
Informatics Bulletin, Faculty of Computers and Artificial Intelligence, Helwan University 
Published Online Vol 4 Issue 2, July 2022 
(https://fcihib.journals.ekb.eg) 

 
 

28 
 

DLBRT: Dynamic Load-Balance Real-Time 
Scheduling Model in Fog-Cloud Colony 

Hosam E. Refaat 
Dept. of Information System  

Faculty of Computers and Informatics 
Suez Canal University, Egypt. 
hosam.refaat@ci.suez.edu.eg 

 
 

Abstract— In recent years, the massive growing of the usage 
of Internet of Things (IoT) applications expose different 
challenges in centralized cloud computing paradigm such as; 
network failure and inadmissible latency for real-time services. 
The fog layer is added to address these challenges. The nodes in 
fog computing layer are similar to cloud node, except that it is 
nearby the IoT devices. Fog node is added to supply IoT devices 
with the desired resources with low delay. Hence, the 
performance of IoT application is based on the task scheduling 
strategy in cloud, or fog computing systems. Hence, the 
scheduling strategy should maximize resource utilization and 
increase the resources availability. Most of the previous 
scheduling methods are suffer from centralization, which 
consequently represents a performance bottleneck and a single 
point of failure. Also, some of these scheduling methods ignore 
the urgency type of the services, which consequently will not be 
suitable for real-time services. This paper proposes a new load 
balancing model, which has two main features. The first feature 
is the dynamic allocation quota for the resource allocation. The 
second feature is decentralization in fog resource management. 
In another word, DLBRT manages the IoT service requests 
based on the service urgency level with maintaining the load 
among the fog node balanced. The dynamic load balancing 
strategy in DLBRT is based on redistribution of the less-urgent 
service requests to the lowest fog node load. In another word, the 
redistribution of the service requests is depending on the urgency 
of the real-time service and the workload in every fog. Finally, a 
simulation model is created to evaluate DLBRT in a fog-cloud 
colony. Also, the proposed scheduling model is examined with 
four scheduling models, namely; The FCFS, Max-Min, Real-
Time Efficient Scheduling (RETS), and Based Autonomic Task 
Scheduling (PBATS). We demonstrate through thorough 
simulations that the performance metrics of turnaround time, 
waiting time, throughput, and task failure test are enhanced by 
our suggested approach. 

Keywords— Cloud Computing, Fog Computing, IoT, Load 
balancing, Reliability. 

I. INTRODUCTION 
Wearable computing, smart metering, smart home/city, 

connected vehicles, and large-scale wireless sensor networks 
will all benefit from the fast improvement of computing 
systems, which will enable the sensing, capturing, aggregation, 

and processing of streaming data from myriad of connected 
equipments. These smart things, which are connected to the 
internet, are known as the Internet of Things (IoT) [1]. 

A communication infrastructure and computing units are 
required to implement the Internet of Things concept [2]. IoT 
storage, connectivity, and computing provisioning are all made 
possible by cloud computing [3, 4]. It also hides all of the 
complexities of IoT services and applications. The CloudIoT 
paradigm refers to the combination of cloud and IoT. This 
integration aids in the development of new IoT-based apps and 
services. This integration is discussed in a number of studies 
[5, 6, 7, 8]. 

Despite the benefits that the CloudIoT paradigm can 
provide to large-scale applications, it confronts numerous 
hurdles [3]. When the number of clients increases, the first 
obstacle arises. In this case, the requests have been widened in 
order to enhance the number of services available beyond the 
cloud's capacity. As the number of client requests grows, so 
does the time it takes to respond unless the obtainable  
resources are increased to handle all of the additional tasks. An 
additional obstacle arises when the IoT-generated data requited 
a high communication cost to reach the cloud servers. The 
great distance adds to the difficulty of data security. 
Furthermore, unpredictably high demand may need the 
development of a novel load balancing approach. Load 
balancing is the fair distribution of tasks among parallel 
resources like networking, hard drives, and computers [9]. In 
this way, an improvement in the distribution of processing 
resources and storage devices will be required. To address 
these issues, Fog computing, a deeply virtualized processing 
approach, has been demonstrated as a viable solution. CISCO 
proposes the concept [10] to be used as the cloud edge of an 
organization. Fog doesn't replace the cloud computing in terms 
of control. In practice, it serves as a stable domain capable of 
providing good QoS to a wide range of client requests over 
short distances. The complete IoT–Fog–Cloud colony is made 
up of spread fog server nodes and a set of cloud data centers in 
this fashion. In other words, Fog computing is a cloud 
computing extension that brings real-time services and low-
communication cost to billions of IoT equipment at the 
network's edge [11, 12]. It is regarded as a virtual platform that 
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bridges the gap between IoT and cloud computing architecture. 
It can handle large-scale distributed devices and systems while 
also supporting their heterogeneity. Consequently, as 
illustrated in Figure 1, the fog-cloud model reduces network 
delay and, as a result, energy consumption for all nodes in fog 
layers [13, 14]. 

Figure 1 depicts the computational hierarchy that must be 
leveraged to improve IoT application efficiency. Each request 
to an IoT application or IoT sensor triggering action can 
generate one or more tasks. These tasks should be assigned to 
computation resources based on the urgency of the service 
while yet maintaining a balanced load. The majority of the 
prior resource allocation models had an unbalanced load. 

Fig. 1. IoT-Fog-Cloud colony 

There are four different sorts of IoT tasks. The first is non-
real-time (NRT) tasks, which desired a vast number of 
resources and large amounts of storage [15]. Tasks of this 
nature should be sent to the cloud layer. Hence, we will call 
this type “Cloud Base Task”. The Cloud Base tasks haven’t 
dead line but it have specific requirement of Quality-of-Service 
(QoS) that can be provided by the cloud layer. 

