

Sohag J. Sci. 7, No. 3, 29-37 (2022) 10.21608/sjsci.2022.249079 29

* Corresponding author E-mail: mk409055@gmail.com © 2022 Sohag University

 Sohag Journal of Sciences
 An International Journal

Task Scheduling Optimization in cloud computing by Cuckoo

Search Algorithm

Ahmed Y. Hamed

1
, M. Kh. Elnahary

1
, and Hamdy H. El-Sayed

1

1
Faculty of Computers and Artificial Intelligence, Department of Computer Science, Sohag University, Sohag, 82524, Egypt.

Received: 9 Apr. 2022, Revised: 22 May 2022, Accepted: 29 May 2022.

Published online: 1 Spt. 2022.

Abstract: In cloud computing systems, task scheduling is crucial. Task scheduling cannot be done based on a single criterion

but rather on rules and regulations which can be referred to as an agreement between cloud customers and providers. This

agreement is nothing more than the user's desire for the providers to offer the kind of service that they expect. Providing

high-quality services to consumers under the deal is a critical duty for providers, who must also manage many

responsibilities. The task scheduling problem may be considered the search for an ideal assignment or mapping of a

collection of subtasks of distinct tasks across the available set of resources to meet the intended goals for tasks. This paper

proposes an efficient scheduling task algorithm based on the cuckoo search algorithm in cloud computing systems. By

applying it to three cases, we evaluate the performance of our algorithm. The findings suggest that the proposed strategy

successfully achieved the best solution in makespan, speedup, efficiency, and throughput.

Keywords: Heterogeneous resources, Cuckoo search algorithm, Task scheduling, Cloud Computing.

.

1 Introduction

There is no specific definition of cloud, but we may

describe cloud in various ways and multiple approaches.

Cloud computing is a type of supercomputing that is

accessible over the internet. It is a shared infrastructure

that connects large system pools using various methods

such as distributed computing, virtualization, etc. It

provides customers with a range of storage, networking,

and computing resources in the cloud computing

environment over the internet, allowing users to store a

large amount of information and access a large amount of

computational power using their computers [1]. The

primary purpose of cloud computing is to manage

computing power, storage, multiple platforms, and services

assigned to external users on-demand over the internet.

Cloud computing is a fast-evolving computation paradigm

to relieve cloud users of the burden of managing hardware,

software, networks, and data resources and moving them to

cloud service providers. Clouds offer a wide range of

resources, including computing platforms, data centres,

storage, networks, firewalls, and software in services. At

the same time, it provides methods for controlling these

resources so that cloud users may use them without

experiencing any performance issues. Cloud Computing

Services are classified into three types based on the

abstraction level and the service model of the provider: (1)

Infrastructure as a Service(IaaS), (2) Platform as a

Service(Paas), and (3) Software as a Service(SaaS). The

fundamental qualities of cloud computing are distribution,

virtualization, and elasticity. Virtualization is a crucial

aspect of the cloud. Virtualization is supported by the vast

majority of software and hardware. We can virtualize

various components, such as hardware, software, storage,

and operating systems, and manage them in a cloud

platform [1].

To solve the task scheduling problem satisfactorily,

we have presented an efficient method based on the

cuckoo search algorithm called the efficient cuckoo search

(ECS) algorithm to decrease the makespan and maximize

the speedup, efficiency, and throughput.

The paper is organized as follows: The notations are

presented in section 2. Related work is presented in

Section 3. problem description is given in Section 4. The

cuckoo search algorithm with levy flights is provided in

Section 5 and Section 6. Section 7 describes the

ECS approach. The evaluation of the proposed algorithm is

presented in section 8. Section 9 concludes and offers

future work.

 30 Ahmed Y. Hamed et al.: Task Scheduling Optimization …

© 2019 Sohag University

2 Notation

3 Related work

Cloud computing is a new technology that allows

consumers to pay as they go and offers excellent

performance. Cloud computing is also a heterogeneous

system that stores many application data. It is accepted that

optimizing the transferring and processing time is critical

to an application program when scheduling some intensive

data or computing an intensive application. The authors

develop a task scheduling model and propose a particle

swarm optimization (PSO) method based on this study's

small position value rule [2] to reduce processing costs.

