
Informatics Bulletin, Faculty of Computers and Artificial Intelligence, Helwan University
Published Online Vol 4 Issue 2, July 2022
(https://fcihib.journals.ekb.eg)

28

DLBRT: Dynamic Load-Balance Real-Time
Scheduling Model in Fog-Cloud Colony

Hosam E. Refaat
Dept. of Information System

Faculty of Computers and Informatics
Suez Canal University, Egypt.
hosam.refaat@ci.suez.edu.eg

Abstract— In recent years, the massive growing of the usage
of Internet of Things (IoT) applications expose different
challenges in centralized cloud computing paradigm such as;
network failure and inadmissible latency for real-time services.
The fog layer is added to address these challenges. The nodes in
fog computing layer are similar to cloud node, except that it is
nearby the IoT devices. Fog node is added to supply IoT devices
with the desired resources with low delay. Hence, the
performance of IoT application is based on the task scheduling
strategy in cloud, or fog computing systems. Hence, the
scheduling strategy should maximize resource utilization and
increase the resources availability. Most of the previous
scheduling methods are suffer from centralization, which
consequently represents a performance bottleneck and a single
point of failure. Also, some of these scheduling methods ignore
the urgency type of the services, which consequently will not be
suitable for real-time services. This paper proposes a new load
balancing model, which has two main features. The first feature
is the dynamic allocation quota for the resource allocation. The
second feature is decentralization in fog resource management.
In another word, DLBRT manages the IoT service requests
based on the service urgency level with maintaining the load
among the fog node balanced. The dynamic load balancing
strategy in DLBRT is based on redistribution of the less-urgent
service requests to the lowest fog node load. In another word, the
redistribution of the service requests is depending on the urgency
of the real-time service and the workload in every fog. Finally, a
simulation model is created to evaluate DLBRT in a fog-cloud
colony. Also, the proposed scheduling model is examined with
four scheduling models, namely; The FCFS, Max-Min, Real-
Time Efficient Scheduling (RETS), and Based Autonomic Task
Scheduling (PBATS). We demonstrate through thorough
simulations that the performance metrics of turnaround time,
waiting time, throughput, and task failure test are enhanced by
our suggested approach.

Keywords— Cloud Computing, Fog Computing, IoT, Load
balancing, Reliability.

I. INTRODUCTION
Wearable computing, smart metering, smart home/city,

connected vehicles, and large-scale wireless sensor networks
will all benefit from the fast improvement of computing
systems, which will enable the sensing, capturing, aggregation,

and processing of streaming data from myriad of connected
equipments. These smart things, which are connected to the
internet, are known as the Internet of Things (IoT) [1].

A communication infrastructure and computing units are
required to implement the Internet of Things concept [2]. IoT
storage, connectivity, and computing provisioning are all made
possible by cloud computing [3, 4]. It also hides all of the
complexities of IoT services and applications. The CloudIoT
paradigm refers to the combination of cloud and IoT. This
integration aids in the development of new IoT-based apps and
services. This integration is discussed in a number of studies
[5, 6, 7, 8].

Despite the benefits that the CloudIoT paradigm can
provide to large-scale applications, it confronts numerous
hurdles [3]. When the number of clients increases, the first
obstacle arises. In this case, the requests have been widened in
order to enhance the number of services available beyond the
cloud's capacity. As the number of client requests grows, so
does the time it takes to respond unless the obtainable
resources are increased to handle all of the additional tasks. An
additional obstacle arises when the IoT-generated data requited
a high communication cost to reach the cloud servers. The
great distance adds to the difficulty of data security.
Furthermore, unpredictably high demand may need the
development of a novel load balancing approach. Load
balancing is the fair distribution of tasks among parallel
resources like networking, hard drives, and computers [9]. In
this way, an improvement in the distribution of processing
resources and storage devices will be required. To address
these issues, Fog computing, a deeply virtualized processing
approach, has been demonstrated as a viable solution. CISCO
proposes the concept [10] to be used as the cloud edge of an
organization. Fog doesn't replace the cloud computing in terms
of control. In practice, it serves as a stable domain capable of
providing good QoS to a wide range of client requests over
short distances. The complete IoT–Fog–Cloud colony is made
up of spread fog server nodes and a set of cloud data centers in
this fashion. In other words, Fog computing is a cloud
computing extension that brings real-time services and low-
communication cost to billions of IoT equipment at the
network's edge [11, 12]. It is regarded as a virtual platform that

mailto:hosam.refaat@ci.suez.edu.eg

Informatics Bulletin, Helwan University, Vol 4 Issue 2, July 2022

29

bridges the gap between IoT and cloud computing architecture.
It can handle large-scale distributed devices and systems while
also supporting their heterogeneity. Consequently, as
illustrated in Figure 1, the fog-cloud model reduces network
delay and, as a result, energy consumption for all nodes in fog
layers [13, 14].

Figure 1 depicts the computational hierarchy that must be
leveraged to improve IoT application efficiency. Each request
to an IoT application or IoT sensor triggering action can
generate one or more tasks. These tasks should be assigned to
computation resources based on the urgency of the service
while yet maintaining a balanced load. The majority of the
prior resource allocation models had an unbalanced load.

Fig. 1. IoT-Fog-Cloud colony

There are four different sorts of IoT tasks. The first is non-
real-time (NRT) tasks, which desired a vast number of
resources and large amounts of storage [15]. Tasks of this
nature should be sent to the cloud layer. Hence, we will call
this type “Cloud Base Task”. The Cloud Base tasks haven’t
dead line but it have specific requirement of Quality-of-Service
(QoS) that can be provided by the cloud layer.