Real-time tasks, on the other hand, necessitate a rapid 
response time. Based on their urgency, real-time services can 
be categorized based on urgency level as hard, NRT, soft, or 
firm-real-time [16]. Collecting data from roadside sensors and 
cameras is an example of this type of task in Intelligent 
Transportation. 

As a result, the second type of task is Soft real-time tasks, 
which have a deadline but no absolute values, but no system 
failure or change in results if the deadline is missed. The facial 
recognition job [17] is an example of this type. The third type, 
on the other hand, is demanding real-time activities that must 
adhere to a precise schedule since failing to do so might result 
in serious problems, accidents, and system failures, such as 
self-driving car duties. Finally, Firm Real-time Tasks are 
identical to Hard Real-time Tasks, but a deadline can be 

permitted to be missed with a small chance of failure. Video 
conferencing is an example of this type of work, in which 
conveying data has a deadline with a small chance of being 
missed, which, if missed, does not cause major problems or 
failure for the system as a whole. 

In general, load balancing appears to be an absolute 
necessity for scheduling various types of user tasks. The 
applied state for having a balanced workload among system 
resources can be static or dynamic. The load in a static task 
scheduling strategy is dedicated on the processing nodes' recent 
state, with no regard for future changes. Furthermore, the 
waiting jobs in this approach are unable to relocate from their 
processing nodes [18]. Furthermore, static load scheduling 
solutions don’t handle tasks in a proactive pattern. In another 
hand, the load in a dynamic task scheduling strategy 
determines job allocation through runtime depend on system 
state [19]. The dynamic task scheduling methods are used to 
allocate resources on servers for IoT equipment in order to 
ensure an adapted distribution of resources. The gratification of 
justice will shorten the time it takes to complete a task. 
Furthermore, it will improve job execution speed by utilizing 
available resources and maximizing storage use to reduce task 
turnaround time. 

In this research, a new framework based on fog-cloud 
architecture is provided for efficiently managing and executing 
IoT operations. To address these management issues, the 
Dynamic Load-Balance Real Time (DLBRT) Scheduling 
Model in Fog-Cloud Colony model is developed. It prioritizes 
different sorts of IoT tasks based on their urgency. In addition, 
the suggested model ensures that the load on the various types 
of system cluster nodes is evenly distributed. The DLBRT aims 
to accomplish three things. The primary goal is to serve Real-
time tasks according to their type (hard, soft, and firm). The 
second goal is to create a dynamic resource allocation quota for 
each type of real-time service, which is based on the current 
type of service request.  The third goal is to keep the workload 
evenly distributed among the fog nodes. 

In the following, the rest of the paper is organized as 
follows. The next section II; explores the related work of the 
workload balancing models and mechanisms that are offered 
for the cloud systems. The proposed model's architecture is 
detailed in section III. Additionally, the specifics of the model's 
contained modules are discussed and defined. The performance 
assessment and the simulation results are obtained in section 
IV.  The paper is concluded in Section V, which also lists the 
areas for further research. 

II. RELATED WORK 
Various workload balancing models are presented by 

different researchers in this section. These models are 
examined and compared using a variety of criteria, including 
time limit, processing time, communication cost, service 
priority, services confidence, scalability, task size, and 
throughput. In general, cloud technologies have been used to 
create efficient load balance algorithms. The proposed 
algorithm is presented in this work and will be implemented in 
the fog computing environment. This light, on the other hand, 
is revealed in accordance with their relationship.  
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The load balancing strategies are generally identical in both 
cloud nodes and fog nodes, with the exception of one major 
distinction. Load balancing in fog computing makes balancing 
operations more practical and operative with finite resources. It 
provides contact to resources with restricted bandwidth and 
period. As a result, the fog system fits the requirement of the 
closed user at a phenomenal value, without the disruption that 
might come with network traffic. 

Thomas et al. [20] introduced the first load balancing 
approach in this section. This model is purposed to improve 
service quality by enhancing the usage of the resource based on 
the job priority and task size. To develop a more stable system, 
task selection for scheduling can be obtained from both the 
first and last indexed queues. The jobs are planned using a total 
credit system based on a grouping of credit size and credit 
priority determined from task length and task priority, 
respectively. Finally, the great credit task has a top priority for 
execution. When the total credits of numerous tasks become 
equivalent, however, this system has some flaws. In this 
instance, the FCFS must be deployed with no assurance that 
jobs will be finished on time or within the specified timeframe. 

Mallikarjuna B. et al. [21] suggested a new algorithm based 
on the comparable behaviour of the Honey bee model (HBB-
LB). Priority is used as a primary QoS component in this 
technique to prevent any process from sitting in the queue for 
an extended period of time, reducing execution time and 
increasing throughput. Both types of bees are used in the HBB-
LB algorithm. Scout bees are the first category. Its job is to 
keep looking for food until it finds it. Forager bees receive a 
signal from scout bees, which defines the second category. 
Through the waggle/tremble/vibration dance, it creates a 
pointer to the quantity, quality, and distance from the beehive. 
When a signal is strong, though, additional foods are available. 
As a result, the forager bees will follow the scout bees' short 
journey to the food source.  

In the same manner that tasks can be visualized as honey 
bees, VMs can be regarded as food sources. Furthermore, the 
VMs are divided into three categories: load balancing, high 
overload, and low overload. Once the virtual machine become 
overloaded, the jobs are eliminated and the system behaves like 
a honey bee. As a result, these tasks are assigned to VMs with 
low overload. The number of high-priority tasks done on such 
VMs determines these assignments. It should be mentioned 
that the VM that has the lowest overload and the fewest 
executed priority tasks is chosen. Following the proper 
allocating tasks on the virtual machine, all status data is 
informed hence the other tasks meets their requirements while 
the virtual machine is loaded. This model provides a number of 
benefits, including optimal resource use, and maximizing 
throughput while maintaining other QoS characteristics based 
on task priority. Unfortunately, the disadvantages are 
obtainable at declining priority activities that suffer from 
extended wait times. These chores could be overlooked, 
resulting in an unbalanced workload. 

