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ABSTRACT 

Literature studies have demonstrated that lightweight manipulators of highspeed 
should be designed with the effects of shear deformation and rotary inertia being 
taken into consideration, especially for short beams. It has been found that 
Lagrangian Timoshenko beam elements are overstaff for small thickness, and such 
elements cannot be accurately employed for thin beams. This phenomenon is 
referred to as shear locking. This parametric study demonstrates the advantages of 
using a Hermitian Timoshenko finite element for the dynamic analysis of a lightweight 
manipulator. The Lagrangian principle is used for the derivation of the governing 
differential equations for the beam element. A computer program is developed to 
solve the proposed model and to easily accommodate any future developMents. The 
accuracy of the proposed model has been verified through the comparison of the 
dynamic response with two published models, one of them is based on assumed 
mode method and the other one is based on an isoparametric finite element method. 

1. INTRODUCTION 

The use of robotic manipulators in industrial applications has long been recognised. 
Their use allows the automation of manufacturing processes, the remote operation of 
machines in hazardous environments etc. The performance of such manipulators in 
terms of accuracy of movement, location and speed of response depends upon the 
inertia of the system. Due to their size, manipulators make a substantial contribution 
to the inertia of such assemblies. 

In order to increase the productivity, robotic manipulators must function at higher 
speeds and enhanced accuracy. The manipulators, which are characterised by their 
large structural size and slow operational speed, may be considered rigid. The 
requirements of feasible driving power, weight and material cost of the rigid 
manipulator will be impracticable. Lightweight manipulators are a more natural way to 
reduce the driving power and increase the operational speed. The lightweight design 
requires that the flexibility effects must be taken into consideration. 
There are two kinds of problems introduced if the flexibility effect is not included in 
the mathematical model. The first one is found in the torque requirement for the 
motors and the second one results in the positioning inaccuracy of the end-effector. 
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There have been several approaches to represent the flexible model of robotic 
manipulators. Book [1] modelled an elastic chain with an arbitrary number of links 
and joints. This model was limited in the assumption that the mass of the 
manipulator is negligible compared to the mass of the payload. This assumption 
is true for a space manipulator, which is light and operates at low speeds. 

Petroka and Chang [2] have experimentally validated the accuracy of the 
Equivalent Rigid Link System (ERLS) dynamic model. The model was tailored to 
a single-link flexible arm system in which a hydraulic actuation was utilised, and 
the motion of the arm was limited to a vertical plane. The flexible dynamics has 
been studied by two methods, the first one is the assumed mode method [2, 3]. 
The main disadvantage of this method is the selection of modes if the links are of 
non-regular cross-section. The second one is the finite element method [5, 6]. In 
Parveen and Anand [4], the dynamic equations of flexible manipulators have 
been formulated using the Galerkin method and the axial strains are used as one 
of the nodal coordinates. In SMAILI [5], the dynamic behaviour of a planar 
manipulator is introduced by a three-node isoparametric finite element, and has 
only three shape functions to represent the nodal displacements, one for each 
node. 
In this paper, the dynamic equations of lightweight manipulators have been 
formulated, based on Hermitian interpolation functions and by using Lagrangian 
equations of motion. The nodal displacements of the element are taken as 
generalised coordinates, where the Rigid Body motion is represented by the joint 
angle 0. The stiffness and mass matrix of a two-node beam element are obtained 
where the shear deformation and rotary inertia effects are taken into 
consideration. A computer simulation program has been developed to solve this 
model. 

2. KINEMATIC RELATIONS 

The kinematic relations describe the overall motion of a beam which is 
subdivided into a Rigid Body Motion, represented by the joint angle 0, and an 
Elastic Motion, represented by the nodal displacements u. The kinematic 
properties of the link are described by the kinematics of its nodes. The kinematic 
relations employed for the approach, introduced here, are similar to these used 
by Ref. [3], which can be summarised as follows: 

a=ar  +Q u+R u+u 	 (1) 

where 
a is the absolute acceleration vector of the element nodes with respect to 
inertial coordinate frame OXYZ, 
ar  is the acceleration associated with the rigid rotation, 

u ,u are the relative velocity and acceleration of the node with respect to 
the local frame oxyz, 
Cg, R are 6x6 matrices which are function of the rigid body motion. 
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0 

