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N THE GRAVITATIONAL theory based on Lyra's geometry, we study the Friedmann Robertson 

Walker (FRW) cosmological model in the presence of perfect fluid. Exact solutions of the Einstein 

equations are obtained and discussed  in the following cases: (i)  𝛽 𝑡  ( the time component of the 

displacement vector introduced by Lyra ) is a constant, (ii)  𝛽 𝑡  is time dependent and 𝑞 (the 

deceleration parameter of the model ) is a constant and (iii) 𝛽(𝑡) and 𝑞 are functions of time  𝑡. The 

thermodynamic functions of the universe are calculated and studied for the cases 𝑘 = 0,1,−1 flat, 

open, and closed universe, respectively.The entropy of the universe is obtained as a constant which 

means we deal with a stage of evolution in which the universe is adiabatic. The distance modulus for 

our model is calculated at different values of the red shift and compared with the results obtained in 

supernovae la. The physical and geometrical properties of the obtained models are discussed. 
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1  Introduction 
 

In 1918, Einstein [1] proposed his general theory of 

relativity which is a geometrizing of the gravitation. 

Weyl [2] tried to generalize the theory of relativity 

by introducing a scalar field 𝜑 for geometrizing the 

electromagnetic and gravitation both. The scalar 

field introduced by Weyl make the length transfer 

of the vector is non-integrable under parallel 

transport which means that the spectral lines 

emitted by atoms will not remains constant but 

would depend on their past histories. So, the theory 

was not taken seriously at that time and criticized 

by Einstein [3]. In 1951, Lyra [4] suggested a 

modification of Riemannian geometry, by 

introducing a gauge function 𝑥∘(𝑥𝑖) into the 

structureless manifold which removes the non-

integrability condition of the length of a vector 

under parallel transport and a cosmological 

constant is naturally introduced from the geometry. 

In Lyra geometry unlike Weyl the connection is 

metric preserving as in Riemannian. 

In the description of the present state of the 

universe, the Fridmann Robertson Waker space 

time describe a homogenous and isotropic 

distribution of its matter. Partridge and Wilkinson 

[5] and Ehlers et al. [6] pointed out that spatially 

homogeneous and isotropic universes can be 

described by FRW model. 

In the modified theories of general relativity, 

FRW space time was studied in different aspects. 

Taser [7] investigated conformally symmetric FRW 

metric in 𝑓(𝑅,𝑇) gravity. Induced Brownian 

motion by the FRW cosmological model in the 

presence of a cosmic string was investigated by 

Mota and de Mello [8]. Stavrinos et al. [9] studied 

Friedmann-like Robertson-Walker model in 

generalized metric space-time with weak 

anisotropy. Paris and Visser [10] investigated 

minimal conditions for the creation of a FRW 

universe from a bounce. The behavior of FRW 

cosmological models in scalar-tensor gravity was 

analyzed by Kolitch and Eardley [11]. Holden et al. 

[12] presented a phase-plane analysis of FRW 

cosmologies in Brans-Dicke gravity. Isochronous 

cosmological solutions of the FRW model were 

investigated by Chen et al. [13]. Aref'eva et al. [14] 

studied dynamics in nonlocal linear models in the 

FRW metric. Goswami [15] presented FRW space-

time in the perspective of the latest developments 
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begun by Perlmutter and Riess in cosmology. 

Goswami et al. [16] studied FRW accelerating 

universe with interactive dark energy. Faraoni and 

Cooperstock [17] studied the total energy of open 

FRW universes. Upadhyay [18] studied field-

dependent symmetries in FRW models. Kim et al. 

[19] studied FRW models that do not require zero 

active mass. Boyanovsky et al. [20] studied scalar 

field dynamics in FRW spacetimes. Van den 

Hoogen et al. [21] investigated scaling solutions in 

Robertson Walker-spacetimes. Melia [22] derived 

the FRW metric coefficients from the general form 

of the spherically symmetric line element and 

demonstrated that, because the co-moving frame 

also happens to be in free fall, the symmetries in 

FRW metrices are valid only for a medium with 

zero active mass. Chen et al. [23] studied the 

periodic solutions with the equal period for the 

FRW model. Ibanez and Verdaguer [24] studied by 

dimensional reduction the solutions of Einstein 

equations in a five-dimensional vacuum. They 

derived two metrics which can be interpreted as 

finite perturbations on FRW models. Stewart [25] 

discussed the mathematical principles that depend 

on the theory of gauge-invariant perturbations of 

homogeneous isotropic cosmological models. 