Real-time tasks, on the other hand, necessitate a rapid
response time. Based on their urgency, real-time services can
be categorized based on urgency level as hard, NRT, soft, or
firm-real-time [16]. Collecting data from roadside sensors and
cameras is an example of this type of task in Intelligent
Transportation.

As a result, the second type of task is Soft real-time tasks,
which have a deadline but no absolute values, but no system
failure or change in results if the deadline is missed. The facial
recognition job [17] is an example of this type. The third type,
on the other hand, is demanding real-time activities that must
adhere to a precise schedule since failing to do so might result
in serious problems, accidents, and system failures, such as
self-driving car duties. Finally, Firm Real-time Tasks are
identical to Hard Real-time Tasks, but a deadline can be

permitted to be missed with a small chance of failure. Video
conferencing is an example of this type of work, in which
conveying data has a deadline with a small chance of being
missed, which, if missed, does not cause major problems or
failure for the system as a whole.

In general, load balancing appears to be an absolute
necessity for scheduling various types of user tasks. The
applied state for having a balanced workload among system
resources can be static or dynamic. The load in a static task
scheduling strategy is dedicated on the processing nodes' recent
state, with no regard for future changes. Furthermore, the
waiting jobs in this approach are unable to relocate from their
processing nodes [18]. Furthermore, static load scheduling
solutions don’t handle tasks in a proactive pattern. In another
hand, the load in a dynamic task scheduling strategy
determines job allocation through runtime depend on system
state [19]. The dynamic task scheduling methods are used to
allocate resources on servers for IoT equipment in order to
ensure an adapted distribution of resources. The gratification of
justice will shorten the time it takes to complete a task.
Furthermore, it will improve job execution speed by utilizing
available resources and maximizing storage use to reduce task
turnaround time.

In this research, a new framework based on fog-cloud
architecture is provided for efficiently managing and executing
IoT operations. To address these management issues, the
Dynamic Load-Balance Real Time (DLBRT) Scheduling
Model in Fog-Cloud Colony model is developed. It prioritizes
different sorts of IoT tasks based on their urgency. In addition,
the suggested model ensures that the load on the various types
of system cluster nodes is evenly distributed. The DLBRT aims
to accomplish three things. The primary goal is to serve Real-
time tasks according to their type (hard, soft, and firm). The
second goal is to create a dynamic resource allocation quota for
each type of real-time service, which is based on the current
type of service request. The third goal is to keep the workload
evenly distributed among the fog nodes.

In the following, the rest of the paper is organized as
follows. The next section II; explores the related work of the
workload balancing models and mechanisms that are offered
for the cloud systems. The proposed model's architecture is
detailed in section III. Additionally, the specifics of the model's
contained modules are discussed and defined. The performance
assessment and the simulation results are obtained in section
IV. The paper is concluded in Section V, which also lists the
areas for further research.

II. RELATED WORK
Various workload balancing models are presented by

different researchers in this section. These models are
examined and compared using a variety of criteria, including
time limit, processing time, communication cost, service
priority, services confidence, scalability, task size, and
throughput. In general, cloud technologies have been used to
create efficient load balance algorithms. The proposed
algorithm is presented in this work and will be implemented in
the fog computing environment. This light, on the other hand,
is revealed in accordance with their relationship.

Informatics Bulletin, Helwan University, Vol 4 Issue 2, July 2022

30

The load balancing strategies are generally identical in both
cloud nodes and fog nodes, with the exception of one major
distinction. Load balancing in fog computing makes balancing
operations more practical and operative with finite resources. It
provides contact to resources with restricted bandwidth and
period. As a result, the fog system fits the requirement of the
closed user at a phenomenal value, without the disruption that
might come with network traffic.

Thomas et al. [20] introduced the first load balancing
approach in this section. This model is purposed to improve
service quality by enhancing the usage of the resource based on
the job priority and task size. To develop a more stable system,
task selection for scheduling can be obtained from both the
first and last indexed queues. The jobs are planned using a total
credit system based on a grouping of credit size and credit
priority determined from task length and task priority,
respectively. Finally, the great credit task has a top priority for
execution. When the total credits of numerous tasks become
equivalent, however, this system has some flaws. In this
instance, the FCFS must be deployed with no assurance that
jobs will be finished on time or within the specified timeframe.

Mallikarjuna B. et al. [21] suggested a new algorithm based
on the comparable behaviour of the Honey bee model (HBB-
LB). Priority is used as a primary QoS component in this
technique to prevent any process from sitting in the queue for
an extended period of time, reducing execution time and
increasing throughput. Both types of bees are used in the HBB-
LB algorithm. Scout bees are the first category. Its job is to
keep looking for food until it finds it. Forager bees receive a
signal from scout bees, which defines the second category.
Through the waggle/tremble/vibration dance, it creates a
pointer to the quantity, quality, and distance from the beehive.
When a signal is strong, though, additional foods are available.
As a result, the forager bees will follow the scout bees' short
journey to the food source.

In the same manner that tasks can be visualized as honey
bees, VMs can be regarded as food sources. Furthermore, the
VMs are divided into three categories: load balancing, high
overload, and low overload. Once the virtual machine become
overloaded, the jobs are eliminated and the system behaves like
a honey bee. As a result, these tasks are assigned to VMs with
low overload. The number of high-priority tasks done on such
VMs determines these assignments. It should be mentioned
that the VM that has the lowest overload and the fewest
executed priority tasks is chosen. Following the proper
allocating tasks on the virtual machine, all status data is
informed hence the other tasks meets their requirements while
the virtual machine is loaded. This model provides a number of
benefits, including optimal resource use, and maximizing
throughput while maintaining other QoS characteristics based
on task priority. Unfortunately, the disadvantages are
obtainable at declining priority activities that suffer from
extended wait times. These chores could be overlooked,
resulting in an unbalanced workload.