Fig.1. Geometry of two-node beam element 

3. NODAL DISPLACEMENTS 

The element nodal displacements are chosen to represent the axial, transverse 
and rotary displacements of the elastic beam at any node. The nodal 
displacement vector, of a two-node beam element, as shown in Fig. (1), can be 
defined at an instant of time t as follows: 

Se  (t)= { 11(t) S (01 	 (2) 
where 

U(t) 	Ui  V1 q U2 V2 (P2 
8(t) ={ Wi  4/2 } 
u is the axial displacement of the node, 
v is the transverse displacement of the neutral axis at the node, 
cp is the slope angle of the neutral axis at the node, 
w Is the angle due to shear effects, which is defined as follows [6]: 

 av  
41= -  ex 

According to the definition of nodal displacements, the displacements at any 
point, inside the element, can be expressed in terms of nodal parameters and 
shape functions as follows: 

(9 	The axial displacement u and the shear angle xi/ are assumed to 
obey Lagrangian interpolation [6]: 
u(x,t) = N1  ul(t) + N4  u2(t) 	 (6) 
W (x,t) = Ni W1(t) + N4 w2(t) 	 (7) 
where N1=1-t, N4= 4 

(3)  
(4)  

(5)  
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(-) The transverse displacement v(x) is assumed to obey Hermitian 
interpolation [6]: 
v(x,t) = N2  Vi + N3 ( (P1 - 	) N5 v2 + N6 ( (P2 	) 

	
(8) 

where N2  = 1- 3 42  + 2 43  
N3  = L (4 - 2 42  4- 	 (9) 

N5  = 342  _ 2e 
N6  = L (4 - 242  + 43) 

and 4 = x L 	d4 = dx/L 	 (10) 

(L) 
	

The slope angle cp is defined as: 
av 

(P= —ax 
Hence, the displacement components at any point (x,y,z) inside a beam 
deformed in the x-y plane due to the axial forces, shear forces and bending 
moments, can be approximated at an instant of time t as follows: 

u(x,y,z,t) = u(x,t) - y 9(x,t) 
v(x,y,z,t) = v(x,t) 	 (12) 
w(x,y,z,t) = 0 

4. STIFFNESS MATRIX 

A two-node beam element as shown in Fig.(1) where the x-axis is the beam 
neutral axis, and the beam is deformed in the x-y plane. Some assumptions, 
taken into consideration, are similar to those used by [6], which can be 
summarised as follows: 
(i) 	Lateral deformations are small compared with beam thickness, 
(..,) The beam material is homogenous, isotropic, and linearly elastic, 
(c) 	Normals to the neutral axis before deformation remain straight but not 

necessarily normal to the neutral axis after deformation, 
(,) 	Stresses normal to the neutral axis are negligible. 

Using the strain-displacement relations, the strain components can be obtained 
from displacement components given by equations (12), as follows 

au 	ac0 
E x  = 	 (13) 

ax 
and the average value of shear strain yxy  at x based on the given assumptions is 
given as: 

- av 
rx = ax  - 

Hence, the vector of the relevant strain components can be defined as follows: 
= Ex yxY 

(14) 
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Employing equations (6), (7), (8) and (11), the vector of strain, at any point 
inside the element, can be expressed in the following matrix form: 

E _(8 - fla  ) 8„ 

where 

Pla 
[Ni 

0 

0 

0 

0 

0 

N4  

0 

0 

0 

0 

0 

0 

0 

0] 

0 

B= [0 	yN; yN13  0 yN; yN6  y(N, -N;) Y (\14.  - N 6)1 
0 	0 0 0 0 0 N1 N4 

The stress components, at any point (x,y,z) inside the beam, can be defined as 
follows: 

6x = E Ex  

and the average value of shear stress Txy is given as: 
txy = G k yxy  

where the shear factor k, for different cross-section geometries, is given by 
Cowper [7] and it is equal to 5 / 6 for rectangular sections. 
Hence, the vector of the relevant stress components can be defined as follows: 

= ax txy 

=( Ea,- 111  ) 
where 

B,_ 

	

[0 	yEN; 

	

0 	0 

yEN3 
0 

0 
0 

yEN; 
0 

- yEN6 
0 

yE(N, -N;) 
GicNi  

yE(N:i  -N6)  
GIN 4  

The total potential energy of the element is defined by means of the following 
expression: 