Lewis et al. [26] studied efficient computation of 

cosmic microwave background anisotropies in 

closed FRW models. Finite exact perturbations of 

FRW cosmologies constructed with the inverse 

scattering technique of Belinskii and Zakharov 

were studied by Diaz et al. [27]. The late-time 

evolution of FRW models with a perfect fluid 

matter source and a scalar field arising in the 

conformal frame of 𝑓(𝑅) theories nonminimally 

coupled to matter was studied by Miritzis [28]. Das 

and Singh [29] studied the polytropic gas dark 

energy model and new-age graphic dark energy 

model in the flat FRW universe and establish a 

correspondence between them for the scalar fields. 

Singh and Singh [30] studied Robertson Walker 

models in Einstein's theory with cosmological 

terms and in Lyra's geometry. By considering a 

time-dependent displacement field and variable 

deceleration parameter, Pradhan et al. [31] studied 

FRW models in Lyra's geometry and obtained a 

new class of exact solutions for exponential, 

polynomial and sinusoidal universe respectively. 

Singh [32] studied a spatially homogeneous and 

isotropic Robertson Walker model with zero 

curvature of the universe on Lyra's geometry. 

In this paper, we study the FRW cosmological 

model with perfect fluid with different form of the 

Lyra term and deceleration parameter. In section 2 

we drive the field equations and the conservation 

equations of the energy momentum tensor. Solution 

of the field equations in the case of constant 

displacement vector is introduced in section 3. In 

section 4, we introduce the solution with 𝛽 and 𝑞 

are constants while in section 5 we investigate 

solution in the case of 𝛽(𝑡) and 𝑞 𝑡  are functions 

of the time 𝑡. In section 6, conclusion remarks are 

indicated.  

 

2  The FRW metric and field equations 
 The FRW metric takes the form:  

𝑑𝑠2 = 𝑑𝑡2 −
𝑀2(𝑡)

(1+
1

4
𝑘𝑟2)2

 𝑑𝑟2 + 𝑟2𝑑𝜃2 +

𝑟2𝑠𝑖𝑛2𝜃𝑑ϕ2.                                                              (1) 

 Einstien field equations on Lyra geometry as 

obtained by Sen [33] has the form:  

𝐺𝜇𝜈 +
3

2
ϕ𝜇ϕ𝜈 −

3

4
𝑔𝜇𝜈ϕ𝛼ϕ

𝛼 = −𝜒𝑇𝜇𝜈 ,                  (2) 

𝑇𝜇𝜈  is the energy momentum tensor which in the 

presence of a perfect fluid reads as:  

𝑇𝜇𝜈 =  𝜌 + 𝑝 𝑢𝜇𝑢𝜈 − 𝑝𝑔𝜇𝜈 .                         (3) 

ϕ𝛼  is a displacement vector with one component in 

the form:  

ϕ𝛼 =  𝛽 𝑡 , 0,0,0 .                                         (4) 

 For the metric (1) the field equations (2) read as:  

3(
𝑘

𝑀2 +
𝑀 2

𝑀2) −
3

4
𝛽2 = 𝜒𝜌,                             (5) 

 
k

𝑀2 +
𝑀 2

𝑀2 +
2𝑀 

𝑀
+

3

4
𝛽2 = −𝜒𝑝.                         (6) 

 Conservation equation 𝑇𝜇 ;𝜈
𝜈  leads to:  

𝜌 + 3(𝜌 + 𝑝)
𝑀 

𝑀
= 0.                                     (7) 

 Conservation of the left hand side of (2) yields:  
3

2
𝛽𝛽 +

9

2
𝛽2 𝑀 

𝑀
= 0,                                            (8) 

where overhead dot denotes derivatives with 

respect to 𝑡. 

Solution of the field equations (5), (6) with two 

conditions (7) , (8) are not possible in general. So, 

we consider the following cases:  

 

3 Solution of the field equations with 𝜷 is 

constant 

 For 𝛽 = 𝛽∘(constant), equation (8) has a 

solution in the form  𝑀(𝑡) = 𝑐1(𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡). From 

(5) and (6), the pressure and density are constants 

and given by 𝜌 =
1

𝜒
[

3𝑘

𝑐1
2 −

3𝛽∘
2

4
] and  𝑝 = −

1

𝜒
[
𝑘

𝑐1
2 +

3𝛽∘
2

4
]. The change on the entropy of the universe 

reduces to 
𝑑𝑺

𝑑𝑡
= 0. [34], [35], [36], [37], [38], that is 

𝑺 = 𝐶1(𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡), which means that we deal with 

an adiabtic process. 

