx(nr+m;) 	+nr 4-1) 

j=1 

The unknown elastic panel deflection w(x,y) is approximated by a series of 
admissible functions: 

Nw  

w(x, y) = E fp  (x, y)qp  = [El  (x, y)1{q} 
P=1  

(15) 

J V1 rrivi nvi I U; nui 
1 Vi 0 0 1 U1 0 
2 V2 1 0 2 U2 1 
3 V3 0 1 3 U3 2 
4 V4 2 0 - - - 
5 V5 1 1 - - - 
6 V6 0 2 - - - 

Table 1: Constant UI and Vj and their corresponding powers of x and y 
associated with the admissible displacement series function. 

BUCKLING ANALYSIS 

Based on the principle of virtual work, a variational equation for a 
symmetrically layered composite plate under the action of internal bending 
moment and transverse shear forces in the absence of transverse load or 
initial deformation is: 

(13)  

(14)  
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w.. 
jj {w,„„Wo 	}[D)8 w ,yy  dxdy + ff (w,„w •y 	 dxdy = 0 	(16) 

N„ 

yNly  w.y  

NNky  

2w.,1 , 
where the vertical displacement due to load is w(x,y). The matrix [D] is the 
3x3 local transverse stiffness matrix. The unknown elastic displacement 
w(x,y) is approximated by a series of admissible functions, Eq.(15). The first 
derivatives, then, can be expressed as: 

{w,x} [fl,xf2,x 	fN,x1 
w 	Lf f  	t ,y 	1,y 	f N,y 

tF21{q} (17) 

and the second derivatives are given by: 

1  

f1 w.xx 1 

= 
	 f14,,z< 

W4  f v 	f2,wf2,yy 	fN,yy 

xy W 	_2f1,,y  2f2xy  ....2fRxy - '   

= [F3 ]{q} (18) 

The matrices fg:Fi], [F2], and [F3] are all functions of x and y. Using Eqs. (17) 
and (18) to c.xpress the virtual displacements and their derivatives in terms of 
virtual generalized displacements, Eq.(16) leads to: 

{q} 	r:F3  [D [ F3  id xd y{5q} f+ caT [F2 ]T [N][F2 ]dxdy{elq} = 0 	(19) 

The matrix equation for the linear buckling analysis of the panel is thus: 

[ [K] + .2[K0  ]]{q] = 0 	 (20) 

where the stiffness matrix is: 

[K] = [F3 jT[D][F3 ]dxdy 	 (21) 

and the geometric stiffness matrix is: 

[KG ] = [F3  11.[N][F3]dxdy 	 (22) 

The scalar X is used as a scaling parameter increasing or decreasing the 
given in-plane loads Nd simultaneously, to determine whether the panel is 
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stable or unstable. Eq.(20) is a generalized linear eigenvalue problem. Since 
the stiffness and geometric stiffness matrices are real and symmetric, the 
eigenvalues are real. The buckling constraint for the panel is in the form: 

1-A,„;„ <0 	 (23) 

assuming that the given in-plane loads have to be increased to reach 
instability. 

STIFFNESS MATRIX 

Polynomial description of skin layer thickness in terms of the x-y coordinates 
was given in Eqs.(2) and (3). This thickness distribution is for the entire wing 
box, or segments of the wing box. The panels are those trapezoidal skin 
segments defined by the supporting internal spar-rib array, as shown in Fig.1. 
For each panel containing NL layers of fibers, the in-plane stiffness matrix [A] 
can be expressed in terms of individual layer thickness and fiber orientation 
angles as: 

[A] =E{[Q0]+[(adcos219,+[Q2]coszN± [C) 3  ]Sin2OP 4 ]Sin4e0ti  (XI y) 
N, 

(24) 

where the matrices [Q0] to[Q4] depend on material invariants as given in 
Ref.10. Let a material and fiber orientation dependent matrix [Q(91)], a 3x3 
matrix, be defined as: 

[Q(q1 )] = {[Q0]+P1]cos261 + [02  ]COS40 [Q 3 ]sinai +[Q 4 ]sin464,1 	(25) 