X = U W 	 (15) 
where U is the element strain energy, and W is the work done by,the applied 
forces. 
The strain energy for a linearly elastic material can be defined as follows: 

U = —1 DT  dxdydz 

And for the given element, it can be shown that: 

U= 2 — 
8.er 	( gi  - 	)T  E 	- 	)dxdydz  ]Se 	 (16) 

Notice also that 	11 dx dy = A the cross-section area 
cross section at x 

if y2 dy dz = 1,(x), the second moment of area. 
cross section at x 

The values of the nodal forces are defined such that the work done by the actual 
applied forces is equivalent to the work done by nodal forces i.e. 	,‘ 

= 8 eT Fe  (17) 
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Hence, substituting from equations (16) and (17) into (15), it can be deduced 
that: 

1  T r x 	- 2 
 8 diff ( gh - I131  )T  ( E B, - B3  ) dx dy dz 18. - 81; Fe  

Applying the minimum total potential energy theorem the following matrix 
equation can be deduced: 

K Eic  = Fe  
where 

= lJJJ (B, - B )T E - B3  ) dx dy dz 

The previous stiffness matrix is of order 8x8, and it is useful to eliminate the parts 
which correspond to the y effects. The strain energy of the element can be 
expressed as follows: 

u  = 	45.1  Kll K12 111 
2 	K21 K22 8 

If 8 is assumed to minimise the strain energy, i. e. 
au 

= o 

it can be shown that: 8 = T u where T = K22-1  ni 
and U= 1  uT  K u 

2 —  
where K.  is the condensed stiffness matrix defined as follows: 

K`= 	— T 
explicit expression of K*  is given in the Appendix. 

(18) 

5. MASS MATRIX 

The velocity components at any point (x,y,z) inside the beam can be defined at 
an instant of time t by taking the first derivative of equations (12) with respect to 

time, and they can be expressed in terms of a nodal velocity vector 5, as 

follows: 

u (x,y,z,t) = ( 	L.12  ) Se  (t) 

v (x,y,z,t) = H3  6e  (t) 

Hz   
where 

= [N, 0 0 N4  0 0 0 0] 

112  :40 y/N 2  yN3  0 yN3  yN6  Y(Ni  N;) Y (N4 N6).1 
I-13 = [0 N2  N3  0 N5  N6  -N3  -N6 ] 

The kinetic energy of the element is defined as follows: 

2 

	

1 	2 	2 

	

KE = — 	p (u + v ) dx dy dz 
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KE = 2- p iff u (H i  -H, )7.  (lail - tal ) I/ dx dy dz + -1  p hill H3 T  H3  11 dx dy dz 
2 

2 
as follows: It can therefore be shown that that, the mass matrix of the element is expressed 

LA = P f ff ( it -It )T  (HI - 1.:  1, ) d x d y d z + p ill H3T  H3 dx dy dz 
The previous mass matrix is of order 8x8, and it is useful to eliminate the arts 

expressed as follows: 
which correspond to w effects. The kinetic energy of the element canp 

 be 
T 

KE = 1u 	j IMI1 MI2 
I:1 2 	- M M • 	 (19) 21 	22 	8 

Employing the strain energy minimisation result from equation (18) i.e. 

= T U 
(20) 

The kinetic energy can be rewritten as: KE = 1 - T u M*  u 
where M* represents the condensed mass matrix 
Substituting from equation (20) in equation (19), after performing the matrix 
multiplication, the condensed mass matrix can be rewritten as follows: 

M.  = Ma Mbv Msv + Mbu + Ms„ Where 	 (21) 
Ma  is the mass matrix for the beam due to axial effect 
Mbv is the mass matrix for Euler-Bernouilli element, without rotary inertia 
Mbu is the rotary inertia effect on the mass matrix for the Euler-Bernouilli element 
Ms, is the shear effect on the mass matrix, without rotary inertia 
Msu represents the shear effect on the rotary inertia part 

The explicit expression of condensed mass matrix is given in the Appendix. 