Mondala B. et al. [22] presents a dynamic and optimization 
of a centrally based method for load balancing. The center 
node makes the distribution decision in this algorithm. The 
choice is based on the reduced workload associated with 

sending fewer messages. When the central node fails, however, 
there is a weakness. In this instance, the system's entire 
operation will be halted, resulting in system performance 
degradation. As a result of enhancing the performance, it can 
be done in two different strategies. The first strategy has been 
declared as a complete method. As a result, effective values 
stay assigned to wholly variables in order to achieve the 
desired results. The answer is ruled out if one of the assigned 
values proves to be erroneous. The incomplete answer is 
distinct as the second option, and the main aspect is 
probability. It accepts that its solution is depend on input 
factors that produce more accurate results. The feature criteria 
must provide for problem-solving simplicity, efficacy, and 
speed. Stochastic Hill Climbing is the name for this method. It 
is the method of choice for solving the optimization problem. 
In [14] introduced the Multi-Objective Task Scheduling 
algorithm, which is based on providing efficient resource 
utilization to improve throughput. 

This technique reduces the execution time in software as a 
service (SaaS). The service requests are related to the virtual 
machines in this method in a way that allows for speedier 
execution. The algorithm is implemented in two stages. 
Priorities are initially given to the jobs, with the great quality of 
service being set to a small value and the small quality of 
service being set to a great value. As a result, tasks with small 
values are given great priority, and vice versa. Second, the 
quality of service values has assigned to the VMs in the 
following manner: high quality of service values are assigned 
to machines with high processing power, and low quality of 
service threshold are assigned to machines with low processing 
power. The arrangement method, on the other hand, is used to 
organize jobs based on their minimal size and QoS value. From 
the highest processing power to the lowest processing power, 
the arrangement method is executed in descending order. The 
tasks are assigned to a list of sorted machines after sorting is 
completed. The allocation is done so that the first task in the 
task list assigns the first machine in the machine list. Similarly, 
the next task is allocated the second machine in the machine 
list. Furthermore, the allocation process for the residual 
machine follows the same pattern. When all of the VMs in the 
VMs list have been assigned to all of the tasks, the next set of 
tasks is assigned to the first VM, and the process repeats. The 
use of the bare minimum of QoS factors, such as execution 
time, introduces constraints in this approach. As a result, new 
QoS criteria will need to be included in the future. 

An Optimal Priority-Based Service Model [23] introduces 
the Scheduling Policy. The moral optimization and maximum 
throughput are provided by this model, which is depending on 
priority as a resource scheduling approach, entrance 
management is used. The operations of the model are 
depending on the provision of full use of the available 
resources. Its goal is to deliver customer requests faster and 
spend less time in the queue. The user who pays more than the 
others, on the other hand, is given priority in using cloud 
services. The restrictions of the applied features have an impact 
on the performance of this algorithm. Specifically, futures 
relating to security and resources hired from other cloud 
providers. 
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The architecture for virtualized network load balancing was 
proposed in [6] to handle the huge data of the costly task 
scheduling for the network connection. In this case, the load 
balancer in the data center is set up to modify dynamically 
based on changes in the data of each user’s need and the 
network service providers' presence. The balancing is carried 
out on both centralized model. The first load serves as the 
central, while the second serves as a client that will be chosen 
in the future by the workload and network traffic balancer. 
Because of the use of this network traffic balancer, high 
persistency of web services is achieved. In this architecture, 
software-type load balancers are preferred over hardware-type 
load balancers, which impose significant labor and financial 
costs on customers. In general, some of the benefits have been 
listed below. The web connection limitation has been removed 
from the single network. Furthermore, by adjusting the amount 
of load balancers, the embedded algorithm can be modified by 
the users. By deploying it in the hybrid cloud, the performance 
of a large number of internet users could be improved in the 
future. 

In fact, in [17], several scheduling strategies for modifying 
the employed QoS parameters were presented for varied 
settings. The scheduling is done in order to generate a large 
amount of revenue and increase the efficiency of the workload. 
As a result, there are multiple versions fulfilled for each of the 
various kinds of scheduling methods, such as Min-Min, first 
come first service (FCFS), and Max-Min methods. The 
heuristic strategy, on the other hand, is the most effective. In a 
cloud computing system, its scheduling processes are divided 
into three stages. The best aim resource is then chosen. Lastly, 
the task is sent to the resource that will be used to complete it. 
Real Efficient Time Scheduling (RETS) has recently been 
presented in [24]. Its goal is to ensure that real-time tasks are 
completed without delay. As a result, it preserves ten percent 
of all available resources for real-time operations. If there are 
no real-time tasks, however, this proportion is lost.  

It's worth mentioning at the end of this section that the 
Scheduling goal is to reduce response time while fully utilizing 
resources. As a result, multiple scheduling algorithms based on 
the deadline have been presented. In [25], the task selection 
using different tools and in different environments was 
examined for these methods. These algorithms are built from a 
variety of perspectives, including processing time cost, delay, 
response time, and resource consumption time. 