The enthalpy (H), the Helmholtz free energy (F) 

and the Gibbs free energy (G) are constants and 

read as [34], [35], [36], [37]: 
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𝑯 =

32 
𝑟4sin [𝜃 ]2𝑐1

6

 4+𝑘𝑟2 
6  4𝑘−3𝑐1

2𝛽∘
2 

𝜒𝑐1
2 ,    𝑭 =

48 
𝑐1

6𝑟4sin [𝜃 ]2

 4+𝑘𝑟2 
6  4𝑘−𝑐1

2𝛽∘
2 

𝜒𝑐1
2 ,                                                 (9) 

 

𝑮 =

32 
𝑟4sin [𝜃 ]2𝑐1

6

 4+𝑘𝑟2 
6  4𝑘−3𝑐1

2𝛽∘
2 

𝜒𝑐1
2 .                                    (10) 

 Halford [39] has pointed out that if we put 

𝛽∘
2 =

−4Λ

3
, we can achieve almost a complete 

equivalence between Lyra cosmological theory and 

the relativistic theory. For the case of stiff matter 

solutions with a cosmological constant in general 

relativity theory, Beesham [40] has shown that the 

corresponding equations are equivalent in both 

geometries if we set 
3

8
𝛽2 = −Λ. Further, the 

vacuum solutions are also identical to the 

corresponding general relativity vacuum solutions 

with a cosmological constant. Our solution obtained 

in this section is consistant with Halford condition 

[39].  

4  Solution of the field equations with time 

dependent displacement vector and constant 

deceleration parameter  

For 𝛽(𝑡) is time dependent and 𝑞 is constant, 

from (8) we get:  

𝛽(𝑡) =
𝑚1

𝑀3                             (11) 

 where 𝑚1 is a constant. The deceleration parameter 

is given by:  

q = −
𝑅𝑅 

𝑅 2
,                                   (12) 

 where 𝑅 is the average scale factor and reads as:  

𝑅3 =  −𝑔 =
𝑟2sin [𝜃 ]

 1+
𝑘𝑟2

4
 

3 [𝑀 𝑡 ]3          (13) 

 From (12) we get:  

𝑅 = 𝐾 𝑐1𝑡 + 𝑐2 
1

1+𝑞 ,                      (14) 

 By comparing (13) and (14) we can take:  

𝑀(𝑡) =  𝑐1𝑡 + 𝑐2 
1

1+𝑞 ,                 (15) 

 where 𝐾(𝑟,𝜃) =
 𝑟2sin [𝜃 ]

3

 1+
𝑘𝑟2

4
 

, 𝑐1 and 𝑐2 are constants. 

From (5) and (6) we get:  

𝑝

=

4(−1+2𝑞)𝑐1
2

(1+𝑞)2 𝑡𝑐1+𝑐2 
2 − 4𝑘 𝑡𝑐1 + 𝑐2 

−
2

1+𝑞 − 3 𝑡𝑐1 + 𝑐2 
−

6

1+𝑞𝑚1
2

4𝜒
, 

(16) 

 

𝜌 =
3  

4𝑐1
2

(1+𝑞)2 𝑡𝑐1+𝑐2 2
+ 4𝑘 𝑡𝑐1 + 𝑐2 

−
2

1+𝑞 −  𝑡𝑐1 + 𝑐2 
−

6

1+𝑞𝑚1
2 

4𝜒
, 

(17) 

 and (11) reduces to  

𝛽(𝑡) = 𝑚1 𝑡𝑐1 + 𝑐2 
−

3

1+𝑞 .                   (18) 

 For the model (1), the volume element 𝑉 =

 
𝑟4Sin [𝜃 ]2 𝑡𝑐1+𝑐2 

6
1+𝑞

 1+
𝑘𝑟2

4
 

6 , the Hubble parameter 

𝐻 =
𝑐1

(1+𝑞) 𝑡𝑐1+𝑐2 
, the expansion scalar 𝜃 =

3𝑐1

(1+𝑞) 𝑡𝑐1+𝑐2 
, the non zero components of the shear 

tensor (𝜍𝑖
𝑗
) are 𝜍1

1 =   𝜍2
2 =   𝜍3

3 = −
𝑐1

(1+𝑞) 𝑡𝑐1+𝑐2 
 

and the shear 𝜍 =  
3𝑐1

2

2(1+𝑞)2 𝑡𝑐1+𝑐2 
2. 