6. DYNAMIC MODELING AND EQUATIONS OF MOTION 

The Lagrangian dynamics is used to derive the equations of motion due to its 
straightforwardness and systematic nature, which is especially suited for the modelling of complex systems 

d ma aKE au + 	r 
au J  On On — 

where U is the strain potential energy 
KE is the kinetic energy 
P is the applied external force vector 

Hence, the equations of motion in matrix form can be obtained as follows: 
M. u + Ce  u+K e  u =Fe  (22) 

dt 



Proceedings of the 8th  ASAT Conference, 4-6 May 1999 
	

Paper SM-15 	412 

vvi !Cr e 
Me is the element mass matrix and equal M" K. is the element stiffness matrix and equal IC + 	Q C. is the element damping matrix which is produced from M.  R F. is the element force vector and equal — NI* ar 

When no external forces are applied P = 0 
7. DEVELOPMENT OF A COMPUTER PROGRAM TO SOLVE 

THE EQUATIONS OF MOTION 

A computer program has been prepared to solve the previous equations of 
motion. The main program consists of several subroutines. This program is 
designed to determine the axial, transverse and rotary effects due to certain 
trajectory. The input trajectory is based on the angular velocity and angular 
acceleration of the Rigid Body Motion and it is input through subroutine 
Trajectory. The matrix or vector assembler subroutines are introduced to 
assemble the element matrices and vectors. The matrix or vector reducer 
subroutines are introduced to eliminate the link matrices and vectors 
corresponding to the input boundary conditions. The solver subroutine is 
introduced to solve the reduced equations, based on the Gauss Elimination 
Method. 

8. MODEL AND COMPUTER PROGRAM VALIDATIONS 

Validation is needed to ensure confidence of the model and the computer 
program for use in future addition applications. To validate the dynamic model by 
using the computer program, the model simulation results, corresponding to its 
dynamic response, are compared with the dynamic response of a model 
presented by Hegaze [3], in which this physical model was solved by two 
different ways, the Assumed Mode and the Isoparametric Finite Elen-lent 
Methods. Table (1) shows the geometric and mass properties of the models. The 
assumed trajectory of the model is defined by the foflowing relation. 

= 50 ( t +0.0001 cos 10 t ) 
Table 1. Physical and material properties of the link 
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Arm length ( ) 
Cross-sectional-Area ( A ) 

Young's midulus ( E ) 
c{„--r density ( p ) 

0_ -ond moment of area ( lz) 

     

  

1 
2.688025 x 

2 x 10” 
7860 

574.985 x 10-" 

    

  

iml [mz]  
[N/m2] 
[kg/m1 
[m4)  

  

      

Fig.(2) and Fig.(3) show the time history of the displacement 
based on the assumed mode and the isoparametric finite element 
Fig.(4) shows the time history of the lateral displacement at the 
same conditions, based on the proposed Hermitian Finite Element 
two elements, and results with 4 Hermitian elements are shown 

of the tip point 
method [3]. 
tip point, at the 
Method, using 
in Fig. (5).. The 
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comparison between the three models shows that, there is a qualitative 
agreement between the dynamic response based on the proposed Hermitian 
Finite Element model and the other two models. A simple analytical study has 
proved that, the new element results are more accurate than those obtained by 
other methods. Comparison between Fig. (4) and Fig. (5) also confirms the 
convergence and stability of the new element. 

Fig.2. The time history of the lateral displacement at the tip point 
(Assumed Mode Method) 
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Fig.3. The time history of the lateral displacement at the tip point 
(Isoparametric Finite Element Model) 
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Fig.4.The time history of the lateral displacement at the tip point 
(Proposed Hermitian Finite Element Method, 2 elements) 
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Fig.5.The time history of the lateral displacement at the tip point 
(Proposed Hermitian Finite Element Method, 4 elements) 

9. INVESTIGATION THE EFFECT OF THE SPAN/THICKNESS RATIO ON 
THE DYNAMIC RESPONSE OF THE LINK 

In this section, an investigation of the effect of the span/thickness ratio is 
presented. The trajectory is defined to represent a rest-to-rest manoeuvre which 
is corresponding to the following relations: 

0 = a (t) 	0.0 <t < 0.1 
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0 =a(0.2-t)0.1<t< 0.2 
0 =0.41 	 t> 0.2 

and 	a is a constant = 40.4211 
The dynamic response, represented by the lateral displacement at the tip point, 
is obtained at different lengths with the same cross-section. Fig. (6) shows the 
variation of the maximum value of the lateral displacement at the tip point with 
the span/thickness ratio of the link. The objective of this investigation is to show 
the effect of span/thickness ratio on the behaviour of the dynamic response of 
the model. The dynamic response can be detected at a high value of 
span/thickness ratio, which means that no locking occurs. Further, the dynamic 
response has increased by increasing the span/thickness value. Fig. (7) shows 
the time history of the lateral displacement at the tip point at 0.9 length of the link 
as an example. 