Cloud computing has lately experienced rapid growth

and has emerged as a commercial reality in information

technology. Cloud computing is a supplement,

consumption, and delivery model for internet-based IT

services charged per usage. The scheduling of cloud

services influences the cost-benefit of this computing

paradigm by service providers to users. Tasks should be

scheduled efficiently in such a case so that the execution

cost and time are decreased. In this research [3], the

authors suggested a meta-heuristic-based scheduling

method that reduces execution time and cost. An enhanced

genetic algorithm is created by combining two existing

scheduling methods for scheduling activities while

considering their computational complexity and computing

capability of processing elements.

The next generation of cloud computing will survive

on the efficiency with which infrastructure is built and

available resources are actively exploited. One of the

primary issues in Cloud computing is load balancing,

which distributes the dynamic workload over numerous

nodes to guarantee that no one resource is either

overburdened or underused. This is an optimization

challenge, and a competent load balancer should adjust its

method to the changing environment and job kinds. The

Genetic Algorithm is used in this research [4] to suggest a

unique load balancing approach (GA).

In cloud computing, job scheduling is an NP-hard

optimization issue. Load balancing of non-preemptive

independent jobs on virtual machines (VMs) is a critical

component of cloud task scheduling. When specific VMs

are overburdened with tasks to complete and the remaining

VMs are underloaded, the load must be balanced to

achieve optimal machine usage. In this research [5], the

authors presented a new technique called honey bee

behaviour inspired load balancing (HBB-LB), which

attempts to produce a well-balanced load among virtual

machines to maximize throughput. The suggested method

additionally balances the priority of jobs on the computers

such that the amount of waiting time for tasks in the queue

is kept to a minimum.

Scheduling directed acyclic graph (DAG) tasks to

minimize makespan has become a key topic in a range of

applications on heterogeneous computing systems,

including considerations regarding task execution order

and task-to-processor mapping. The chemical reaction

optimization (CRO) approach has recently proven valuable

in various sectors. This paper [6] creates an enhanced

hybrid version of the HCRO (hybrid CRO) approach to

solve the DAG-based job scheduling issue. The CRO

technique is combined with unique heuristic approaches in

HCRO, and a new selection strategy is given. This study

makes the following contributions in particular. (1) A

Gaussian random walk technique is given to find the best

local candidate solutions. (2) To ensure that our HCRO

algorithm can escape from local optima, we adopt a left or

right rotating shift approach based on maximum Hamming

distance. (3) To preserve molecular diversity, a novel

selection technique based on the normal distribution and a

pseudo-random shuffling approach are proposed.

Furthermore, an exclusive-OR (XOR) operator is placed

between two strings to decrease the possibility of cloning

before new molecules are created.

Task scheduling is one of the most important

problems in heterogeneous cloud computing systems when

high efficiency is required. Because task scheduling is a

Nondeterministic Polynomial (NP)-hard issue, various

evolutionary methods have been developed to address it.

Because population-based algorithms have a slow

convergence rate, they are combined with local search

algorithms. Thus, this study [7] suggests a hybrid particle

swarm optimization and hill-climbing method to improve

the task scheduling makespan.

4 Problem Description

The task scheduling in cloud computing is

represented as a Graph with NTS tasks (TS1, TS2, TS3, ...,

TSNTS). Each task represents a task with DG and E-

directed edges, signifying a portion of the tasks' requests

DG is the graph of tasks

TSi is the task i

VMi is the virtual machine i

NVM is the virtual machine's number

NTS is the number of tasks

COMC(TSi,

TSj)

is the communication cost between

TSi and TSj

St_Time(TSi,

VMj)

is the start time of task i on a VMj

Ft_Time(TSi,

VMj)

is the finish time of task i on a VMj

Re_Time(VMi) is the VM's ready time i

DLT is a list of tasks arranged in

topological order of DAG

Da_Arriv(TSi,

VMj)

is the time of task's i data arrival to

VMj

Sohag J. Sci.. 7, No. 3, 29- 37 (2022) 31

.

[8]. Each task means an instruction that might be

performed sequentially on the same virtual machine

alongside other instructions; it contains one or more inputs.

