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ABSTRACT 

A direct analytical beam formulation is developed for predicting the effective elastic 
stiffnesses and corresponding load deformation behavior of tailored box beams. 
Deformation of the beam is described by extension, bending, torsion, transverse 
shearing, and torsion related out-of-plane warping. The present analysis is developed 
without much dependence on thin-walled beam theory. Formulation of the analysis is 
in terms of a two-dimensional cross-section, instead of an infinitely thin contour 
enable stresses, strains, elastic properties to vary through the thickness of the beam 
walls in a manner consistent to the true laminated structure nature of the composite 
structure. This analytical model is very useful in studying non-classical phenomenon 
such as warping and in-plane elasticity. Governing differential equations for the 
extension, bending, torsion and shearing of the beam are derived using Newtonian 
approach. Validation studies are carried out for composite designs with no coupling, 
designs With varying degrees of extension-torsion and bending shear coupling, as 
well as • tdesigns with varying degrees of torsion- bending and extension shear 
coupling. The analysis is evaluated by correlation with existing experimental results. 
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1.INTRODUCTION 

The benefits of advanced composite materials and a box-beam construction have 
been widely recognized by the aerospace community. Many primary structural 
components such as aircraft wing spars and the helicopter rotor blades now feature 
composite box-beam designs. These composite designs are lightweight and offer 
innovative characteristics, however, the inherit tailorability of composite structures 
has not been fully taken advantage of. In particular, the elastic coupling between 
several of deformations are typically not exploited in composite designs. These 
couplings such as bending-torsion and extension-torsion arise due to the anistropic 
or directional nature of fibrous composites. One of the most dramatic applications of 
this technology is the bending-torsion coupled composite structure to prevent 
divergence of swept-forward wings. Successful applications of composite box-beam 
structures require the development of new analytical tools, which are both sufficiently 
accurate and computationally efficient. 
Recent efforts toward the creation of new analytical tool for composite beams have 
led to the development of several finite element based methods. The finite element 
models provide varying degrees of analytical flexibility depending on the level of 
computational level required. Detailed finite element formulations have been used to 
capture a variety of non-classical phenomenon in composite beams and blades. For 
example, Borriet et al, [1], Bauchau and Hong, [2,3], and Stemple and Lee, [4], have 
investigated the effects of warping and large displacements wing specially designed 
beam finite elements or combinations of isoparametric elements. Although these 
methods are quite powerful, a certain amount of physical insight is often sacrificed in 
the formulation and the implementation of large scale discertized numerical solution. 
A number of direct analytical methods have also been formulated for thin-walled 
composite beams. Reissner and Tsai [5] developed shell analysis for bending, 
stretching and twisting of composite shell structure. Mansfield and Sobey [6], 
developed a simple thin walled contour analysis and introduced the concept of 
aeroelastically tailored composite helicopter rotor blade. Bauchau [7] has also 
developed a thin-walled contour formulation using a refined approach to warping. 
Bicos and Springer [8] investigated the minimum weight design of a semi-monocoque 
(stringer and webs) composite box-beam using a reduced plate model. Libove [9] has 
also developed a thin-walled contour analysis, which is similar to the work of 
Mansfield and Sobey [6]. These direct analytical methods are typically based on 
combination of beam theory and classical lamination theory. Certain simplifying 
assumptions are made in order to obtain governing differential equations without 
discretizing the entire problem. In some cases the governing equations can then 
been solved directly [9]. Variational principles are to be used to determine 
approximate solutions [7,8]. In addition to computational simplicity and speed, 
analytical formulations can provide valuable cause effect relationships and enhance 
physical understanding of non-classical phenomenon and elastic coupling effects. 
Despite the increased appearance of the aforementioned finite element and direct 
analytical methods during the past decade, the structural behavior of composite box-
beam is not yet thoroughly understood. Many of the methods which have been 
previously developed, especially the direct analytical methods, do not address all the 
non-classical effects, consequently, the importance of many non-classical structural 

posite box-beam construction has not been clearly phenomenon associated with com  
established and quantified. 
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The objectives of this study are: - 
1- To develop a direct analytical method for predicting the effective elastic 

stiffness and corresponding load deformation behavior of composite 
box-beam. 