III. PROPOSED MODEL 
The fog nodes are placed in close proximity to one another. 

Each fog computing server is centered in a certain place with 
the primary goal of serving all client requests in that region. As 
a result, each fog server has its own load balancing method. All 
customers in the fog computing region require different sorts of 
real-time (Hard, Firm, Soft) or non-real-time (NRT) 
operations, and the suggested model is meant to satisfy them. It 
also introduced the necessary services for all real-time tasks 
that might be generated by any nearby fog. This situation will 
arise when one of the neighboring fogs is overloaded by real-
time tasks. To address the task constraints, the proposed load 
balancing approach introduced. The architecture paradigm of 

the proposed load balancing model over IoT-fog-cloud colony 
is depicted in Figure 2. 

It is made up of three major modules. The first module is 
the IoT Service Listener (IoTSL), which is responsible for 
interact with the user/IoT requests. IoT Service Listener 
(IoTSL) sends each type of the received request task to the 
appropriate queue. Hence, the task Distributor allocates the 
received tasks in the VMs based on its deadline and urgency 
level. The second module is the Load-Distributor-Balancer 
(LDB). LDB contains two sub-modules, namely; Service 
Quota Manager (SQM) and Task Distributor. The third module 
is responsible for interact with the other fog node, which is 
called “Fog Load Regulator (FLR)”.  FLR is responsible for 
forward the excess firm and soft-real-time tasks to the lowest 
closest fog node. In the event of a fog resource scarcity, the fog 
colony is connected to a cloud system to ensure that NRT-tasks 
demands are fulfilled. The next subsection explains in details 
Load-Distributor-Balancer (LDB) model. Subsection III.A 

discusses the general algorithm for Fog Load Regulator (FLR). 
Fig. 2. Dynamic Decentralize Load-Balance Scheduling (DLBRT) Model 

III.A) Load-Distributor-Balancer (LDB) 
The Load-Distributor-Balancer (LDB) contains two main 

parts. The first part is to allocate the tasks in VMs of the 
system, which is called “Task Distributor”. This part is 
discussed in the next subsection. The second part is responsible 
for divide the resources among the service types. 

1) Task Distributor 
The main objective of Task Distributor module is to 

provide the tasks with the resources in efficient performance. 
Also, Task Distributor should preserve the turnaround time of 
all types of real-time tasks, to fit their deadline. On another 
hand, the Task Distributor should maintain in a desired quality 
of service for the non-real-time task. In terms of resource 
allocation, the task Distributor gives the highest priority to the 
hard-real-time task queue. The tasks in the hard-real time 
queue will be assigned to idle local VMs in the local fog node. 
If there is no idle are available, task Distributor preempts one 
of VMs which is currently performing a NRT-task. In the worst 
case, if all machine are busy with hard-real-time VMs, FRBA 
compute the expected waiting time if it can wait one of the 
busy machine. If the deadline does not suffice waiting a local 
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VM, the neighbor status detector (NSD) find the closest fog 
node that can execute this task. 

Simply, Task Distributor should preserve the turnaround 
time of all types of real-time tasks, to fit its deadline. On 
another hand, the FRBA should maintain in a desired quality of 
service for the NRT-task. It also ensures a fast reaction time for 
soft, real, time, and NRT-task. For model analysis, Table 1 is 
used to define the analysis notations. 

TABLE I. ANALYSIS NOTATION 
Notation description 

η  Turnaround time 
ω  The waiting time 

)(tβ  The expected executing time for task t . 

MIPS(VM) The speed of the virtual machine VM in million 
instruction per second 

tλ  The deadline of the task t . 

tQ  The desired quality of service for a task t . 

HR  
Resource share-ratio for the hard real-time tasks 

sR  
Resource share-ratio for the soft real-time tasks  

FR  
Resource share-ratio for the firm real-time tasks  

NR  
Resource share-ratio for the non-real-time tasks  

ER  
Resource share-ratio for extension of the other 
quotas 

∂  resource adaptation parameter  

The turnaround time η  for a task t can be computed by the 
following equation: 

)()( tt βωη +=                        (1) 
Where ω is the waiting time, and the )(tβ  is the expected 
executing time for task t . 
The waiting time ω , for a task t  in queue q , can be 
computed as summation of the execution time of the previous 
tasks in the waiting queue, can be computed with the 
following equation.  

∑
∈∀

=
qi

it )(βω                            (2) 

The expected waiting time for the task of specific type (for 
example firm-real-time type) which wait in q  queue.  

∑
∑

∀

∈∀=

j
j

qi
i

VMMIPS

texe

)(

)(
ω                       (3) 

In case of different types of real-time tasks the turnaround 
time η  has the following constrain. 
The first case is the hard-real-time task, its waiting time must 
be depressed to zero ( 0=ω ). Hence, Equation 1 for the 
hard-real-time can be written as follow. 

)()( tthard βη ≈                                   (4) 

 
The second case is containing the soft and firm-real-time task. 
The total duration time for these tasks should not exceed the 
task deadline, as the following equation  

tt λη ≤)(                                        (5) 

Where tλ is the deadline of the task t . 
The third case is non-real-time task “NRT”, it should maintain 
the following turnaround time condition.  

tQt ≤)(η                                                       (6) 

Where tQ is the desired quality of service for a task t . 
Resource Balancing Allocator (FRBA) assigns a quota for 
each type of task. Hence, the resources are divided into five 
shares, namely; hard-share-ratio, soft-share-ratio, firm-share-
ratio, NRT-share-ratio, and extension-share-ratio. Each type of 
service has a corresponding resource quota, except the 
extension-share ratio is for stretching the other quota. In 
another word, the extension-share-ratio is idle resources which 
allow the other share to stretching to prevent task failure. Each 
share can be computed as follows: 

1=++++ ENsFH RRRRR                        (7) 
After specific time period, each share-ratio will be refined. For 
example the hared-share-ratio in period k is computed based 
on the previous iteration (k-1) and the resource adaptation 
parameter ∂ , as the following equation. 