The in-plane stiffness matrix [A] can now be expressed in terms of the sizing 
design variables Ilk and fiber orientations, as a polynomial: 

N1 

[A] = EE[Q(0)]xrnkynkTi: 
	

(26) 
k=1 

For unidirectional, orthotropic, or quasihomogeneous laminates, Ref.10, the 
in-plane and bending stiffness matrices are related through: 

h2  
[D] = [A]

12 	 (27)  

Using Eq.(2) to express h2  in terms of sizing design variables, double 
summation is needed. The indices 11 and 12 are used for summation of 
polynomial terms associated with each layer, as follows: 

NIL Nil t 	NIL NII2 
h(x, y) = 	xm”

to 
 yn”

o 
 EE 	y422  

k111.1 	61 12=1 
(28) 
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The bending stiffness matrix [D) can now be written as: 

[D] = 	[Q(0,  AZIL 	rriTil-r,04„-m,y+m,12) 	+nn+nta, 

12 w, 	 .12 ^ 	k 	a/} 

I NI. 	NI. Ni NI Nil  N12  

11-1 12-1 k-1 11-112-1 
	 (29) 

The dependence of [D] on the sizing design variables and fiber orientations is 
now expressed in explicit form. With the polynomial admissible functions 
presented in Eqs.(15) and (14), and the stiffness matrix based on Eq.(21), 
expressions for terms of the stiffness matrix in polynomial form can now be 
derived. The elements of the [F3) matrix are all polynomials and the q,p 
element of [F3] can be written as: 

F3  o  EEFi7Pxmil y t   

i=1 j=1 

3 6 

(30) 

where the coefficients FqPii and the corresponding powers of x and y are given 
in Table.2. 

q row of 
[F3] 

--  
FqPij coefficient mqP.1 power of x nqPii power of y 

1 UiVi(mvi+mwp)( mvii-mwp-1) mvi+mwp  -2 nui+nvii-nwp  _ 
2 UiV;(nui+nv  +nw 	u 	v  ip)(ni+ni+nwp-1) mvi+mwp nucfnvi+nwp-2 
3 UiVi(mvi+mwp) (nui+nvii-nwp) mvi+mwp -1 nuri-nvi+nwp-1 

Note: If any powers of x and y is less than zero, the element is set to zero 

Table 2: Coefficients and powers of polynomial terms in the [F3] matrix. 

Eq.(30) together with Eq.(29) are substituted into the expression for the 
stiffness matrix. Then, the r,sth  term of the stiffness matrix is: 

KB  = 	ff(F3a,DabF3bs )CIXdy 
	

(31) 
a=1 b=1 

and the final expression for the Ks element in polynomial form is: 

3 3 3 6 Nt 	N, 	N12 
Krs = E1EEEEEEEL  F 

a-1 b-1 i-1 j-1 	1 11-1 i2-1 k-1 11-112-1 

and 

(32) 

F  = 12-Fr 
	Q „b  (t9, )T1: 	y nn. dxd y 	(32a) 
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where the powers of x and y terms in the area integral are: 

m rs  = mfi jar + 	+ m  tkl + m  + m  ti2 

(33;) 

nrs  = nfr + nfr +n: + /1;1' + nt: 

All elements of the stiffness matrix are, thus, linear combinations of integrals 
over the panel's area. Note the explicit dependence on thickness coefficients 
and fiber orientations. Dependence on panel shape is more complex. The 
coefficients U, and Vi determine the F coefficients in Table.2. In addition, the 
area integrals depend on the shape of the panel and the limits of integration 
change when the planform shape in changing. The integration can be carried 
out analytically as shown in Ref.11. 

GEOMETRIC STIFFNESS MATRIX 

the geometric stiffness matrix in the buckling analysis formulation for skin 
panels is given in Eq.(22), and it depends on the matrix [F2], containing 
derivatives of the admissible functions, and the matrix [N] containing the in-
plane loads. 