2- To validate and evaluate analytical method. 
3- To apply the new analysis to examine the importance of non-classical 

structural phenomenon. 
A systematic approach is taken to develop both a qualitative and quantitative 
understanding of composite box-beam behavior. Special consideration is given to 
modeling the effects of anisotropy elasticity, laminated construction, torsion related 
warping, and transverse shear. Correlating the analytical results with the 
experimental results carries out evaluation of analytical method. The analysis is then 
is then applied to investigate the non-classical phenomenon such as warping, 
transverse shear and transverse in-plane elasticity. 

The deformation of box-beam is described by extension, bending, twisting, shearing, 
and torsion related out-of-plane warping. The composite walls of the rectangular box-
beam are represented as four laminated plates, which are built up by layers of 
orthotropic plies. Unlike the box-beam beams, which are constructed using isotropic 
materials, the elastic properties of the laminated composite box-beam designs 
generally vary both through the thickness and along the contour of the beam cross-
section. This unique distribution of stiffness enhances the tailorability of composite 
structures. By varying the ply lay-up within the beam walls (fiber orientation angles, 
stacking sequence, ply material, etc.) structural designers can create elastic 
couplings between deformations such as extension and torsion, bending torsion, or 
even bending and shearing of the beam. 
Many of the current direct analytical methods for composite beams are based heavily 
on thin-walled beam theory [9]. Variations in stresses, strains and, elastic properties 
through the thickness of the laminated beam walls must be treated in in approximate 
manner, which can be break down as wall thickness increases. The present analysis 
is developed without much dependence on thin-walled beam theory. Formulation of 
the analysis in terms of a two dimensional cross-section, instead of infinitely thin 
contour enables stresses, strains, and elastic properties to vary through the thickness 
of the beam walls in manner consistent the true laminated composite structure. This 
analytical detail is very useful in studying non-classical phenomenon such as warping 
and in-plane elasticity. 
Governing differential equations for extension, bending, torsion and shearing of the 
beam are derived using Newtonian approach. This method, in which applied forces 
and moments over the cross-section are reacted by the stresses within the beam 
walls, is very commonly applied in formal elasticity solutions. Another key element for 
the composite beam formulation is the manner in which two-dimensional anistropic 
elastic behavior of the beam walls is captured by one-dimensional beam theory. In 
other words Poison's effect can become more significant for certain composite 
designs. Both the strain-displacement and stress-strain relations are important to this 
critical issue. Methods for bridging this analytical gap are investigated and evaluated. 



,x 

The box-beam geometry and coordinates are shown in Fig.1 
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IFORMULATION OF ANALYTICAL MODEL 

Fig(1): Box-beam Configuration 

The cross-section axis origin is at the center of the beam section. The deformation of 
the beam cross-section is described by stretching, bending, twisting, shearing and 
warping. Therefore, the total beam displacements are given in the form: - 
Total horizontal deformation 

U = u(z) — 9(z) 
	 (la) 

Total vertical deformation 
V = v(z) —19(z) 
	 (1b) 

Total axial deformation 

W = w(z) — (Iii(z)—yxz  (z))—C (v1(z) 	(z))— w(s)V(z) 	= 	(1c) 

It snould be noted that the term "warping" represents the out-of-plane axial 
displacement of the cross-section due to torsional deformation. This is commonly 
referred to as torsion-related warping. In the present analysis, the thin-walled beam 
theory, for free warping is modified to deterMine the shape of the warping deflections 
for a composite box-beam. The warping function is then transformed from contour 
form to two dimensional cross-section form .the warping function is then carried 
through the entire analysis, from the initial kinematics relations to the effective 
stiffness of the beam cross-section. It is important to note that this is the only point in 
the analysis when the cross-section is treated on the contour level of the th,in-walled 
beam theory. 
The warping function is defined along the contour as: 

o)(s)=2A(6es —  Aas 

	 (2) 

The enclosed area of the cross-section, A is: - 
A = b h 	 (3) 

and the other contour parameters are defined as:- 
ds  5 

G(s) t(s) 	
(4) 

 

ds  
80' = g G(s) t(s) (5) 



=[A\13 A' 33 

A I 	A \I3  
(10) 
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and Aos  is the area swept out by a generator, with origin at the box-beam center, from 
s = 0 to s= s on the contour. 
After evaluating all line integrals around the cross-section, around the cross-section, 
the warping function, co(s), can be transformed into the two dimensional cross-section 
Form: - 

(001,4)=131 	 (6) 
where 

1-a 
1+ a 

and the coefficient a is given by: 
b t G a- 
bit: 