Mondala B. et al. [22] presents a dynamic and optimization
of a centrally based method for load balancing. The center
node makes the distribution decision in this algorithm. The
choice is based on the reduced workload associated with

sending fewer messages. When the central node fails, however,
there is a weakness. In this instance, the system's entire
operation will be halted, resulting in system performance
degradation. As a result of enhancing the performance, it can
be done in two different strategies. The first strategy has been
declared as a complete method. As a result, effective values
stay assigned to wholly variables in order to achieve the
desired results. The answer is ruled out if one of the assigned
values proves to be erroneous. The incomplete answer is
distinct as the second option, and the main aspect is
probability. It accepts that its solution is depend on input
factors that produce more accurate results. The feature criteria
must provide for problem-solving simplicity, efficacy, and
speed. Stochastic Hill Climbing is the name for this method. It
is the method of choice for solving the optimization problem.
In [14] introduced the Multi-Objective Task Scheduling
algorithm, which is based on providing efficient resource
utilization to improve throughput.

This technique reduces the execution time in software as a
service (SaaS). The service requests are related to the virtual
machines in this method in a way that allows for speedier
execution. The algorithm is implemented in two stages.
Priorities are initially given to the jobs, with the great quality of
service being set to a small value and the small quality of
service being set to a great value. As a result, tasks with small
values are given great priority, and vice versa. Second, the
quality of service values has assigned to the VMs in the
following manner: high quality of service values are assigned
to machines with high processing power, and low quality of
service threshold are assigned to machines with low processing
power. The arrangement method, on the other hand, is used to
organize jobs based on their minimal size and QoS value. From
the highest processing power to the lowest processing power,
the arrangement method is executed in descending order. The
tasks are assigned to a list of sorted machines after sorting is
completed. The allocation is done so that the first task in the
task list assigns the first machine in the machine list. Similarly,
the next task is allocated the second machine in the machine
list. Furthermore, the allocation process for the residual
machine follows the same pattern. When all of the VMs in the
VMs list have been assigned to all of the tasks, the next set of
tasks is assigned to the first VM, and the process repeats. The
use of the bare minimum of QoS factors, such as execution
time, introduces constraints in this approach. As a result, new
QoS criteria will need to be included in the future.

An Optimal Priority-Based Service Model [23] introduces
the Scheduling Policy. The moral optimization and maximum
throughput are provided by this model, which is depending on
priority as a resource scheduling approach, entrance
management is used. The operations of the model are
depending on the provision of full use of the available
resources. Its goal is to deliver customer requests faster and
spend less time in the queue. The user who pays more than the
others, on the other hand, is given priority in using cloud
services. The restrictions of the applied features have an impact
on the performance of this algorithm. Specifically, futures
relating to security and resources hired from other cloud
providers.

Informatics Bulletin, Helwan University, Vol 4 Issue 2, July 2022

31

The architecture for virtualized network load balancing was
proposed in [6] to handle the huge data of the costly task
scheduling for the network connection. In this case, the load
balancer in the data center is set up to modify dynamically
based on changes in the data of each user’s need and the
network service providers' presence. The balancing is carried
out on both centralized model. The first load serves as the
central, while the second serves as a client that will be chosen
in the future by the workload and network traffic balancer.
Because of the use of this network traffic balancer, high
persistency of web services is achieved. In this architecture,
software-type load balancers are preferred over hardware-type
load balancers, which impose significant labor and financial
costs on customers. In general, some of the benefits have been
listed below. The web connection limitation has been removed
from the single network. Furthermore, by adjusting the amount
of load balancers, the embedded algorithm can be modified by
the users. By deploying it in the hybrid cloud, the performance
of a large number of internet users could be improved in the
future.

In fact, in [17], several scheduling strategies for modifying
the employed QoS parameters were presented for varied
settings. The scheduling is done in order to generate a large
amount of revenue and increase the efficiency of the workload.
As a result, there are multiple versions fulfilled for each of the
various kinds of scheduling methods, such as Min-Min, first
come first service (FCFS), and Max-Min methods. The
heuristic strategy, on the other hand, is the most effective. In a
cloud computing system, its scheduling processes are divided
into three stages. The best aim resource is then chosen. Lastly,
the task is sent to the resource that will be used to complete it.
Real Efficient Time Scheduling (RETS) has recently been
presented in [24]. Its goal is to ensure that real-time tasks are
completed without delay. As a result, it preserves ten percent
of all available resources for real-time operations. If there are
no real-time tasks, however, this proportion is lost.

It's worth mentioning at the end of this section that the
Scheduling goal is to reduce response time while fully utilizing
resources. As a result, multiple scheduling algorithms based on
the deadline have been presented. In [25], the task selection
using different tools and in different environments was
examined for these methods. These algorithms are built from a
variety of perspectives, including processing time cost, delay,
response time, and resource consumption time.