The task an exit or entry task is triggered to execute based

on the availability of the inputs. A precedence-constrained

partial request result (TSi → TSj), i.e., TSi precedes TSj in

the process of execution. The execution time of a task TSi

is denoted by (TSi) weight. Let COMC(TSi, TSj) be the

cost of communication of an edge, and it will be equal to

zero if TSi and TSj are scheduled on the same virtual

machine. Start and finish times are denoted by

St_Time(TSi, VMj) and Ft_Time(TSi, VMj), respectively

[8]. The Da_Arriv of TSi at virtual machine VMj is given

by:

Da_Arriv(TSi, VMj) = max{Ft_Time(TSk, VMj) +

COMC(TSi, TSk)} (1)

Where k = 1.2, ..., number of Parents

The task scheduling issue in cloud computing may be

characterized as finding the optimal assignment or

schedule of the start times of the provided tasks on virtual

machines. The scheduled length (completion time) and

execution cost are reduced while keeping precedence

constrained. The completion time is defined as the

schedule length or makespan computed by:

Completion Time = max(Ft_Time(TSi, VMj)) (2)

Ft_Time(TSi, VMj) = St_Time(TSi, VMj) +WTij (3)

Where i = 1.2., NTS, and j = 1,2, …NVM

Algorithm 1: To find the schedule length [8]

Input the schedule of tasks

Re_Time[VMj] = 0 where j = 1, 2, ……NVM.

For i = 1 : NTS

{

From DLT take the first task TSi to be executed and remove

it from DLT.

 For j = 1 : NVM

 {

 If TSi is scheduled to virtual machine VMj

 St_Time(TSi, VMj) = max{Re_Time(VMj),Da_Arriv(TSi,

VMj)}

 Ft_Time(TSi, VMj) = St_Time(TSi, VMj) + WT(TSi,VMj)

 Re_Time(VMj) = Ft_Time(TSi, VMj)

 End If

 }

}

Schedule length = max(Ft_Time)

5 Levy Flights and Cuckoo Behavior

5.1 Cuckoo Breeding Habits

Cuckoos are intriguing birds, not just for their

beautiful calls but also for their aggressive breeding

method. Brood parasitism is classified into three types:

intraspecific brood parasitism, cooperative breeding, and

nest takeover. Some species, such as ani and Guiro

cuckoos, deposit their eggs in communal nests, albeit they

may remove the eggs of others to maximize the

hatchability of their eggs [9]. Several species practise

obligate brood parasitism by depositing their eggs in the

nests of other host birds (often other species). Some host

birds may engage in confrontation with invading cuckoos.

If a host bird realizes that the eggs are not its own, it will

either discard the foreign eggs or depart its nest and create

a new one elsewhere. Some cuckoo species, like the New

World brood-parasitic Tapera, have developed where

female parasitic cuckoos are frequently highly specialized

in the colour and pattern mimicry of a few selected host

species' eggs. This minimizes the likelihood of their eggs

being abandoned, increasing their reproductivity.

Furthermore, the timing of egg-laying in several species is

astonishing. In general, cuckoo eggs hatch significantly

sooner than host eggs. Parasitic cuckoos frequently seek

nests where the host bird has recently placed its eggs.

When the first cuckoo chick hatches, its initial inclination

is to evict the host eggs by blindly shoving the eggs out of

the nest, increasing the cuckoo chick's portion of food

given by its host bird. According to research, a cuckoo

chick may mimic the call of host chicks to obtain access to

additional feeding opportunities [9].

5.2 Levy Flights

On the other hand, various research has shown that

the flight behavior of many insects and animals has

demonstrated the typical L´evy flights characteristics [9].

According to recent research by Reynolds and Frye, fruit

flies, or Drosophila melanogaster, investigate their

environment utilizing a succession of straight flight

pathways broken by a rapid 90o turn, resulting in a Levy-

flying-style irregular scale-free search pattern. Following

that, similar behaviour has been used to optimize and

optimal search, with preliminary results demonstrating

promising capabilities. Human behaviour studies, such as

the Ju/'hoansi hunter-gatherer feeding habits, also reveal

the common trait of Levy flights. Levy flights can even be

associated with light [9].

6 Cuckoo Search

We now employ three idealized principles to describe

our new Cuckoo Search for simplicity: 1) Each cuckoo

lays one egg at a time and deposits it in a randomly

selected nest. 2) The best nests with high-quality eggs will

be passed down to future generations. 3) The number of

possible host nests is fixed, and the egg placed by a cuckoo

is detected with a probability pa ∈ [0, 1] by the host bird.