At this point, effective in-plane shear stiffness for the composite box-beam walls must 
be specified. Consider a single beam wall as a laminated plate. The relations 
between in-plane stress resultant Nx  ,Ny ,Nxy  and in-plane strains Cx°  Ey°  Exy°  are 

{

N. A11 A1, 
Ny  
Nxy  j _A13  

With 
N 

=ttpk5o) 
p=1 

The elements of the ply stiffness matrix, Qti are defined in texts discussing the 
macromechanical behavior of composite plies[101. These stiffness coefficients are 
functions-of ply orientation angle 9. If transverse in-plane stress resultant, Ny  , is 
assumed Small for beam structures, then the stiffness matrix reduces to 

[
A 

A 
(Al2 )2  

" 	
] [A13  Al2A23  

22 A22 
[An  Al2 A 23 	[Ali  (A26  

A22 	 A22 
The'effective in-plane shear stiffness can be defined by considering the shear strain, 
exy°  which results from an applied shear force resultant, Nxy 2 

Geff — t w  4.-2, 33 	
\ 

( 
A 	kAi3 

AI 1 A. \33  

■ 1 
(11) 

The strains are determined by differentiating the above displacements terms. At this 
points, the walls of the box-beam are assumed to be relatively thin, therefore, only 
axial and in-plane shear strains exist and all other components are neglected. The 
resulting strains are: - In the horizontal walls: 

aW 
—ri(u --rz.)—c(v"—yzy° )—co9 az 	 (12) 

() +Y. 
aw au (, aco) 
(3 az an 

(7)  

(8)  

 

Al2  A22  

   

A23  

A13  
A23  
A33  

(9a)  
y 

 

  

(9b)  

A'. 

(13) 
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In the vertical walls: 
aw 

Ezz=--- az =W —11kU — )-07 — )--wg) 	 (14) 

c 	+ —az = 1- ---ajP +1°-  
aw au 	at) 

In the engineering beam theory, the transverse in-plane normal strain does not enter 
the formulation. This is a natural consequence of the one-dimensional nature of the 
beam theory itself. However, when the walls of the box beam are made of laminated 
composite material plies transverse in-plane normal stresses and strains become a 
quite important. The anistropic elastic characteristics of the composite plies can result 
in highly two-dimensional elastic behavior. This become more apparent upon 
considering the stress-strain relationship for a single ply of composite material, 
generally oriented. Using the notation given in reference [10], the elastic constitutive 
relations are: - 

   

Q12 Q13 

Q22 Q23 

Q32 Q33 

 

CY Y  

 

Q11 
Q21 

(16) 

  

Q31 

 

      

where 
• subscript x denotes stress or strain of the ply in the longitudinal in-plane 
direction. 
• subscript y denotes stress or strain of the ply in the transverse in-plane 
direction. 
• subscript xy denotes stress or strain of the ply in the in-plane direction. 
Coupling between extension and in-plane shear within the composite ply is the 

source of the elastic couplings in composite structures. For unidirectional fiber plies 
at orientation angles of 0 and 90 degrees, coupling stiffness terms Q13 and Q23  are 
zero. It should be noted that, subscript y in the above notation would correspond to 
ri in the horizontal walls and C in the vertical walls. The specific manner in which the 
two-dimensional nature of composite walls is captured by one-dimensional beam 
theory is an important issue in the composite box-beam analysis. In the present 
direct analytical model, three different methods have been examined to handle this 
problem. 

Method 1: 

The first method is the closest one to the engineering beam theory. It is based on the 
following: - 

• initial kinematic assumptions about the beam deformations Ey=0 . 
and 

• Gy has no effect on the resultant forces and moments acting on the 
cross-section. 

These conditions result in a simplified form of the ply elastic constitutive relations, 
&yen as follows: - 

17  { X } roQ i 43.  

xy 

Q1? sx 

Q33 cn J 
(17) 

(15) 
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Considering these constitutive relations for the plies of the composite walls of the 
box-beam, we get the following stress-strain relations for the plies of the beam walls: 

- for horizontal walls: - 

azz = Q11 czz +Q1 3 Czti  (18a)  

(18b)  

(19a)  

(19b)  

= Q13 Czz + Q33 6211 
and 
for vertical walls: - 

azz = QII czz +Q13 Ez4 

Cr 	Q 1 3 Ezz +Q33 Ez4 

Note:,x-axis in ply notation is identical to z-axis in beam notation. 