III. PROPOSED MODEL
The fog nodes are placed in close proximity to one another.

Each fog computing server is centered in a certain place with
the primary goal of serving all client requests in that region. As
a result, each fog server has its own load balancing method. All
customers in the fog computing region require different sorts of
real-time (Hard, Firm, Soft) or non-real-time (NRT)
operations, and the suggested model is meant to satisfy them. It
also introduced the necessary services for all real-time tasks
that might be generated by any nearby fog. This situation will
arise when one of the neighboring fogs is overloaded by real-
time tasks. To address the task constraints, the proposed load
balancing approach introduced. The architecture paradigm of

the proposed load balancing model over IoT-fog-cloud colony
is depicted in Figure 2.

It is made up of three major modules. The first module is
the IoT Service Listener (IoTSL), which is responsible for
interact with the user/IoT requests. IoT Service Listener
(IoTSL) sends each type of the received request task to the
appropriate queue. Hence, the task Distributor allocates the
received tasks in the VMs based on its deadline and urgency
level. The second module is the Load-Distributor-Balancer
(LDB). LDB contains two sub-modules, namely; Service
Quota Manager (SQM) and Task Distributor. The third module
is responsible for interact with the other fog node, which is
called “Fog Load Regulator (FLR)”. FLR is responsible for
forward the excess firm and soft-real-time tasks to the lowest
closest fog node. In the event of a fog resource scarcity, the fog
colony is connected to a cloud system to ensure that NRT-tasks
demands are fulfilled. The next subsection explains in details
Load-Distributor-Balancer (LDB) model. Subsection III.A

discusses the general algorithm for Fog Load Regulator (FLR).
Fig. 2. Dynamic Decentralize Load-Balance Scheduling (DLBRT) Model

III.A) Load-Distributor-Balancer (LDB)
The Load-Distributor-Balancer (LDB) contains two main

parts. The first part is to allocate the tasks in VMs of the
system, which is called “Task Distributor”. This part is
discussed in the next subsection. The second part is responsible
for divide the resources among the service types.

1) Task Distributor
The main objective of Task Distributor module is to

provide the tasks with the resources in efficient performance.
Also, Task Distributor should preserve the turnaround time of
all types of real-time tasks, to fit their deadline. On another
hand, the Task Distributor should maintain in a desired quality
of service for the non-real-time task. In terms of resource
allocation, the task Distributor gives the highest priority to the
hard-real-time task queue. The tasks in the hard-real time
queue will be assigned to idle local VMs in the local fog node.
If there is no idle are available, task Distributor preempts one
of VMs which is currently performing a NRT-task. In the worst
case, if all machine are busy with hard-real-time VMs, FRBA
compute the expected waiting time if it can wait one of the
busy machine. If the deadline does not suffice waiting a local

Informatics Bulletin, Helwan University, Vol 4 Issue 2, July 2022

32

VM, the neighbor status detector (NSD) find the closest fog
node that can execute this task.

Simply, Task Distributor should preserve the turnaround
time of all types of real-time tasks, to fit its deadline. On
another hand, the FRBA should maintain in a desired quality of
service for the NRT-task. It also ensures a fast reaction time for
soft, real, time, and NRT-task. For model analysis, Table 1 is
used to define the analysis notations.

TABLE I. ANALYSIS NOTATION
Notation description

η Turnaround time
ω The waiting time

)(tβ The expected executing time for task t .

MIPS(VM) The speed of the virtual machine VM in million
instruction per second

tλ The deadline of the task t .

tQ The desired quality of service for a task t .

HR
Resource share-ratio for the hard real-time tasks

sR
Resource share-ratio for the soft real-time tasks

FR
Resource share-ratio for the firm real-time tasks

NR
Resource share-ratio for the non-real-time tasks

ER
Resource share-ratio for extension of the other
quotas

∂ resource adaptation parameter

The turnaround time η for a task t can be computed by the
following equation:

)()(tt βωη += (1)
Where ω is the waiting time, and the)(tβ is the expected
executing time for task t .
The waiting time ω , for a task t in queue q , can be
computed as summation of the execution time of the previous
tasks in the waiting queue, can be computed with the
following equation.

∑
∈∀

=
qi

it)(βω (2)

The expected waiting time for the task of specific type (for
example firm-real-time type) which wait in q queue.

∑
∑

∀

∈∀=

j
j

qi
i

VMMIPS

texe

)(

)(
ω (3)

In case of different types of real-time tasks the turnaround
time η has the following constrain.
The first case is the hard-real-time task, its waiting time must
be depressed to zero (0=ω). Hence, Equation 1 for the
hard-real-time can be written as follow.

)()(tthard βη ≈ (4)

The second case is containing the soft and firm-real-time task.
The total duration time for these tasks should not exceed the
task deadline, as the following equation

tt λη ≤)((5)

Where tλ is the deadline of the task t .
The third case is non-real-time task “NRT”, it should maintain
the following turnaround time condition.

tQt ≤)(η (6)

Where tQ is the desired quality of service for a task t .
Resource Balancing Allocator (FRBA) assigns a quota for
each type of task. Hence, the resources are divided into five
shares, namely; hard-share-ratio, soft-share-ratio, firm-share-
ratio, NRT-share-ratio, and extension-share-ratio. Each type of
service has a corresponding resource quota, except the
extension-share ratio is for stretching the other quota. In
another word, the extension-share-ratio is idle resources which
allow the other share to stretching to prevent task failure. Each
share can be computed as follows:

1=++++ ENsFH RRRRR (7)
After specific time period, each share-ratio will be refined. For
example the hared-share-ratio in period k is computed based
on the previous iteration (k-1) and the resource adaptation
parameter ∂ , as the following equation.