The host bird can either discard the egg or depart the nest

and create a new one in this instance. This second

assumption can be approximated for simplicity by the

 32 Ahmed Y. Hamed et al.: Task Scheduling Optimization …

© 2019 Sohag University

proportion pa of the n nests replaced by new nests (with

new random solutions). The quality or fitness of a solution

to a maximizing issue might be proportional to the value of

the objective function. Other kinds of fitness, such as the

fitness function in genetic algorithms, can be described

similarly. For simplicity, we may use the following simple

representations: each egg in a nest symbolizes a solution,

and a cuckoo egg indicates a new solution; the goal is to

employ the latest and potentially better solutions (cuckoos)

to replace a not-so-good solution in the nests. This

approach may be expanded to a more sophisticated

scenario where each nest has many eggs, indicating a set of

solutions. We will choose the most straightforward

technique for this study, with each nest containing simply

one egg [9]. the newly generated solutions Hi
s+1 is

Hi
s+1 = Hi

s + β ⨁ Levy (γ) (4)

Where β > 0 is the step size that should be connected

to the problem of interests' scales. Most of the time, we can

use β = 1. The preceding equation is the stochastic

equation for a random walk. A random walk, in general, is

a Markov chain whose future status/position is determined

only by the present location (the first component in the

above equation) and the transition probability (the second

term). The term "product" refers to entrywise

multiplications. This entrywise product is similar to those

used in PSO, but the random walk through Levy flight is

more efficient in exploring the search space in the long run

since its step length is significantly greater. The Levy

flight gives a random walk, with the arbitrary step length

selected from a Levy distribution [9].

Levy ~ q = s−γ (5)

It has an infinite variance and a zero mean. The steps

in this case effectively constitute a random walk process

with a power-law step-length distribution and a long tail.

Levy should stroll around the best solution obtained so far

to produce some new solutions, which will speed up the

local search. However, a significant percentage of the

latest solutions should be created by field randomization.

Their locations should be sufficiently distant from the best

solution to ensure that the system is not caught in a local

optimum. There is some resemblance between CS and hill-

climbing combined with some large-scale randomness

from a cursory examination. There are, nevertheless, some

essential variances. To begin, CS is a population-based

algorithm, similar to GA and PSO, but it employs some

form of elitism and selection, identical to harmony search.

Second, randomization is more efficient because the step

length is heavy-tailed, and any vast step is possible. Third,

the number of parameters to be modified is smaller than

that of GA and PSO, making it potentially more general in

adapting to a broader class of optimization issues.

Furthermore, because each nest might represent a

collection of solutions, CS can be extended to the sort of

meta-population algorithm [9].

Algorithm 2: Cuckoo Search via Levy Flights [9]

Objective function G(y), y = (y1, ..., yd)
T

Create a starting population of n host nests yi (i = 1, 2, ...,

n)

while (s <Max_Generation or criteria for stopping)

By Levy, flights get a cuckoo randomly and

assess its quality/fitness FTi

Choose a nest at random from n (say, j).

if (FTi > FTj),

 replace j with the new obtained solution;

end if

pa of the worst nests are abandoned, and new

ones are constructed.

Save the best solutions or nests with high-quality

solutions.

 Sort the solutions and pick the best one right now.

end while

Visualization of postprocess results

7 The ECS Approach

It is clear that the representation of a vector in the

cuckoo search algorithm is a continuous value form, so we

will use the five methods to convert these continuous

values to discrete values. The first is the Smallest Position

Value (SPV) rule [10], and the second is the Largest

Position Value (LPV) rule [11] and by using the modulus

function with the number of virtual machines and

increasing the value by one, as shown in Figure 1 and

Figure 2.

2.3 1.9 1.4 2.8 2.1 1.6 2.2

3 6 2 5 7 1 4

SPV

1 1 3 3 2 2 2

Modulus with SPV and NVM=3

Figure 1. An example of converting with the SPV rule

2.3 1.9 1.4 2.8 2.1 1.6 2.2

4 1 7 5 2 6 3

LPV

Modulus with LPV and NVM=3

Figure 2. An example of converting with the LPV rule

2 2 2 3 3 1 1

Sohag J. Sci.. 7, No. 3, 29- 37 (2022) 33

.