Method 2  

- The second method addressed the transverse in-plane behavior. In this method: 

a7(  

a" 

where: 

Q11 =Q11 

Q13 =Q13 

Q33—* 	(-1—  
NC33 =NC33 

 Qll 	Q1.3 

QI3 	Q33_ 

r,1-2 
VI2 

 Ex } 	 (20) 
E" 

(21a) 

(21 b) 

(21c ) 

Q22 

Q12 Q23 

Q22 
(1-2 
V23 

Q22 

Considering these constitutive relations for the plies of the composite walls of the 
box-beam, we get the following stress-strain relations for the plies of the beam walls: 

- For horizontal walls: - 

	

Qll szz +Q13 Ezn 	 (22a) 

	

= Q13 eyz +Q33 ezi 	 (22b) 
and 
- For vertical walls: - 

azz = Q11 Ezz +Q13 Ez4 

QI3 Czz + Q33 Ez4 

Note:  The stress-strain relations for the plies of the beam walls, as given by relations 
(17), (18) and (21), (22) for both methods have the same shape except for the 

cyy=0 
and 
- Ey is removed from the constitutive relation by substitution. 
This procedure results in the following modified constitutive relations: 

(23a)  

(23b)  
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stiffness coefficients which are changed from the ply stiffness coefficients into 
modified ply stiffness coefficient. 

Method 3:  

This method treats the transverse in-plane behavior in a more refined manner. 
Conditions on the in-plane stresses and strains are imposed such that there are no 
in-plane forces or moments, In order to keep the formulation of the presented 
analytical model within the context of the beam theory, the following conditions are 
imposed on the transverse in-plane normal stresses: - 

Hay  dA = 0 	 (24a) 

'fay  dA = 0 	 (24b) 

'fay  dA = 0 	 (24c) 

This is equivalent to setting the resultant in-plane transverse force and in-plane 
bending moments due to transverse normal stress to be zero. The transverse in-
plane strain, Ey, is determined to satisfy these conditions. In order to prescribe Ey, this 
strain must be written in general form as a continuous function within the cross-
section. 

E = f ,w +ci„u" + f y„ v" +f cez$ +f ,rz  +f ,9\  +f„9" 	(25) 
y!v 	v!, 	Y 	W 	c,  

Where the coefficients of the deformation are linear functions within the cross-
section; i.e. 

=ao  +airi+a2  (26a)  

f u„ =b,, +b,ri +b24 (26b)  
fv„ =ca  +ciri +c2  (26c)  
f , =do  +diii+d2 (26d)  . 

f 0 , =eo  + 	+ e2c (26e)  Y.)  
= 	+f2  (26f)  

fq)„ = go +g1i+g2c (26g)  
The constants a0, al, a2 etc. are determined from the three conditions on the in-plane 
stresses (equations (23a),(23b) and (23c)). Once the in-plane strain function is fully 
determined in terms of the elastic constants and cross-section geometry, Ey  is 
removed from the constitutive relations, e.g. (15), by substitution. 
Note:  cxx  in beam notation is equivalent to Ey  in ply notation. 
By substituting the strain-displacement relations, eql (12), (13) and (14) into the 
stress-strain relations, as expressed for each method, the stresses within beam walls 
can be related to the displacements of the box-beam cross-section. The resultant 
forces and moments acting over the cross-section can be related to the stresses in 
the beam walls from the following equilibrium conditions: - 
- Axial force 

Fz  = ffazz  dA 	 (27a) 
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- Shear forces 
Fx  = nazTi  dA 	 (27b) 

Fy  = Lics,4  dA 	 (27c) 
- Torque moment 

Mz = ft(ri -
a4 	

- jam  ]dA + - 
az 

iffaxrzz  dA] 	(27d) an  
- Bending moments 

Mx  = filazz dA 
	 (27e) 

My  = ifazzi dA 
	 (270 

By substituting, the expressions of stresses in terms of the displacements, the 
system of differential equations relating the loads on the box-beam cross-section to 
the displacements of the beam cross-section (stretching, shearing, bending and 
twisting) are obtained. In matrix form, this can be written as: 

Fz 	K11  K12  K13  K14  0 0 

0 	 y 

F. 