∂+=
−1kk HH RR (8)










−
=∂

loadlow
m
id

loadhigh
m
n

,

,
 (9)

Where, m is the total number of VMs, n is the number of VMs
that taken from the extension area, and id is the number of idle
VMs in the hard-share-ratio.
Algorithm 1 : Task Distributor
Input:
 t // service request generate task by service listener.
1. If (Hardtypet =.) // case of hard-real-time task
2. newVM = findIdleVM() // find the idle VM
3. If (φ= newVM)
4. newVM = FindLargestDeadline(NRK)
5. If (φ= newVM)
6. newVM = FindLargestDeadline(soft)
7. If (φ= newVM)
8. newVM = FindLargestDeadline(firm)
9. End if
10. End if
11. End if
12. ++HardVM /* Increase number of allocated VM

Informatics Bulletin, Helwan University, Vol 4 Issue 2, July 2022

33

for
 hard-real-time */

13. allocate (t,newVM)
14. If (

1
HardV

−
>

kHRM) /* number VM allocated for
 the hard- real-time exceed the hard-quota */

15.)(shareRatio HardVMR
kH =

16 Else if (Firmtypet =.) // case of firm-real-time task
17. newVM = findIdleVM() // find the idle VM
18. If (φ= newVM)
19.

 newVM = FindLargestDeadline(NRK)

20. If (φ= newVM)
21. newVM = FindLargestDeadline(soft)
22. End if
23. End if
24. ++FirmVM /* Increase number of allocated VM

 for firm-real-time */
25. allocate (t,newVM)
26. If (

1
FirmV

−
>

kfRM) /* number VM allocated for
 the firm-real-time exceed the firm-quota
*/

27.)(shareRatio firmVMR
kf
=

28 Else if (softtypet =.)// case of soft-real-time task
29. newVM = findIdleVM() // find the idle VM
30. If ((φ= newVM)&(Soft_Lock=0))
31. newVM = FindLargestDeadline(NRK)
32. If (φ≠ newVM)
33. allocate (t,newVM)
34. If (

1
softV

−
>

ksRM) /* number VM allocated
for
 the soft-real-time exceed the soft-quota */

35.
)(shareRatio softVMR

kH =
36. End if
37. End if
38. Else // there is lack in resources
39. tFog()FindNeares=xfog /*find closest fog

 node with low load*/
40. t),(xfogsend // send the task t to fog x

41 Else // the case of non-real-time task
42. If (Qqt <.)
43. newVM = findIdleVM() // find the idle VM
44. If (φ≠ newVM)
45. ++NRTVM /* Increase number of allocated

 VM for Non-real-time tasks*/

46. allocate (t,newVM)
47. Else // no idle VM
48. t),(cloudsend // send the task t to cloud
49. End if
50. End if

2) Service quota manager (SQM)
The service Quota manager (SQM) quantifies the system

resources into five virtual portions, namely; hard-share-ratio,
soft-share-ratio, firm-share-ratio, NRT-share-ratio, and
extension-share-ratio. Each portion is dedicated to a specific
type of service. SQM has two main objectives. The first
objective is maintaining the resources available in demand the
high urgency services (hard and firm real-time services). This
objective is achieved by controlling the resource reservation by
the soft and NRT service without causing service failure. The
second objective is to achieve adaptive resources division for
each service type based on the current load status.

The service Quota manager (SQM) is process triggered
periodically to evaluate the current status of the system
usability. In another word, at a specific period of timeθ the
SQM re-evaluate the quota of each type of service. The time
period θ is considered as the average size of the hard task.
The general form of the service quota is obtained in Equation
5. Each service type quota can be computed as a ration of the
actual resource usage. The following equation computes the
hard-share-ratio.

∑
∑

∀

∈=

j
j

hardi
i

H VMMIPS

texe
R

)(

)(

 (10)

Consequently, the firm-share-ratio can be computed as follow.

 ∑
∑

∀

∈=

j
j

firmi
i

F VMMIPS

texe
R

)(

)(

 (11)

The ER extension -share-ratio is considered as constant
value, which provides the system with ready machine for the
urgent service. Hence, the NR NRT-share-ratio can be
deduced by the following equation.

)(1 ENFHs RRRRR +++−= (12)
The service Quota manager (SQM) method is shown the
following algorithm. Algorithm 2: Service quota manager

51 For each time period θ

52.
∑
∑

∀

∈=

j
j

hardi
i

H VMMIPS

texe
R

k)(

)(

Informatics Bulletin, Helwan University, Vol 4 Issue 2, July 2022

34

53.
∑
∑

∀

∈=

j
j

firmi
i

F VMMIPS

texe
R

k)(

)(

54.)(1 ENFHs RRRRR +++−=

 // where ER is consistent
55. If (SoftVM≥s)VMnumber(R)
56. Soft_Lock=1
57. If (NRTVM≥)VMnumber(RN)
58. NRT_Lock=1
59. End for

III.B) Fog Load Regulator (FLR)
The tasks in the Hard-real-time queue will have high

priority and will be allocated to one of the idle local VMs in
the node if exist. Task Distributor preempts one of the soft-
real-time or NRT-task in busy VMs if there is no idle. If there
are no idle virtual machines or all virtual machines are
occupied, the Fog Load Regulator (FLR) chooses the least cast
resources at the closest Fog node in the worst-case scenario.
The Fog Load Regulator (FLR) obtains the Fog-Load-Index to
determine the status of the other fog node. Each fog broadcast
is status periodically to the other fog nodes in its close region,
as shown in Figure 3. The example in Figure 3 displays the fog
region for fog Y by dotted line. Each fog node determines its
closed region. Hence, Fog Load Regulator (FLR) in fog Y
collects all information about it closed fog node and register
these data in its Fog Load Index. Fog Load Index contains
average of the work-load and two of status flags. The status
flags are called firm-lock and soft-lock, which decide the
capability to receive firm-real-task and soft-real-task form the
other nodes.