 Figure 3. An example proposed schedule

Algorithm 3: The function that converts a continuous

value to a discrete value

Function converting(s)

Ran=random number between [1…5]

If (Ran == 1)

 Use method of SPV rule as shown in Figure 1

Else if (Ran == 2)

 Use method of LPV rule as shown in Figure 2

Else if (Ran == 3)

 Use round nearest function

Else if (Ran == 4)

 Use floor nearest function

Else

 Use ceil nearest function

End if

End function

Algorithm 4: ECS

Input the DAG with computation and communication costs

Create a starting population of n host nests yi (i = 1, 2, ...,

n)

Convert the starting population by using Algorithm 3

Calculate the schedule length by using Algorithm 1

while (s <Max_Generation or criteria for stopping)

 By Levy, flights get a cuckoo randomly and convert it

by using Algorithm 3, then assess its quality or fitness

FTi by using Algorithm 1

Choose a nest at random from n (say, j).

if (FTi > FTj),

 replace j with the new obtained solution;

end if

pa of the worst nests are abandoned, and new

ones are constructed.

Save the best solutions or nests with high-quality

solutions.

 Sort the solutions and pick the best one right now.

end while

Visualization of postprocess results

8 Evaluation of the ECS

We show the performance of the ECS by applying it

to three cases. The first case of 11 tasks and three

heterogeneous virtual machines. The second case consists

of 11 tasks and three heterogeneous virtual machines. The

third one consists of three heterogeneous virtual machines

and 10 tasks.

Speedup = min VMj
 (∑

WTi,j

schedule lengthTSi
) (12)

Efficiency =
Speedup

NVM
 (13)

Throughput =
NTS

Schedule Length
 (14)

8.1 Case 1

We consider a case of 11 tasks {TS0, TS1, TS2, TS3,

TS4, TS5, TS6, TS7, TS8, TS9, TS10} to be executed on

three heterogeneous virtual machines {VM1, VM2, VM3}.

The cost of running every task on different virtual

machines is shown in Table 1 [12]. Table 2 represents each

task's start time and finish time on other virtual machines

and the schedule obtained by ECS. The results obtained by

the ECS are compared with those obtained by Upward

Rank [13], Downward Rank [13], Level Rank [13], BGA

[14], and GA_DE_HEFT [12].

Figure 3, Figure 4, Figure 5, and Figure 6 represent

the results obtained by the ECS, Upward Rank, Downward

Rank, Level Rank, BGA, GA_DE_HEFT in terms of

makespan, speedup, efficiency, and throughput.

Table 1. Computation Cost for case 1

Task VM1 VM2 VM3

TS0 9 11 10

TS1 11 7 9

TS2 8 6 4

TS3 6 5 7

TS4 9 17 10

TS5 7 5 9

TS6 12 15 9

TS7 17 12 13

TS8 8 12 10

TS9 16 15 14

TS10 11 10 12

Table 2. Schedule obtained by ECS for case 1

 VM1 VM2 VM3

 Start Finish Start Finish Start Finish

TS0 0 9 - - - -

TS1 - - 21 28 - -

TS2 - - - - 23 27

TS3 9 15 - -

TS4 - - 35 52 - -

TS5 - - - - 27 36

TS6 15 27 - - - -

TS7 - - 53 65 - -

TS8 43 51 - - - -

TS9 27 43 - - - -

TS10 - - 66 76 - -

3 1 3 2 2 1 2

 34 Ahmed Y. Hamed et al.: Task Scheduling Optimization …

© 2019 Sohag University

Figure 3. comparison of makespan for case 1

Figure 4. comparison of speedup for case 1

Figure 5. comparison of efficiency for case 1

Figure 6. comparison of throughput for case 1

8.2 Case 2

We consider a case of 11 tasks {TS1, TS2, TS3, TS4,

TS5, TS6, TS7, TS8, TS9, TS10, TS11} to be executed on

three heterogeneous virtual machines {VM1, VM2, VM3}.

The cost of running every task on different virtual

machines is shown in

Table 3 [15].

Table 4 represents each task's start time and finish

time on other virtual machines and the schedule obtained

by ECS. The results obtained by the ECS are compared

with those obtained by HEFT [15], CPOP [15], and

MHEFT [15]. Figure 7, Figure 8, Figure 9, and Figure 10

represent the results obtained by the ECS, HEFT, CPOP,

and MHEFT in terms of makespan, speedup, efficiency,

and throughput.