In-plane loads from wing box stress analysis 

For preliminary design purposes, if the skin panels are small relative to the 
wing, buckling evaluation may be accurate enough if average Nx, Ny and hlr, 
are used for the panel buckling analysis. The in-plane stress resultants are 
assumed constant throughout the panel. This simplifies the integration and 
makes it possible to use interaction formulas for fast approximate buckling 
analysis, Ref.9. 

When an equivalent plate modeling approach is used for the wing box 
analysis, the in-plane skin stresses are obtained from the wing generalized 
displacements calculated in the wing box stress analysis stage. In this 
formulation, admissible functions for the wing box analysis are given as 
polynomials in x and y. In this case, the transverse displacement of the wing 
is: 

1■4., 
w*(x,y)=Ix 

1.1 

where a bar will associate variables with the wing box analysis. In Eq.(34), 
the powers and the number of terms are known from the admissible series 
used for the wing box displacement solution. The coefficients q's are the 
generalized wing box displacements. 

(34) 

In equivalent plate using wing structural analysis based on classical plate 
theory, Refs. 4 and 5, the vertical displacement under loading is w*(x,y), and 



d(x, y) 
2—[A]  

VA7
.xY 

Nx  

N y 

N 

(38) 
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using Kirchoff's kinematics for a wing, the engineering strains in the x and y 
directions are given by: 

-ex  = 
-zw • 	 (35) .YY 

yam, -2zw.xy  

Let the wing depth be given by d*(x,y). Then, when skins are thin compared 
to the depth, they can be assumed located at z = ±-d*(x,y)/2. Focusing on the 
upper skin, in-plane strains are: 

lex  

ly 

   

  

d(x,y)  
2 (35a) 

  

  

Now, in a polynomial based formulation for the wing box, the depth of the 
wing is given in polynomial form: 

Mi 

d(x, y) = II-Lx"thth Ynhth 	 (36) 
ih=1 

Since the displacement w*(x,y) and the depth d*(x,y) are polynomial, it is 
evident that skin strains due to wing deformation are polynomial too. There 
are a total of NL layers, each with fiber orientation 0, and thickness as 
described by the polynomial, Eq.(2). The in-plane skin stresses in each layer 
are obtained from: 

- [VOA 	 (37) 
Exy  

The in-plane loads can now be defined in terms of wing box displacements by 
integration through the thickness of the panel: 

cry, 

FxY 

Now, the in-plane loads, Eq.(38), are expressed in terms of the generalized 
displacements {q*} calculated for the wing box solution, as follows: 
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7:1(x, y)  ± P'1* 
N, = 	E E A, w 	xin lmwy5'"4-Z-6,,, 

2 	 ciw CiWPW 
qw=1 PW=1 

_ _ Z(X1 Y) 	A 2,qw W qw.Pw X rr1"4'w  Y 5"" CPw Ny  
2 ql-'w_l L  pw-i 

_ d (x, y)  3 Nw A 3 ,qw  NI qw,p,, X '6.'9* y ""°"' Zipw  
Nxy  2  E E, _ 	qw___., pw=1 

Now, the polynomial expression for the wing depth can be substituted into 
Eqs.(39), (40) and (41). The general expression for terms of the in-plane 
loads is: 

Nh 	Zs; 	
F NppAlq 	

x-, 
1.4  = 	 Z., A ppm,/ W qw,pw H ih  X(rnih +ril"4") y(n1h+Nw")-Cipw 	(42) 

The indices pp and qq can be either 1 or 2. Note: 
if pp = 1 and qq = 1, then Appp,qw = Al ,CIW 
if pp = 2 and qq = 2, then Appp,qw  = Azqw 
when pp # qq, Appp,qw = 2Aasiw  

The polynomial expression for the [A] matrix is now used: 

1 .CNNh 	 V..r\IW% 

N ppm = 	 ., 	 ., 	 .4 	 ., {Q ppp,qw (C1 	 qw.pw 

ih=1 qw=1 pw=1 k1 Ic=1 

*.f-linT:,-(11x(mih +nt'k +r-ngw'Pw ) y (n+ntk1+'law.pw pw  

where the indices ppp means the following: 
if pp = 1 and qq = 1, then Qppp,qw = QUIN/ 

if pp = 2 and qq = 2, then Qppp,qw = Q2,qW 

when pp # qq, Qppp,qw = 2Q3,11W 

This equation shows how the in-plane loads depend on the wing box solution, 
the depth of the wing, the thickness coefficients for layers in the panel, 
material properties and fiber orientations. 