Fig. 3. Fog Neighbor Reagon for Load Regulator example

If the expected waiting time exceeds the QoS threshold (λ),
Soft-Lock, which is a lock for soft-real-time task waiting, is set
to zero. Soft-Lock is set by one if the expected waiting time
overtake QoS threshold (λ), where λ is the soft-real-time task's
average deadline. Also, the Firm-Lock is set by one if the
number of allocated VMs by the Firm tasks exceeds the Firm-
Quota. Any fog node cannot receive a firm/soft-real task if it’s
lock have value 1. Moreover, if all VMs are allocated by
Soft/Firm-real-time tasks, the Soft/Firm-real-time task lock is
set to one.

IV. SIMULATION SETUP AND RESULTS
WorkflowSim [26] is investigated to simulate the various

scheduling approaches in order to analyses the experimental
outcomes. The WorkflowSim [26] is an open-source modeling
workload that builds on the CloudSim. In the fogs
computations, the simulation assessment is done by employing
homogenous features. They're based on the characteristics of
Amazon EC2 virtual machines. As a result, every test is carried
out on a free T2.Micro instance of Amazon EC2.

The proposed model was used to compare the results of
four different models. To begin, there is the FCFS, which is
used to perform the tasks based on their interning time. In
addition, three more comparative models for the fog/cloud
environment have already been published. The Max-Min,
PBATS, and RETS are the three. The Max-Min maintains a
task status table to estimate actual VM loads and task
turnaround time, allowing the workload to be distributed
between VMs [22]. Priority Based Autonomic Task Scheduling
(PBATS) is a system that schedules task consist three levels of
priority [27]. Furthermore, the Real-Time Efficient Scheduling
(RETS) model is depending on devoting a 10 percent of the
time to real-tasks [25]. The proposed method is matched with
these scheduling strategies in order to assess best performance
and best resource usage in the given model.

The assessments of performance were carried out in two
aspects. The first component assesses performance in terms of
several types of task urgency. The turnaround time, average
waiting time, and throughput are the three parameters used to
evaluate performance. Finally, the second diminution
evaluates the amount of failed tasks in the compared
algorithms to determine the model's fitness for hard, soft, and
firm-real-time services. Five times each experiment was
carried out. The average of the five runs was taken and used
for test comparison.

A) System Performance
In the next subsection, the response time measurement is
done. Moreover, subsection II evaluate the waiting time for
the task in the compared models. Finally, subsection III
compares the throughput in the models that were compared.

A.1) Turnaround Time test
This test measures the performance focus on the Turnaround
parameter. The proposed model (DLBRT) is contrasted with
four models listed above. Every test is carried out with 10
diverse workloads ranging from 40 to 400 tasks. The hard-
real-time tasks will account for 20% of the total workload
added in each trial. All of the tasks are run on each machine's
10 VMs with a total processing power of 2000 MIPS. The
acquired findings are displayed, which indicate the average
turnaround times of all methods in Figure 4.

Informatics Bulletin, Helwan University, Vol 4 Issue 2, July 2022

35

Fig. 4. Turnaround Times Comparison

Clearly, we can notice that the FCFS model has quickly
increased as increasing the number of tasks. The highest
turnaround time is for FCFS on account of non-preemptive
property. Also, Max-Min model has performance is near to the
FCFS curve. Since, the Max-Min dedicates the highest
execution time tasks to VMs has the least remaining execution
time. In another word, in Max-Min model Leads the soft/firm-
real-time tasks, which mostly have a short size, will wait a
long time to get the resources. This strategy will increase the
average waiting time. Moreover, the PBATS model has little
enhancement compared to the previous models. Certainly,
PBATS model has three levels of task priority with despising
QoS. Moreover, the RETS curve has good performance in low
workload, as shown in Figure 5. Unfortunately, the
performance of RETS model is deteriorated as increasing the
workload. The performance deterioration of RETS model is
caused by static allocation for the real tasks. Moreover, RETS
model doesn’t distinguish between the different types of real-
time tasks. Actually, the shortages in the previous models are
overcome by DLBRT model. DLBRT assigns a different
priority for the tasks based on its urgency. In case of high
workload DLBRT, it reduces the load by forward the NRT-
tasks to cloud and soft-real-time tasks to the closet low-load
node. Hence, DLBRT can control the workload on the fog
nodes to fit each task requirement. Subsequently, the DLBRT
has the most effective performance through the compared

model.
Fig. 5. The Waiting Time Comparison

A.2) The Waiting Time Test
This test evaluate the expected waiting time by the compared
model. Figure 5 depicts the waiting time cost in each model.
Obviously, the DLBRT has the least waiting time. Not to
mention, the FCFS model gives the highest waiting time cost.
Also, the waiting time for the Max-Min curve is much closed
to FCFS. It should be noted that FCFS model gives the highest
waiting time cost. The deterioration of the FCFS and Max-
Min performance curves is caused by the high cast of the
waiting time. In the PBATS curve, the task allocation is based
on priority level, which gives a little performance
enhancement, but it hasn't a load-balancing among the fog

nodes. Furthermore, unless the load is less than or equal to
3,000 tasks, the RETS model performs well. Regrettably, as
the number of tasks grows, so does the average waiting time
for RETS. As indicated by the performance curve, the DLBRT
algorithm was able to tackle all of these difficulties by two
main strategies. The first strategy is based on reducing the
number of NRT tasks by sending most of these tasks to the
cloud servers. Since the NRT tasks contain massive
computations, then the execution of NRT tasks in fog nodes
increases the waiting time intensely. The second strategy is
based on redistributing the load between the fog nodes, which
reduces the number of waiting tasks in each fog node.