Table 3. Computation Cost for Case 2

Task VM1 VM2 VM3

TS1 16 19 27

TS2 18 15 13

TS3 21 12 22

TS4 15 13 11

TS5 22 19 20

TS6 13 09 11

TS7 8 11 16

TS8 14 23 10

TS9 28 32 12

TS10 15 13 09

TS11 14 16 22

Table 4. Schedule obtained by ECS for case 2

 VM1 VM2 VM3

 Start Finish Start Finish Start Finish

TS1 0 16 - - - -

TS2 - - - - 33 46

TS3 - - 36 48 - -

TS4 38 53 - - - -

TS5 16 38 - - - -

TS6 - - 72 81 - -

TS7 - - - - 57 73

TS8 - - - - 73 83

TS9 - - - - 83 95

TS10 - - 94 107 - -

TS11 - - 107 123 - -

88 87 87
85

78
76

M
ak

es
p

an

1.215 1.229 1.229
1.258

1.371
1.407

S
p

ee
d

u
p

0.405 0.409 0.409
0.419

0.457
0.469

E
ff

ic
ie

n
cy

0.125 0.126 0.126
0.129

0.141
0.144

Th
ro

u
gh

p
u

t

Sohag J. Sci.. 7, No. 3, 29- 37 (2022) 35

.

Figure 7. comparison of makespan for case 2

Figure 8. comparison of speedup for case 2

Figure 9. comparison of efficiency for case 2

Figure 10. comparison of throughput for case 2

8.3 Case 3

We consider a case of 10 tasks {TS0, TS1, TS2, TS3,

TS4, TS5, TS6, TS7, TS8, TS9} to be executed on three

heterogeneous virtual machines {VM1, VM2, VM3}. The

cost of running every task on different virtual machines is

shown in

Table 5 [6]. Table 6 represents each task's start time

and finish time on other virtual machines and the schedule

obtained by ECS. The results obtained by the ECS are

compared with those obtained by HCRO [6]. Figure 11,

Figure 12, Figure 13, and Figure 14 represent the results

obtained by the ECS and HCRO in terms of makespan,

speedup, efficiency, and throughput.

Table 5. Computation Cost for Case 3

Task VM1 VM2 VM3

TS0 10 11 11

TS1 9 10 8

TS2 8 6 8

TS3 10 10 9

TS4 13 12 13

TS5 3 2 4

TS6 10 8 9

TS7 2 2 2

TS8 18 17 16

TS9 15 14 14

Table 6. Schedule obtained by ECS for case 3

 VM1 VM2 VM3

 Start Finish Start Finish Start Finish

TS0 - - - - 0 11

TS1 13 22 - - - -

TS2 - - - - 11 19

TS3 - - - - 19 28

TS4 - - 12 24 - -

TS5 - - 25 27 - -

TS6 27 37 - - - -

TS7 - - 30 32 - -

TS8 - - - - 28 44

TS9 - - - - 44 58

136
134 133

123

CPOP HEFT MHEFT ECS

M
ak

es
p

an

1.272
1.291 1.3

1.406

CPOP HEFT MHEFT ECS

S
p

ee
d

u
p

0.424
0.43 0.433

0.468

CPOP HEFT MHEFT ECS

E
ff

ic
ie

n
cy

0.08

0.082 0.082

0.089

CPOP HEFT MHEFT ECS

T
h

ro
u

g
h

p
u

t

 36 Ahmed Y. Hamed et al.: Task Scheduling Optimization …

© 2019 Sohag University

Figure 11. comparison of makespan for case 3

Figure 12. comparison of speedup for case 3

Figure 13. comparison of efficiency for case 3

Figure 14. comparison of throughput for case 3

9 Conclusion and Future Work

The proposed efficient cuckoo search algorithms

allocate or schedule subtasks to available virtual machines in

a cloud computing environment. According to the obtained

results on DAGs of different cases, the efficient cuckoo

search algorithms are significantly more effective than other

algorithms in terms of makespan, speedup, efficiency, and

throughput. We compared the results of ECS, Upward Rank,

Downward Rank, Level Rank, BGA, GA_DE_HEFT, it is

clear that the length of ECS's schedule was less than that of

Upward Rank, Downward Rank, Level Rank, BGA,

GA_DE_HEFT as shown in Figure 3. Also, we compared

the results of ECS, HEFT, CPOP, and MHEFT, it is clear

that the length of ECS's schedule was less than that of

HEFT, CPOP, and MHEFT as shown in Figure 7. In

addition, the ECS results were better than those found by

HCRO as shown in Figure 11. In the future, we will develop

an algorithm based on DAGs by considering the load

balancing of the resources.