∂+=
−1kk HH RR                                           (8) 










−
=∂

loadlow
m
id

loadhigh
m
n

,

,
                                  (9) 

Where, m is the total number of VMs, n is the number of VMs 
that taken from the extension area, and id is the number of idle 
VMs in the hard-share-ratio.   
Algorithm 1 : Task Distributor  
Input: 
  t  // service request generate task by service listener. 
1.  If ( Hardtypet =. )  // case of hard-real-time task 
2.     newVM  = findIdleVM() // find the idle VM 
3.    If ( φ= newVM ) 
4.         newVM = FindLargestDeadline(NRK) 
5.         If ( φ= newVM ) 
6.               newVM = FindLargestDeadline(soft) 
7.               If ( φ= newVM ) 
8.                      newVM = FindLargestDeadline(firm) 
9.             End if 
10.        End if 
11.    End if 
12.     ++HardVM  /* Increase number of allocated VM 



Informatics Bulletin, Helwan University, Vol 4 Issue 2, July 2022 

33 
 

for  
                                  hard-real-time */ 

13.      allocate ( t,newVM ) 
14.       If (

1
HardV

−
>

kHRM ) /* number VM allocated for  
                   the hard- real-time exceed the hard-quota */ 

15.          )(shareRatio HardVMR
kH =  

16   Else if ( Firmtypet =. ) // case of firm-real-time task 
17.     newVM  = findIdleVM() // find the idle VM 
18.    If ( φ= newVM ) 
19.  

                             
       newVM = FindLargestDeadline(NRK) 

20.         If ( φ= newVM ) 
21.               newVM = FindLargestDeadline(soft) 
22.        End if 
23.    End if 
24.       ++FirmVM  /* Increase number of allocated VM  

                                    for firm-real-time */ 
25.      allocate ( t,newVM ) 
26.       If (

1
FirmV

−
>

kfRM ) /* number VM allocated for  
                        the firm-real-time exceed the firm-quota 
*/ 

27.          )(shareRatio firmVMR
kf
=  

28   Else if ( softtypet =. )// case of soft-real-time task 
29.     newVM  = findIdleVM() // find the idle VM 
30.    If (( φ= newVM )&(Soft_Lock=0)) 
31.         newVM = FindLargestDeadline(NRK)  
32.         If ( φ≠ newVM ) 
33.               allocate ( t,newVM ) 
34.              If (

1
softV

−
>

ksRM ) /* number VM allocated 
for  
                         the soft-real-time exceed the soft-quota */            

35.  
                  )(shareRatio softVMR

kH =  
36.             End if 
37.         End if 
38.    Else               // there is lack in resources 
39.           tFog()FindNeares=xfog /*find closest fog 

                                                          node with low load*/ 
40.            t),( xfogsend       // send the task t to fog x  

41   Else            // the case of non-real-time task 
42.           If ( Qqt <. )   
43.     newVM  = findIdleVM()    // find the idle VM 
44.    If ( φ≠ newVM )  
45.            ++NRTVM  /* Increase number of allocated  

                                     VM for  Non-real-time tasks*/ 

46.                  allocate ( t,newVM ) 
47.    Else     // no idle VM 
48.            t),(cloudsend       // send the task t to cloud 
49.    End if 
50.  End if 

2) Service quota manager (SQM) 
The service Quota manager (SQM) quantifies the system 

resources into five virtual portions, namely; hard-share-ratio, 
soft-share-ratio, firm-share-ratio, NRT-share-ratio, and 
extension-share-ratio. Each portion is dedicated to a specific 
type of service. SQM has two main objectives. The first 
objective is maintaining the resources available in demand the 
high urgency services (hard and firm real-time services). This 
objective is achieved by controlling the resource reservation by 
the soft and NRT service without causing service failure. The 
second objective is to achieve adaptive resources division for 
each service type based on the current load status. 

The service Quota manager (SQM) is process triggered 
periodically to evaluate the current status of the system 
usability. In another word, at a specific period of timeθ  the 
SQM re-evaluate the quota of each type of service. The time 
period θ  is considered as the average size of the hard task. 
The general form of the service quota is obtained in Equation 
5. Each service type quota can be computed as a ration of the 
actual resource usage. The following equation computes the 
hard-share-ratio. 

∑
∑

∀
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j
j
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i
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                                (10) 

Consequently, the firm-share-ratio can be computed as follow. 

 ∑
∑

∀
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j
j
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texe
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                               (11) 

The ER  extension -share-ratio is considered as constant 
value, which provides the system with ready machine for the 
urgent service. Hence, the NR  NRT-share-ratio can be 
deduced by the following equation. 

)(1 ENFHs RRRRR +++−=                     (12) 
The service Quota manager (SQM) method is shown the 
following algorithm.  Algorithm 2: Service quota manager 

51   For each time period θ  
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54.          )(1 ENFHs RRRRR +++−=   

                                           // where ER  is consistent  
55.          If ( SoftVM≥s)VMnumber(R ) 
56.                Soft_Lock=1 
57.          If ( NRTVM≥)VMnumber(RN ) 
58.                NRT_Lock=1 
59.  End for 

III.B) Fog Load Regulator (FLR) 
The tasks in the Hard-real-time queue will have high 

priority and will be allocated to one of the idle local VMs in 
the node if exist. Task Distributor preempts one of the soft-
real-time or NRT-task in busy VMs if there is no idle. If there 
are no idle virtual machines or all virtual machines are 
occupied, the Fog Load Regulator (FLR) chooses the least cast 
resources at the closest Fog node in the worst-case scenario. 
The Fog Load Regulator (FLR) obtains the Fog-Load-Index to 
determine the status of the other fog node. Each fog broadcast 
is status periodically to the other fog nodes in its close region, 
as shown in Figure 3. The example in Figure 3 displays the fog 
region for fog Y by dotted line. Each fog node determines its 
closed region. Hence, Fog Load Regulator (FLR) in fog Y 
collects all information about it closed fog node and register 
these data in its Fog Load Index. Fog Load Index contains 
average of the work-load and two of status flags. The status 
flags are called firm-lock and soft-lock, which decide the 
capability to receive firm-real-task and soft-real-task form the 
other nodes.   