Matrix formulation 

Based on the Ritz polynomial functions, the matrix [F2], needed for evaluation 
of the geometric stiffness matrix, can be written in polynomial form. Thus, the 
element q,p of the matrix [F2] is of the form: 

3 6 
F= E E F2:1,p x(n1f2,,iq,p) y  

(q.p) 	21,1 j=1 

(39)  

(40)  

(41)  

2  Ih=1 qw=1 pw=1 

(43) 

(44) 
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The coefficients and powers of x and y defining the elements of the matrix 
[F2] are given in Table.3. 

F241'1'11 rnfzq'Pi,i nf2cl'Pi,i 
q=1, rowl of [F2]_ UiVi(mw_p+mvi) 

Uyinwp+nui+nvi) 
mwp+mvi-1 
mwp+mvi 

w n p+nurfrivi 
nwp+nuo-nvi  -1 q=2, row2 of [F2] 

Table 3: Coefficients and powers of the [F2] matrix 

Elements of the matrix [KG] can now be expressed in polynomial form as 
follows: 

„ 2 2 

KG
19 

= 	 F2,,,.Na3,F2b.s dxdy - 
	 (45) 

a=1 b=1 

The indices r and s identify terms in the panel Ritz displacement series for the 
panel. Using polynomial expressions for [F2] and [n], the r,s element of [KG] is 
written as: 

1 2 2 3 6 Nh 3 N„, N1  N, 

K  G, = 
2E IIE,ZEEZEv 

a=1 b=1 	ih=1 qw=1 pw=1 it=1 k=1 
(46)  

and 

= 
21,j 21j 4  ppp,qw (Cf) )V1  qwpw   ih  

	
Lpw 	A 

(rG  )
y  

(nG 
"  dxdy 	(46a) 

where 

mG,. == mf2i7 + mf2;b:js + mit, + mt: +Triqw,pw  

(47)  
nGr,„ = nf2,7 + nf2ibis + n th  + nt: qwpw 

The index ppp used in Qppp,ciw(Oit) is defined as in Eq.(43). As in the case of 
the stiffness matrix , the geometric stiffness matrix is represented as 
summation of surface integrals of polynomial terms calculated over the area 
of the panel. 
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ANALYTIC SENSITIVITIES 

Stiffness matrix sensitivities 

With the explicit expression of stiffness matrix elements in terms of thickness, 
fiber orientations and shape of the panel, available in the form of Eq.(32), it is 
straightforward to obtain sensitivities analytically. Three types of sensitivities 
can be evaluated: 

1) Stiffness sensitivities with respect to thickness design variable  
Planform shape variables and orientation angles are fixed in this case. 'The 
thickness coefficients appears in the expression for the stiffness matrix, 
Eq.(32), explicitly in a triple summation over the indices k, 11, 12. Sensitivity is 
then obtained by direct differentiation, noting that if the design variable 
involved in Tqr, then the partial derivative of T'r  with respect to Tqr  is equal to 
one only when 1=q and k=r; otherwise the derivative is zero. 

2) Stiffness sensitivities with respect to fiber orientation  
Now, the planform and the thickness are fixed. The angle OI represents the 
orientation of fibers in the ith  layer, and the stiffness matrix Km  depends on 01 
through elements of the matrix [Q(01)], Eq.(25). The derivative of each term in 
the stiffness matrix will be calculated in the following manner. In the 
summation over 1=1 to NL, in Eq.(32), all matrices [Q(0,)] are set to zero, 
except the matrix [Q(01)] corresponding to the Ol variable considered. 'This 
particular [Q(9,)] is replaced in Eq.(32) by the following expression: 

11(6)  - -2[Q dsin20, - 4[Q 2 ]sin40, + 2[Q 3  ]C0S2 61 [Q 4  ]cos4 t9; 	(48) 
00, 

Eq.(32) is, thus, used for the sensitivity of the stiffness term, with the 
derivative Eq.(48) replacing [Q(ei)]. 