	

K21 K22 0 0 K15  0 	7:y 
Fy  K31  0 K33  0 0 K36 )';z 

(28) 
111 

Mz  K41  0 0 K44  K45  K46 	(\ 

	

K52  0 K54  K55  0 	u\ _rx 
 

0 K63  K64  0 K66_1 o V -7,z  
and 
K21=K12; K31=1(13, K41=K14 
K52=K25 
K63= K36 
K54=1(45; K64=K46 

Therefore, the stiffness matrix [K] of the composite box-beam is symmetric. The 
expressions for the elements of the matrix are derived for each of the presented 
methods. 
From this system of differential equations, the displacements of the composite box-
beam can be determined if the applied forces and moments are known. From the 
beam displacements the strains and stresses on the box-beam walls can be 
determined and finally, the ply stresses and strains can be calculated on each wall. 

My 	0 

3. SPECIAL CASES ON COMPOSITE BOX-BEAM 

3.1 Cross-Plv Layup box-beam 
In the cross-ply layup all laminates (bottom, top and two flanges are composed of 
alternating plies at 0 and 90 degrees. This laminates formation of the box-beam does 
not display any elastic coupling since: $7,:'40,3  =0;Q,, = 0 and Q„ =0. 
Therefore, 



K13  
0 

K33  

K11  K12  
K12  K22  
K B  0 

And 
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K12= () K15= 0 K14= 0 
K25= 0 K36= 0 K45- 0 
K46= 0 
And the remaining non-zero stiffness elements are:- 
K11 	K22 	K33 ; K44  ; K55 

The system of differential equations will be:- 

FZ  1(11  0 0 0 0 0 	-- 
Fx  0 K 22  0 0 0 0 Y:y 
Fy  0 0 K33  0 0 0 110,z 
m, 0 0 0 K 44  0 0 (p \ 
Mx  0 0 0 0 K55  0 

xy 

M Y  0 0 0 0 0 K66 _ v`-ry'z  
Or it can be written as independent equations: 
F =K„ w' 
	

F. =K22 Y:z 	; 	Fy =K33 ryz 

Mx  =K55  (U\ -7L) 	; 	M y =K66 (V  
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K66 

(32) 

ry.) 
	

(33) 

3.2 Symmetric layup box-beam  
In the symmetric layup, the top and bottom laminates are the same, and each 
laminate individually need not to be symmetric. The composite box-beam will display 
bending-torsion coupling and extension-shear coupling and/or bending shear 
coupling. Therefore: 
K14= C) 	 K25= 0 • 	KM= 0 • 
And the remaining non-zero stiffness elements are: - 
K11 	K12 	K13 

	
K22 	K33 

and 
K44 	K45 	K46 

	
K55 	K66 

in such case, the system of differential equations, Eq(27), can be splitted into two 
systems of differential equations: 

(34)  

(35)  

It should be noted that the bending and torsion of the box-beam is not elastically 
coupled to the extension and shearing of the beam. 



	shear force = 490.5 
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Fig (2) : Strain gauges position from free end 
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4. EVALUATION & VALIDATION OF THE ANALYSIS 

For the verification of the presented theory numerical results are compared for a 
cantilever box-beam cross-section [11], made of E-glass/epoxy and tested under 
bending and torsion. The dimensions of the thin-walled cross-section are as follows: 
flange width 49.5 (mm), web height 107.9 (mm), flange thickness 5.4 (mm), and web 
thickness 1.8 (mm). The flange laminate is [(0/90)5 / (45/-45)2]. and the web laminate 
is [(45/- 45)2].. The beam geometry as well as the location of the strain gauges is 
shown in Fig (2). The measurements are compared to the theoretical calculations 
based on equation (34) and (35). Fig.(3) shows the strain distribution along the beam 
length due to a shear force equal to 490.5 N applied at the free end of the beam. It 
causes the case of simple bending on the cantilever box-beam. The figure shows the 
comparison between the measured values as mentioned in ref [11] and the 
calculated values by the presented three methods. Table (1) shows the strain due to 
different shear force values at the free end at the location (6), Fig (2), as given from 
measurement, ref [11] and the calculated methods presented here. 