References

[1] Singh, R.M; Paul, S. and Kumar, A.; Task Scheduling in

Cloud Computing : Review, International Journal of

Computer Science and Information Technologies., 2014, 5

(6), 7940–7944.

[2] Guo, L.; Zhao, S.; Shen, S. and Jiang, C.; Task scheduling

optimization in cloud computing based on heuristic Algorithm,

Journal of Networks., 2012, 7 (3), 547–553.

[3] Kaur, S. and Verma, A.; An Efficient Approach to Genetic

Algorithm for Task Scheduling in Cloud Computing

Environment, International Journal of Information Technology

and Computer Science., 2012, 4 (10), 74–79.

[4] Dasgupta, K.; Mandal, B.; Dutta, P.; Mandal, K.J and Dam,

S.; A Genetic Algorithm (GA) based Load Balancing Strategy for

Cloud Computing, Procedia Technology., 2013, 10, 340–347.

[5] Dhinesh Babu D.L and Venkata Krishna, P.; Honey bee

behavior inspired load balancing of tasks in cloud computing

environments, Applied Soft Computing., 2013, 13, 2292–2303.

[6] Xu, Y.; Li, K.; He, L.; Zhang, L. and Li, K.; A Hybrid

Chemical Reaction Optimization Scheme for Task Scheduling on

Heterogeneous Computing Systems, IEEE Transactions on

Parallel and Distributed Systems., 2015, 26 (12), 3208–3222.

[7] Dordaie, N. and Navimipour, J.N; A hybrid particle swarm

optimization and hill climbing algorithm for task scheduling in

the cloud environments, ICT Express., 2018, 4, 199–202.

[8] Hamed, Y.A and Alkinani, M.H; Task scheduling

optimization in cloud computing based on genetic algorithms,

Computers, Materials and Continua., 2021, 69 (3), 3289–3301.

61

58

HCRO ECS

M
ak

es
p

an

1.508

1.586

HCRO ECS

S
p

ee
d

u
p

0.502

0.528

HCRO ECS

E
ff

ic
ie

n
cy

0.163

0.172

HCRO ECS

T
h

ro
u

g
h

p
u

t

Sohag J. Sci.. 7, No. 3, 29- 37 (2022) 37

.

[9] Yang, S.X and Deb, S.; Cuckoo search via Lévy flights, 2009

World Congress on Nature and Biologically Inspired Computing

(NABIC)., 2009, 210–214.

[10] Dubey, I. and Gupta, M.; Uniform mutation and SPV rule

based optimized PSO algorithm for TSP problem, in Proc. of the

4th International Conference on Electronics and Communication

Systems., Coimbatore, India, 2017, 168–172.

[11] Wang, L.; Pan, Q. and Tasgetiren M.F; A hybrid harmony

search algorithm for the blocking permutation flow shop

scheduling problem, Computers & Industrial Engineering., 2011,

61 (1), 76-83.

 [12] Kamalinia, A. and Ghaffari, A.; Hybrid Task Scheduling

Method for Cloud Computing by Genetic and DE Algorithms,

Wireless Pers Commun., 2017, 97, 6301–6323.

[13] Topcuoglu, H.; Hariri, S. and Wu Y.M; Performance-

effective and low-complexity task scheduling for heterogeneous

computing, IEEE Transactions on Parallel and Distributed

Systems., 2002, 13, 260–274.

[14] Gupta, S.; Agarwal, G. and Kumar, V.; Task scheduling in

multiprocessor system using genetic algorithm, 2010 2nd

International Conference on Machine Learning and Computing.,

2010, 267–271.

[15] Dubey, K.; Kumar, M. and Sharma C.S; Modified HEFT

Algorithm for Task Scheduling in Cloud Environment, Procedia

Computer Science., 2018, 125, 725–732.