Fig. 6. The Throughput Performance Comparison

A.3) The Throughput Performance Test
The average system throughput is used to measure
performance in this test. The throughput is the total number of
completed tasks per unit of time. Furthermore, the experiment
is carried out with the same workload as the previous
examination. Figure 6 depicts the performance of the
comparing methods. When compared to the other methods, we
can see that DLBRT has the best throughput improvement.
The reduction of the waiting time, as discussed in the previous
test, increases the system throughput. Moreover, the balanced

Informatics Bulletin, Helwan University, Vol 4 Issue 2, July 2022

36

distribution of jobs that fulfill QoS is what causes DLBRT to
function better. The FCFS is also the weakest performance
curve.

Fig. 7. Task Failure test Comparison

B) Task Failure Test
The task failure should be addressed while evaluating the
algorithm's applicability for real-time services. This section
discusses the suitability of the compared models. As
mentioned before, there are three types of real-time tasks. In
this experiment, the ratio of hard, firm, and soft-real-time
tasks is 2, 8, and 10 respectively. Figure 7 compares and
contrasts the proposed and evaluated algorithms in terms of
real-time task failure. When compared to the other models, the
number of task failures for the DLBRT model is negligible.
Since DLBRT System is based on the processing of tasks
based on their urgency, the task failure chances are low. The
RETS model performs well under low demand in real-time
operations. Regrettably, the RETS architecture does not
provide for adaptability in resource allocation for real-time
operations. Furthermore, task migration is not supported in
order to supply the needed resources. The failure values of the
other algorithms show inadequacy for real-time services.

V. CONCLUSION AND FUTURE WORK
In this paper, the DLBRT model is introduced as a multi-
priority level scheduling that achieves decentralized workload
balancing in the IoT-Fog-cloud colony. The model was
created to allow for successful fog resource allocation in a
variety of NRT, soft, firm, and hard-real-time applications. A
new dynamic resource allocation has been provided by the
suggested methodology, which is based on the variation of the
workload type. The proposed model has allowed a flexible
allocation of real-time tasks based on their deadlines and
urgency levels. Moreover, the NRT tasks are buffered in a
queue to be allocated in the local fog in case of enough
available resources. In another word, the exceeded load in the
local fog server will be transferred to the nearest server in the
fog colony or sent to the cloud to be provided by the DLBRT.
We have two goals for the future work. The first goal is re-
engineering the system for making it more suitable for large-
scale areas. The second goal is to improve this model so that it
can take advantage of the benefits of heterogeneous
processing power.

REFERENCES
[1] Giannelli, C.; Picone, M. Editorial “Industrial IoT as IT and OT

Convergence: Challenges and Opportunities”. IoT 2022, vol. 3, pp. 259-
261. 2022. https://doi.org/10.3390/iot3010014

[2] Pradeep, P.; Kant, K. Conflict Detection and Resolution in IoT Systems:
A Survey. IoT 2022, vol. 3, pp. 191-218. 2022
https://doi.org/10.3390/iot3010012

[3] Gigli, M. and Koo, S. Internet of Things, Services and Applications
Categorization. Advances in Internet of Things, vol. 1, pp. 27-31.
2011. http://dx.doi.org/10.4236/ait.2011.12004

[4] Odun-Ayo, Isaac & Okereke, Chinonso & Evwieroghene, Orovwode.
(2018). Cloud Computing and Internet of Things - Issues and
Developments. Proceedings of the World Congress on Engineering 2018
Vol I

[5] Navadia, Nipun R.,et al. "Applications of Cloud-Based Internet of
Things." Integration and Implementation of the Internet of Things
Through Cloud Computing, edited by Pradeep Tomar, IGI Global, pp.
65-84, 2021. https://doi.org/10.4018/978-1-7998-6981-8.ch004

[6] Tabrizi, Sahar & Ibrahim, dogan. A Review on Cloud Computing and
Internet of Things. International Journal of Computer, Electrical,
Automation, Control and Information Engineering. Vol. 11. pp. 462-
467, 2017.

[7] Mondragón-Ruiz, G., Tenorio-Trigoso, A., Castillo-Cara, M. et al. An
experimental study of fog and cloud computing in CEP-based Real-
Time IoT applications. J Cloud Comp vol 32, no. 10, 2021.
https://doi.org/10.1186/s13677-021-00245-7

[8] Niedermayer, H., Holz, R., Pahl, M.-O., Carle, G., 2010. On using home
net-works and cloud computing for a future internet of things. In: Future
Internet-FIS 2009. Springer, pp. 70–80.