Fig. 3. Fog Neighbor Reagon for Load Regulator example 

If the expected waiting time exceeds the QoS threshold (λ), 
Soft-Lock, which is a lock for soft-real-time task waiting, is set 
to zero. Soft-Lock is set by one if the expected waiting time 
overtake QoS threshold (λ), where λ is the soft-real-time task's 
average deadline. Also, the Firm-Lock is set by one if the 
number of allocated VMs by the Firm tasks exceeds the Firm-
Quota. Any fog node cannot receive a firm/soft-real task if it’s 
lock have value 1. Moreover, if all VMs are allocated by 
Soft/Firm-real-time tasks, the Soft/Firm-real-time task lock is 
set to one.  

IV. SIMULATION SETUP  AND RESULTS 
WorkflowSim [26] is investigated to simulate the various 

scheduling approaches in order to analyses the experimental 
outcomes. The WorkflowSim [26] is an open-source modeling 
workload that builds on the CloudSim. In the fogs 
computations, the simulation assessment is done by employing 
homogenous features. They're based on the characteristics of 
Amazon EC2 virtual machines. As a result, every test is carried 
out on a free T2.Micro instance of Amazon EC2.  

The proposed model was used to compare the results of 
four different models. To begin, there is the FCFS, which is 
used to perform the tasks based on their interning time. In 
addition, three more comparative models for the fog/cloud 
environment have already been published. The Max-Min, 
PBATS, and RETS are the three. The Max-Min maintains a 
task status table to estimate actual VM loads and task 
turnaround time, allowing the workload to be distributed 
between VMs [22]. Priority Based Autonomic Task Scheduling 
(PBATS) is a system that schedules task consist three levels of 
priority [27]. Furthermore, the Real-Time Efficient Scheduling 
(RETS) model is depending on devoting a 10 percent of the 
time to real-tasks [25]. The proposed method is matched with 
these scheduling strategies in order to assess best performance 
and best resource usage in the given model.  

The assessments of performance were carried out in two 
aspects. The first component assesses performance in terms of 
several types of task urgency. The turnaround time, average 
waiting time, and throughput are the three parameters used to 
evaluate performance. Finally, the second diminution 
evaluates the amount of failed tasks in the compared 
algorithms to determine the model's fitness for hard, soft, and 
firm-real-time services. Five times each experiment was 
carried out. The average of the five runs was taken and used 
for test comparison. 

A) System Performance 
In the next subsection, the response time measurement is 
done. Moreover, subsection II evaluate the waiting time for 
the task in the compared models. Finally, subsection III 
compares the throughput in the models that were compared. 

A.1) Turnaround Time test 
This test measures the performance focus on the Turnaround 
parameter. The proposed model (DLBRT) is contrasted with 
four models listed above. Every test is carried out with 10 
diverse workloads ranging from 40 to 400 tasks. The hard-
real-time tasks will account for 20% of the total workload 
added in each trial. All of the tasks are run on each machine's 
10 VMs with a total processing power of 2000 MIPS. The 
acquired findings are displayed, which indicate the average 
turnaround times of all methods in Figure 4. 
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Fig. 4. Turnaround Times Comparison  

Clearly, we can notice that the FCFS model has quickly 
increased as increasing the number of tasks. The highest 
turnaround time is for FCFS on account of non-preemptive 
property. Also, Max-Min model has performance is near to the 
FCFS curve.  Since, the Max-Min dedicates the highest 
execution time tasks to VMs has the least remaining execution 
time. In another word, in Max-Min model Leads the soft/firm-
real-time tasks, which mostly have a short size, will wait a 
long time to get the resources. This strategy will increase the 
average waiting time. Moreover, the PBATS model has little 
enhancement compared to the previous models. Certainly, 
PBATS model has three levels of task priority with despising 
QoS. Moreover, the RETS curve has good performance in low 
workload, as shown in Figure 5. Unfortunately, the 
performance of RETS model is deteriorated as increasing the 
workload. The performance deterioration of RETS model is 
caused by static allocation for the real tasks. Moreover, RETS 
model doesn’t distinguish between the different types of real-
time tasks. Actually, the shortages in the previous models are 
overcome by DLBRT model. DLBRT assigns a different 
priority for the tasks based on its urgency. In case of high 
workload DLBRT, it reduces the load by forward the NRT-
tasks to cloud and soft-real-time tasks to the closet low-load 
node. Hence, DLBRT can control the workload on the fog 
nodes to fit each task requirement. Subsequently, the DLBRT 
has the most effective performance through the compared 

model. 
Fig. 5. The Waiting Time Comparison 

A.2) The Waiting Time Test 
This test evaluate the expected waiting time by the compared 
model. Figure 5 depicts the waiting time cost in each model. 
Obviously, the DLBRT has the least waiting time. Not to 
mention, the FCFS model gives the highest waiting time cost. 
Also, the waiting time for the Max-Min curve is much closed 
to FCFS. It should be noted that FCFS model gives the highest 
waiting time cost. The deterioration of the FCFS and Max-
Min performance curves is caused by the high cast of the 
waiting time. In the PBATS curve, the task allocation is based 
on priority level, which gives a little performance 
enhancement, but it hasn't a load-balancing among the fog 

nodes. Furthermore, unless the load is less than or equal to 
3,000 tasks, the RETS model performs well. Regrettably, as 
the number of tasks grows, so does the average waiting time 
for RETS. As indicated by the performance curve, the DLBRT 
algorithm was able to tackle all of these difficulties by two 
main strategies. The first strategy is based on reducing the 
number of NRT tasks by sending most of these tasks to the 
cloud servers. Since the NRT tasks contain massive 
computations, then the execution of NRT tasks in fog nodes 
increases the waiting time intensely. The second strategy is 
based on redistributing the load between the fog nodes, which 
reduces the number of waiting tasks in each fog node. 