3) Stiffness sensitivities with respect to panel planform variables 
Thickness coefficients and orientation angles are held fixed. The terms. Km  of 

stiffness matrix depend on the planform through matrix [F3], Eq.(30), and 
Table.2. Coefficients U1 and Vj are defined through expressions (11). If x is 
any planform design variable, then: 

i //5  
	- 	

N 
+U1 

 N. 
 (integers of Table2) 	(49) 

Though Eqs.(11), the terms 1.1; and Vj are given explicitly in terms of the panel 
shape design variables. Analytic sensitivities of U, and Vi are obtained by 
direct differentiation. The derivatives of the terms FqPij can now be prepared. 
The derivatives of the surface integrals are also prepared in similar manner. 
After collecting all the information necessary, the derivative of the term Km  is 
calculated as follows: 
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ZEEEEEIEEEF„ x 	a=1 b=1 1=1 j=1 1=1 j=1 1=1 11=1 12=1 k=1 

and 
M, Nn F.=EE 
11=1 12=1 

{F +
—
F } 

12 mt )(2  (50a) 

0 FY 	F„bi  
-rx .1

0 x 	x 
_ [ 	F i!). 	' 	pab(q,)TilT1111 T1:1TR(m,n) 	(50b) 

=F1j Fr ab 	TiiT,712 	TR (m, n)  
- g x (50c) 

where 

lirt(m,n) = J1 Xm  y "dXdy 
area 

Geometric stiffness matrix sensitivities 

1) Geometric stiffness matrix sensitivities with respect to thickness design 
variables 
The design variable in this case is the kth  coefficient in the polynomial 
thickness series for the ith  layer. Examination of Eqs.(46) and (47) reveals 
that the geometric stiffness matrix is explicitly linear in the thickness 
coefficients. It is also dependent on those coefficients through the wing box 
solution unless it is assumed that in-plane loads do no change. Differentiation 
of Eq.(46) leads to: 

K G 	
12 	2 	3 	6 	3 	6 Nn 	3 	Nv, 

	 , g 	EEEZEIa=1 b=1 1=1 k1 k1 j=1 Ih
EZ

=1 qw=1
E 
pw=1

Fr 
 

And 

Nt.Nd 	 tipw — bs 
T =EE F"F Q 	(6)w H 	w S + TR  --]l (mGis  nG ) (51a) 21j 211 ppp,qw 	qw,pw 	ks p 	 It 1R 	) 

R=1 S=1 	 k 

where GitRks is equal to 1 when it = R and k = S. Otherwise, it is zero. 

d KG.  
(50)  

(51)  

21 Geometric stiffness matrix sensitivities with respect to fiber orientation 
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Layer orientations affect the geometric stiffness matrix through the material 
matrices Qppp.qw(Oit) and the wing box generalized displacements 01. The 
analytic sensitivity with respect to fiber orientation in a given layer is: 

KG. 	2 2 3 6 3 6 N,, 3 N. 
	--5EEEEEEEEE Fe 	(52) a ed 	2 a=1 b=1 i=1 	i=1 j=1 ih=1 qw=1 p1 

and 

_ 	Q 	(eitt) 	0 Tip, Fq 	L F27 	P PMW 	Qppp.qw(eat ) a  eiti  jw qw.p,,Hih 	(mG ,„ nGnd 0 Ost  k=1 

3) Geometric stiffness matrix sensitivities with respect to planform variables 
Thickness coefficients and orientation angles are held fixed. The geometric 
stiffness matrix [KG] depends on the planforrn variables through Ui and Vj 
terms in rarzi and rbszi. There is also a dependence on the area integrals 
(ITR), since those are evaluated over the planform shape of the panel. Thus, 