Fig (3) : Strain Oa strain) vs. Gauge position (mm) for 
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Table. Strain at location (mm) (6) vs. Load (N) 

load measured method1 method2 method3 
98.1 167.135 164.95 162.3471 166.2671 
196.2 310.965 309.90 312.3215 314.6216 
294.3 458.716 464.86 469.0371 462.3147 
392.4 608.163 619.81 621.2672 610.1873 
490.5 757.602 774.76 778.1246 769.3184 
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APPENDIX A 
.nethod 1  

Kn-it, Q11 dA 

K12= JPI3dA 

K13 = [513 dA 
K14  = 41+ 3)1igAdA1-(1 -13) UnidA 

(29a)  

(29b)  
(29c)  

(29d)  
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K22 = if Q33 dA 

K25 - ii (5134 dA  

K33 - fl Q33 dA 
K36 = fiQuidA 

K14 = 0 + ff Q3342 dA + - pY 11Q33112 dA 
K45  = +0101342  dA 
K46 = -(1 -13) Jf Q3112 dA 
K 55  = ftv  Q142  dA 

K66 = Q11 2 dA 

Stiffness for method 2 

K11
=  

K12  if (Q13  

( 

Qii 
k,  

Q212 dA 

\ dA 

"122 

Q12 Q23 

Q22 	.1 
/ -- 	-- n 

K13 = ff Q13 Q12 
'n12 	23 jdA 

"122 

K14 = - (1 + 13)J1 (Q13 QaQ23 dA + 0 - Off (Q13 j 

Q22 	 v  
/ -2 Q 23 K22 = fl (.1— 

7,. A  A  
"133 Urk  

Y22 

K25 = fi °--13 Q1-2-Q23  jdA 
Q22 

/-2 

K33 = fi Q33 ,s- 	dA  
Q22 

Q  23  

K36 = fi(Q,3  Q6.Q23)„,dA 
 22 

K44  =0 + py If 

h 

`  i  Q23  l )1 dA 
Q22 

 

(29e)  
(290 

(29g)  

(29h)  

(29i)  

(29j)  

(29k)  

(291) 

(29m) 

(30a)  

(30b)  

(30c)  

(30d)  

(30e)  

(300 

(30g) 

(3 Oh) 

(30i) 
/ 

Q33 

e‘--  2 

)V dA + - 	51 Q33 
Y 23 ri 2 dA 

Q22 "122 



c2  dA 

1-1 2  dA 

Q12 Q23  
Q22 

Q12 Q23 s\  
Q22 I 

K.„ = 

K,,, = 
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(30j)  

(30k)  

(301) 

(30m) 

(3:la) 

(31b)  

(31c)  

	

( 	—2 
K55 =Q11 

9_ 12  2dA  

	

'\ 	Q22 
—2 1 

K66 = 	Q„ 	12  
'422 

Stiffness for method 3 

22  dA 

„ — 	if Q23  dA Q12 dA 
K12= 	 Qi3 dA 	h  rf  _ h  

.11 Q22  dA 

jj Q23  dA 1012  dA 
K13 = fj, Q13 dA 	v 	fr  

jk Q22  dA 

K14  = 	+ jf Q13 1:1A +(1+ 13) LI Q13  T1 dA 

+ p).10234dA-(1-13)ff Q23  'OA 

.1.1,v (522 dA 

ffh Q 23 dA ff h  Q23  dA 

fj, (522 dA 

K25  — 	Q13 dA fill Q23  dA  LI, Q12  dA 
K25 — JJ 

 

Q23fidAQ22jijdivAQ23  

fi Q22 dA 

K33  — it Q33 dA 	
dA 

K 	Jr, s513 dA 
fivQ23idA  ffy  Q12  dA 

"  22 dA .10 

dA 

I 12  dA 	Q12  dA 
K i  = j1, 	dA 	

,v 
v 

K22 = ff, Q33  dA 

ffh,,  Q12  dA 
	 (31d) 

(31e) 

(310 

(31g)  

(31h)  
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K 44  = (1 + P)2  Jj Q33 V dA 4-02  jj Q33112  dA 

(1 +13)11 Q23°2116i (1  —13)11(.5231" 
+ 	 fiv  Q22 dA 

X kl —1)ff 1533 11 dA — (1 + 13) if 0-  234 dA 1 

K 45  = (1 + p).1.1 Q13 V dA 	
v  (i+p)flQ2342 dA fl QI2V dA 

II2dA22 c 0/ Q  
0-0)102312  dA ji Q,21-12  dA 

K46  — 41 —P) ji Q13 112 dA + 	
,v  

fiQ22112dA 

ifh  QI2V dA ji , Q12 c2 dA 
K55 = jj, ,v  Q11 V dA 	'v 	; jiv  Q22 4 dA 

fi Q12/12  dA ftv  Q12 11 2 dA 
K66 = as, Q11112 dA 	' y 	rr — 	2 Ji Q22 1 dA 'V 

(3 li) 
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