Fig.6.The variation of the maximum displacemeAmith the span/thickness ratio 

Fig.7.The time history of the lateral displacement at the tip point (at 0.9 m Length) 
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10. CONCLUSIONS 

A proposed dynamic model based on the Hermitian Finite Element Method and 
the Timoshenko beam theory has been presented. Shear deformation and rotary 
inertia effects are taken into consideration. The effect of flexibility on a beam is 
discussed and shows that it is very important factor when the beam is considered 
as flexible. Computer simulation program has been developed to solve this 
model. A derivation for the two-node Timoshenko beam element is introduced. 
The validity of the proposed model has been verified through the comparison 
between the dynamic response of a model based on assumed mode method [2] 
and another model is based on Isoparametric finite element method [5], and the 
proposed model. The comparison between the three models shows that, there is 
a qualitative agreement between the dynamic response based on the proposed 
Hermitian Finite Element model and the other two models. A simple analytical 
study has proved that, the new element results are more accurate than those 
obtained by other methods. Comparison between two and four elements 
response confirms also the convergence and stability of the new element. The 
presented method is better than the assumed mode method as the later is not 
suitable for non-regular cross-section. Finally, a case study has been 
investigated to show the effect of span/thickness ratio on the behaviour of the 
dynamic response of the model. 
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The element stiffness matrix IC 

A. 	0 

APPENDIX 

0 	- A. 	0 0 
0 12 6L 0 -12 6L 

= 	E I 0 6L 4L2  + 0 - 6L 2L2  - 
L (L2  + 0) -A. 0 0 A. 0 0 

0 -12 - 6L 0 12 - 6L 
0 6L 2L2  - f3 0 - 61 412 + 0_ 

With 

A = E A 
L 

The element mass matrix M* 

12E1 p = 	2  
k2  G A 

M*  = Ma + Mbv + M + Mbu + M„ 

2 	0 0 	1 	0 0-  0 0 	0 	0 	0 	0 
0 	0 0 	0 	0 0 0 156 	22 L 	0 	54 	-13 L 

= pAL 0 	0 0 	0 	0 0 Mbv = pAL 0 22L 	4L2 	0 	13L 	-3L2  
6 1 	0 0 	2 	0 0 420 0 0 	0 	0 	0 	0 

0 	0 0 	0 	0 0 0 54 	13 L 	0 	156 	- 22 L 
0 	0 0 	0 	0 0 0 - 13 L 	-3L2 	0 	- 22 L 

0 0 0 	0 0 	0 
0 (-36 + 4q) (-11 + 2q)L 	0 (36 - 4q) 	(-11 + 2q)L 

pALq 0 (-11 + 2q)L (-2 + q)L2 	0 (11 - 2q)L 	(-2 + q)L2  
840 0 0 0 	0 0 	0 

0 (36 - 4q) (11 - 2q)L 	0 (-36 + 4q) 	(11 - 2q)L 
_0 (-11 + 2q)L (-2 + q)L2 	0 (11 - 2q)L 	(-2 + q)L2 
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0 0 	0 0 	0 
0 36 	3L 0 	- 36 	3L 

Mbu = P '  0 3L 	4 L2  0 	3L 	-312 
30L 0 0 	0 0 	0 	0 

0 - 36 	3L 0 	36 	- 3L 
0 3L 	- 3 L2  0 	- 3L 	4 L2  

0 0 0 	0 0 

0 (-48+ 24q) (-14 +12q)L 	0 	(48 - 24q) (-14 +12q)L 

0 (-14 +12q)L (-2 + 6q)L2 	0 	(14 -12q)L (-2 + 6q)L2  
M Pig  

-311  20L 0 0 0 	0 	0 0 

0 (48 - 24q) (14 -12q)L 	0 	(-48 + 24q) (14 -12q)L 

0 (-14 +12q)L (-2 + 6q)L2 	0 	(14 -12q)L (-2 + 6q)L2 

And q =13 / ((3 +12 ) 
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