[9] Sarkar, S., Misra, S., “Theoretical modelling of fog computing: a green
computing paradigm to support iot applications”, IET Networks 5(2)
(2016) 23–29

[10] MarketWatch: ‘Cisco delivers vision of fog computing to accelerate
value from billions of connected devices’, available at
http://www.theiet.org/resources/ journals/research/index.cfm, accessed
August 2014

[11] Hong, K., Lillethun, D., Ramachandran, U., et al.: ‘Mobile fog: A
program-ming model for large-scale applications on the internet of
things’. Proc. of the Se-cond ACM SIGCOMM Workshop on Mobile
Cloud Computing, Hong Kong, China, August 2013, pp. 15–20

[12] Stolfo, S.F., Salem, M.B., Keromytis, A.D.: ‘Fog computing: Mitigating
insider data theft attacks in the cloud’. IEEE Symp. on Security and
Privacy Workshops, San Francisco, USA, May 2012, pp. 125–128

[13] Preden, J.S., Tammemae, K., Jantsch, A., et al.: ‘The benefits of self-
awareness and attention in fog and mist computing’, Comput. Mag.,
2015, 48, (7), pp. 37–45

[14] Javed, Waheed & Parveen, Gulnaz & Aabid, Fatima & Rubab, Syeda &
Ikram, Sidra & Rehman, Khawaja Ubaid & Danish, Muhammad. A
Review on Fog Computing for the Internet of Things. vol. 10, pp. 1-7,
2021. 10.1109/ICIC53490.2021.9692966.

[15] Bonomi, F., Milito, R., Natarajan, P., et al.: ‘Fog Computing: A platform
for internet of things and analytics’, in Bessis, N., Dobre, C. (Eds.): ‘Big
data and in-ternet of things: a roadmap for smart environments – part I’
(Springer International Publishing, Switzerland, 2014), vol. 546, pp.
169–186

[16] J.S. Preden, K. Tammemäe, A. Jantsch, M. Leier, A. Riid, E. Calis, The
bene-fits of self-awareness and attention in fog and mist computing.
Computer 48 (7), 37–45 (2015).

[17] Manas Kumar Yogi, K. Chandrasekhar, G. Vijay Kumar - Mist
Computing: Principles, Trends and Future Direction, SSRG
International Journal of Computer Science and Engineering (SSRG-
IJCSE) – volume 4 Issue 7 – July 2017

[18] Mihai, Viorel et al. “WSN and Fog Computing Integration for
Intelligent Data Processing.” 2018 10th International Conference on
Electronics, Computers and Artificial Intelligence (ECAI) (2018): 1-4.

[19] Asif-Ur-Rahman, Md. et al. “Toward a Heterogeneous Mist, Fog, and
Cloud-Based Framework for the Internet of Healthcare Things.” IEEE
Internet of Things Journal 6 (2019): 4049-4062.

[20] A. Thomasa, Krishnalal Ga, Jagathy Raj V Pb, “Credit Based
Scheduling Agorithm in Cloud Computing Environment”, ICICT 2014
pp. 913 – 920 2015.

[21] B. Mallikarjuna & Vankara, Jayavani & Sujatha, V. (2015). Honey Bee
Behaviour imitates the Artificial Algorithm for Load Balancing of tasks
in Cloud computing. International Journal of Applied Engineering
Research. 10. 177-182.

[22] Brototi Mondala, Kousik Dasguptaa, Paramartha Duttab”Load
Balancing in Cloud Computing using Stochastic Hill Climbing-A Soft
Computing Approach”, Elsevier, Procedia Technology 4(2012) pp. 783
–789.

[23] Guruprasad, H S & .M, Dakshayini. (2011). An Optimal Model for
Priority based Service Scheduling Policy for Cloud Computing
Environment. International Journal of Computer Applications. 32. 23-
29.

Informatics Bulletin, Helwan University, Vol 4 Issue 2, July 2022

37

[24] Swati Agarwal, Shashank Yadav, Arun Kumar Yadav,"An Efficient
Architecture and Algorithm for Resource Provisioning in Fog
Computing", International Journal of Information Engineering and
Electronic Business(IJIEEB), Vol.8, No.1, pp.48-61, 2016. DOI:
10.5815/ijieeb.2016.01.06

[25] M.Verma, N. Bhardwaj and A. Kumar, "Real Time Efficient Scheduling
Algorithm for Load Balancing in Fog Computing Environment",I.J.
Information Technology and Computer Science, April, 2016, 4, 1-10

[26] W. Chen and E. Deelman, ―Workflowsim: A toolkit for simulating
scientific workflows in distributed environments, in 2012 IEEE 8th
International Conference on E-Science, ser. eScience, 2012, pp. 1–8.
[Online]. Available:https://github.com/WorkflowSim

[27] Bala, Anju & Chana, Inderveer. Multilevel Priority-Based Task
Scheduling Algorithm for Workflows in Cloud Computing

Environment. vol 408. pp. 685-693, 2016. DOI:10.1007/978-981-10-
0129-1_71.

Hosam E Refaat: has graduated from the Faculty of Science, Assuit

university, Egypt, in 1998. In October 2006, he finished his Master
degree in the field of distributed systems from the faculty of Science,
Cairo University, Egypt. Currently, he is a lecturer in Faculty of
Computers & Informatics, Suez Canal University, Ismailia, Egypt. His
current research interests are Parallel Systems, Cloud Computing, Edige
Computing, and Datamining.

	I. Introduction
	II. RELATED WORK
	III. Proposed model
	III.A) Load-Distributor-Balancer (LDB)
	1) Task Distributor
	2) Service quota manager (SQM)

	III.B) Fog Load Regulator (FLR)

	IV. SIMULATION SETUP AND RESULTS
	A) System Performance
	A.1) Turnaround Time test
	A.2) The Waiting Time Test
	A.3) The Throughput Performance Test
	B) Task Failure Test

	V. CONCLUSION AND FUTURE WORK
	References