K ois 	1 2 	2 	3 	6 	3 	6 	N,, 	3 	14, 

	 — 2EEEEEEEEE rpv x 	— 8=1 b=1 1=1 j=1 1=1 j=1 ih=1 qw=1 pw=1 
(53) 

and 

hk. 	N,, 
Fpv  = EE (Qppp,q, (c i  )w 	gpvi  + Fpv2  } 	(53a) 

it=1 k=1 

-Ebs Far 	I 21J 	 17, I (m n) L.,  24 bs 	
impw 

	

-E-PV1 = [ a x 2" 	2j  a 

FPV2 = -27jrTAsiCipw 6 TTR(m, n) + a  -4  ow  

	

a x 	1-1-R (rn, n) 
a x 

(53b)  

(53c)  

where x represents any of the planform variables, and the powers of the 
integrands in ITR(m,n) are m = mGrs and n = nGrs. In Eq.(53), it is assumed 
that overall wing planform is fixed, and panels are changing shape and 
location due to moving of control surfaces, ribs and spars. If overall planform 
shape of wing is changing, then derivatives of the wing depth coefficients with 
respect to the shape design variables must be added, since the wing depth is 
defined in global x,y coordinates. 
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Eigenvalues sensitivities 

Now that the sensitivities of the [K] and [KG] matrices are available 
analytically, the sensitivity of buckling eigenvalues and, hence, the sensitivity 
of buckling constraints is given by: 

0 g 
0 x 	x 	{0}T[KG]{O) 

This analytic sensitivity can be used to construct direct, reciprocal, or hybrid 
approximations of the constraint. 

TEST CASES AND RESULTS 

To assess the new capability, test cases were chosen to address the 
convergence rate with increased polynomial order, the accuracy of analysis 
results, the reliability of analytic sensitivities and accuracy of finite difference 
derivatives, and the integration of wing box structural analysis with panel 
buckling analysis for fast structural analysis of airplane wings. 

Analysis results from Ref.12 are used to test accuracy and convergence rate 
of the present technique in the case of rectangular anisotropic panels. Simply 
supported, angle ply laminates made of 20 plies of fiber-glass material with a= 
5 (in); b= 10 (in), and combined in-plane loading consisting of Nx  =1, Ny  =1 

and Nxy =1, are considered. Figure 2 shows convergence of the buckling load 
(the critical eigenvalue) as a function of the order of polynomial Ritz series 
(Eqs.12 and 13). Figure 3 shows critical buckling eigenvalues, calculated with 

Nw  = 4 (15-term complete polynomial), for cases in which fiber orientation 
angles varies. Good accuracy and fast convergence are demonstrated. With 
only 6 terms (order 2 polynomial) the present results are only within 3% error 
of Ref.12 results. For automated synthesis, where the need to have very fast 
analysis and sensitivity results is critical, this fast convergence makes it 
possible to use low-order models without sacrificing accuracy too much. 

CONCLUSIONS 

An efficient technique for computation of skin panel buckling constraints has 
been presented, tailored to the needs of multidisciplinary wing optimization. 
The formulation used, based on Ritz structural analysis using simple 
polynomials, makes it possible to obtain analytic sensitivities of buckling 
constraints with respect to shape, as well as sizing and fiber angle design 
variables. No numerical integration is required. Closed-form expressions for 
stiffness and geometric stiffness matrix terms make it possible to identify 
dependence, of those matrices on sizing, fiber angles, and shape design 
variables. Integration with equivalent plate wing structural analysis is natural, 
and the details has been described. 

{01.  160[1:] + 1  e :1){  
(54) 
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Numerical test of the new capability demonstrate high accuracy and fast 
convergence. As the results presented here show, if some accuracy of 
analytic predictions can be sacrificed for the purpose of multidisciplinary 
preliminary design synthesis, then panel buckling analysis and sensitivities, 
using only 3-6 polynomial terms, can be obtained very efficiently. When 
integrated with wing structural analysis, aeroservoelastic analysis and 
aerodynamic loads and drag prediction, the present buckling analysis 
capabilities add an important element to the integrated multidisciplinary 
design synthesis of actively controlled fiber composite wings. 
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