Fig. 6. The Throughput Performance Comparison 

A.3) The Throughput Performance Test 
The average system throughput is used to measure 
performance in this test. The throughput is the total number of 
completed tasks per unit of time. Furthermore, the experiment 
is carried out with the same workload as the previous 
examination. Figure 6 depicts the performance of the 
comparing methods. When compared to the other methods, we 
can see that DLBRT has the best throughput improvement. 
The reduction of the waiting time, as discussed in the previous 
test, increases the system throughput. Moreover, the balanced 
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distribution of jobs that fulfill QoS is what causes DLBRT to 
function better. The FCFS is also the weakest performance 
curve.  

Fig. 7. Task Failure test Comparison 

B)  Task Failure Test 
The task failure should be addressed while evaluating the 
algorithm's applicability for real-time services. This section 
discusses the suitability of the compared models. As 
mentioned before, there are three types of real-time tasks. In 
this experiment, the ratio of hard, firm, and soft-real-time 
tasks is 2, 8, and 10 respectively. Figure 7 compares and 
contrasts the proposed and evaluated algorithms in terms of 
real-time task failure. When compared to the other models, the 
number of task failures for the DLBRT model is negligible. 
Since DLBRT System is based on the processing of tasks 
based on their urgency, the task failure chances are low. The 
RETS model performs well under low demand in real-time 
operations. Regrettably, the RETS architecture does not 
provide for adaptability in resource allocation for real-time 
operations. Furthermore, task migration is not supported in 
order to supply the needed resources. The failure values of the 
other algorithms show inadequacy for real-time services. 

V. CONCLUSION AND FUTURE WORK 
In this paper, the DLBRT model is introduced as a multi-
priority level scheduling that achieves decentralized workload 
balancing in the IoT-Fog-cloud colony. The model was 
created to allow for successful fog resource allocation in a 
variety of NRT, soft, firm, and hard-real-time applications. A 
new dynamic resource allocation has been provided by the 
suggested methodology, which is based on the variation of the 
workload type. The proposed model has allowed a flexible 
allocation of real-time tasks based on their deadlines and 
urgency levels. Moreover, the NRT tasks are buffered in a 
queue to be allocated in the local fog in case of enough 
available resources. In another word, the exceeded load in the 
local fog server will be transferred to the nearest server in the 
fog colony or sent to the cloud to be provided by the DLBRT. 
We have two goals for the future work. The first goal is re-
engineering the system for making it more suitable for large-
scale areas. The second goal is to improve this model so that it 
can take advantage of the benefits of heterogeneous 
processing power. 

REFERENCES 
[1] Giannelli, C.; Picone, M. Editorial “Industrial IoT as IT and OT 

Convergence: Challenges and Opportunities”. IoT 2022, vol. 3, pp. 259-
261. 2022. https://doi.org/10.3390/iot3010014  

[2] Pradeep, P.; Kant, K. Conflict Detection and Resolution in IoT Systems: 
A Survey. IoT 2022, vol. 3, pp. 191-218. 2022 
https://doi.org/10.3390/iot3010012  

[3] Gigli, M. and Koo, S. Internet of Things, Services and Applications 
Categorization. Advances in Internet of Things, vol. 1, pp. 27-31. 
2011.  http://dx.doi.org/10.4236/ait.2011.12004 

[4] Odun-Ayo, Isaac & Okereke, Chinonso & Evwieroghene, Orovwode. 
(2018). Cloud Computing and Internet of Things - Issues and 
Developments. Proceedings of the World Congress on Engineering 2018 
Vol I  

[5] Navadia, Nipun R.,et al. "Applications of Cloud-Based Internet of 
Things." Integration and Implementation of the Internet of Things 
Through Cloud Computing, edited by Pradeep Tomar, IGI Global, pp. 
65-84, 2021. https://doi.org/10.4018/978-1-7998-6981-8.ch004 

[6] Tabrizi, Sahar & Ibrahim, dogan. A Review on Cloud Computing and 
Internet of Things. International Journal of Computer, Electrical, 
Automation, Control and Information Engineering. Vol. 11. pp. 462-
467, 2017.  

[7] Mondragón-Ruiz, G., Tenorio-Trigoso, A., Castillo-Cara, M. et al. An 
experimental study of fog and cloud computing in CEP-based Real-
Time IoT applications. J Cloud Comp vol 32, no. 10, 2021. 
https://doi.org/10.1186/s13677-021-00245-7 

[8] Niedermayer, H., Holz, R., Pahl, M.-O., Carle, G., 2010. On using home 
net-works and cloud computing for a future internet of things. In: Future 
Internet-FIS 2009. Springer, pp. 70–80. 

[9] Sarkar, S., Misra, S., “Theoretical modelling of fog computing: a green 
computing paradigm to support iot applications”, IET Networks 5(2) 
(2016) 23–29 

[10] MarketWatch: ‘Cisco delivers vision of fog computing to accelerate 
value from billions of connected devices’, available at 
http://www.theiet.org/resources/ journals/research/index.cfm, accessed 
August 2014  

[11] Hong, K., Lillethun, D., Ramachandran, U., et al.: ‘Mobile fog: A 
program-ming model for large-scale applications on the internet of 
things’. Proc. of the Se-cond ACM SIGCOMM Workshop on Mobile 
Cloud Computing, Hong Kong, China, August 2013, pp. 15–20 

[12] Stolfo, S.F., Salem, M.B., Keromytis, A.D.: ‘Fog computing: Mitigating 
insider data theft attacks in the cloud’. IEEE Symp. on Security and 
Privacy Workshops, San Francisco, USA, May 2012, pp. 125–128  

[13] Preden, J.S., Tammemae, K., Jantsch, A., et al.: ‘The benefits of self-
awareness and attention in fog and mist computing’, Comput. Mag., 
2015, 48, (7), pp. 37–45 

[14] Javed, Waheed & Parveen, Gulnaz & Aabid, Fatima & Rubab, Syeda & 
Ikram, Sidra & Rehman, Khawaja Ubaid & Danish, Muhammad. A 
Review on Fog Computing for the Internet of Things. vol. 10, pp. 1-7, 
2021. 10.1109/ICIC53490.2021.9692966.  

[15] Bonomi, F., Milito, R., Natarajan, P., et al.: ‘Fog Computing: A platform 
for internet of things and analytics’, in Bessis, N., Dobre, C. (Eds.): ‘Big 
data and in-ternet of things: a roadmap for smart environments – part I’ 
(Springer International Publishing, Switzerland, 2014), vol. 546, pp. 
169–186 

[16] J.S. Preden, K. Tammemäe, A. Jantsch, M. Leier, A. Riid, E. Calis, The 
bene-fits of self-awareness and attention in fog and mist computing. 
Computer 48 (7), 37–45 (2015).  

[17] Manas Kumar Yogi, K. Chandrasekhar, G. Vijay Kumar - Mist 
Computing: Principles, Trends and Future Direction, SSRG 
International Journal of Computer Science and Engineering (SSRG-
IJCSE) – volume 4 Issue 7 – July 2017 

[18] Mihai, Viorel et al. “WSN and Fog Computing Integration for 
Intelligent Data Processing.” 2018 10th International Conference on 
Electronics, Computers and Artificial Intelligence (ECAI) (2018): 1-4. 

[19] Asif-Ur-Rahman, Md. et al. “Toward a Heterogeneous Mist, Fog, and 
Cloud-Based Framework for the Internet of Healthcare Things.” IEEE 
Internet of Things Journal 6 (2019): 4049-4062. 

[20] A. Thomasa, Krishnalal Ga, Jagathy Raj V Pb, “Credit Based 
Scheduling Agorithm in Cloud Computing Environment”, ICICT 2014 
pp. 913 – 920 2015. 

[21] B. Mallikarjuna & Vankara, Jayavani & Sujatha, V. (2015). Honey Bee 
Behaviour imitates the Artificial Algorithm for Load Balancing of tasks 
in Cloud computing. International Journal of Applied Engineering 
Research. 10. 177-182. 

[22] Brototi Mondala, Kousik Dasguptaa, Paramartha Duttab”Load 
Balancing in Cloud Computing using Stochastic Hill Climbing-A Soft 
Computing Approach”, Elsevier, Procedia Technology 4(2012) pp. 783 
–789. 

[23] Guruprasad, H S & .M, Dakshayini. (2011). An Optimal Model for 
Priority based Service Scheduling Policy for Cloud Computing 
Environment. International Journal of Computer Applications. 32. 23-
29. 



Informatics Bulletin, Helwan University, Vol 4 Issue 2, July 2022 

37 
 

[24] Swati Agarwal, Shashank Yadav, Arun Kumar Yadav,"An Efficient 
Architecture and Algorithm for Resource Provisioning in Fog 
Computing", International Journal of Information Engineering and 
Electronic Business(IJIEEB), Vol.8, No.1, pp.48-61, 2016. DOI: 
10.5815/ijieeb.2016.01.06 

[25] M.Verma, N. Bhardwaj and A. Kumar, "Real Time Efficient Scheduling 
Algorithm for Load Balancing in Fog Computing Environment",I.J. 
Information Technology and Computer Science, April, 2016, 4, 1-10 

[26] W. Chen and E. Deelman, ―Workflowsim: A toolkit for simulating 
scientific workflows in distributed environments, in 2012 IEEE 8th 
International Conference on E-Science, ser. eScience, 2012, pp. 1–8. 
[Online]. Available:https://github.com/WorkflowSim 

[27] Bala, Anju & Chana, Inderveer. Multilevel Priority-Based Task 
Scheduling Algorithm for Workflows in Cloud Computing 

Environment. vol 408. pp. 685-693, 2016. DOI:10.1007/978-981-10-
0129-1_71. 

 
 
 
 
 
Hosam E Refaat: has graduated from the Faculty of Science, Assuit 

university, Egypt, in 1998. In October 2006, he finished his Master 
degree in the field of distributed systems from the faculty of Science, 
Cairo University, Egypt. Currently, he is a lecturer in Faculty of 
Computers & Informatics, Suez Canal University, Ismailia, Egypt. His 
current research interests are Parallel Systems, Cloud Computing, Edige 
Computing,  and Datamining. 

 
 


	I. Introduction
	II. RELATED WORK
	III. Proposed model
	III.A) Load-Distributor-Balancer (LDB)
	1) Task Distributor
	2) Service quota manager (SQM)

	III.B) Fog Load Regulator (FLR)

	IV. SIMULATION SETUP  AND RESULTS
	A) System Performance
	A.1) Turnaround Time test
	A.2) The Waiting Time Test
	A.3) The Throughput Performance Test
	B)  Task Failure Test

	V. CONCLUSION AND FUTURE WORK
	References