The thermodynamic functions of the universe 

read as:  𝑺 = 𝐶1 
𝑯

=

32 
𝑟4sin [𝜃]2 𝑡𝑐1+𝑐2 

6
1+𝑞

 4+𝑘𝑟2 6
 

4𝑐1
2

(1+𝑞) 𝑡𝑐1+𝑐2 2
+ 4𝑘 𝑡𝑐1 + 𝑐2 

−
2

1+𝑞 − 3 𝑡𝑐1 + 𝑐2 
−

6

1+𝑞𝑚1
2 

𝜒
, 

(19) 

 

 𝑭 = −
𝑐1𝐶1

2𝜋(1+𝑞) 𝑡𝑐1+𝑐2 
+ 

 

48 
𝑟4sin [𝜃]2 𝑡𝑐1+𝑐2 

6
1+𝑞

 4+𝑘𝑟2 
6  

4𝑐1
2

(1+𝑞)2 𝑡𝑐1+𝑐2 
2+4𝑘 𝑡𝑐1+𝑐2 

−
2

1+𝑞− 𝑡𝑐1+𝑐2 
−

6
1+𝑞𝑚1

2 

𝜒
,  

 (20) 

 

 𝑮 = −
𝑐1𝐶1

2𝜋(1+𝑞) 𝑡𝑐1+𝑐2 
+ 

 

32 
𝑟4sin [𝜃]2 𝑡𝑐1+𝑐2 

6
1+𝑞

 4+𝑘𝑟2 
6  

4𝑐1
2

(1+𝑞) 𝑡𝑐1+𝑐2 
2+4𝑘 𝑡𝑐1+𝑐2 

−
2

1+𝑞−3 𝑡𝑐1+𝑐2 
−

6
1+𝑞𝑚1

2 

𝜒
.  

 (21) 
 The behavior of the thermodynamic functions 

of the universe with the time can be shown as 
follow. The values of the constants are taken as: 
𝑐1 = 1, 𝐶1 = 2, 𝑐2 = 1, 𝜃 =

𝜋

2
, 𝑟 = 3, 𝑞 =

−0.5,𝑚1 = 5 and 𝜒 = 8𝜋 
 

 
 
Fig. 1 The Helmholtz 𝑭 (Green line), Gibbs free 

energy 𝑮 (Red line) and the Enthalpy  

𝑯 (Blue line) vs. time 𝒕, 𝟎 < 𝑡 < 𝟑𝟎, (𝒌 = 𝟎). 
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Fig. 2 The Helmholtz 𝑭 (Green line), Gibbs free 

energy 𝑮 (Red line) and the Enthalpy  

𝑯 (Blue line) vs. time 𝒕, 𝟎 < 𝑡 < 𝟑𝟎, (𝒌 = 𝟏). 

 

 
 
Fig. 3 The Helmholtz 𝑭 (Green line), Gibbs free 

energy 𝑮 (Red line) and the Enthalpy   

𝑯 (Blue line) vs. time 𝒕, 𝟎 < 𝑡 < 𝟑𝟎, (𝒌 = −𝟏). 

For 𝑘 = 0,1,−1. 𝐹,𝐺, and 𝐻 begin with zero 

values at the beginning of evolution and increase to 

reach large values at the end of evolution. 

In case of 𝑘 = −1, the values of 𝐹,𝐺 and 𝐻 are 

large comparing with the two cases  𝑘 = 0,1. The 

two cases 𝑘 = 0,1 nearly gave the same values for 

𝐹,𝐺, and 𝐻 (Fig.1, Fig.2 and  Fig.3). 

 

5 Distance modulus for supernovae la  
 The distance modulus for supernovae la reads 

as:  

𝜇 = 5ln𝑑𝑙 + 25,                                   (22) 

 Here 𝑑𝑙  is the luminosity distance given by:  

𝑑𝑙 = 𝑟1 1 + 𝑧 𝑅∘,                                   (23) 

 where 𝑧 represent redshift parameter, 𝑅∘ is the 

present scale factor and 𝑟1 can be obtained from  

𝑟1 =  
0

𝑡

𝑑𝑡

𝑅
,                                         (24) 

 from (14), equation (24) reduces to:  

𝑟1 = −
𝑞+1

𝑞𝑘𝑐1
(𝑐1𝑡 + 𝑐2)

𝑞

𝑞+1 + 𝑐3 .                  (25) 

 From the relation 𝑧 + 1 =
𝑅𝑧=0

𝑅
, where 𝑅𝑧=0 =

2.46 is the present value of the scale factor 

equation (25) becomes:  

𝑟1 = −
𝑞+1

𝑞𝑘𝑐1
(

2.46

𝑘(1+𝑧)
)𝑞 + 𝑐3.                      (26) 

 So, equation (23) reads as:  

𝑑𝑙 = 2.46[−
𝑞+1

𝑞𝑘𝑐1
 

2.46

𝑘 1+𝑧 
)𝑞 + 𝑐3  1 + 𝑧 .           (27) 

 Finally, the distance modulus 𝜇 reads as:  

𝜇 = 5ln(2.46[−
𝑞+1

𝑞𝑘𝑐1
(

2.46

𝑘(1+𝑧)
)𝑞 + 𝑐3](1 + 𝑧)) + 25.(28) 

 In the following we makes a comparison 

between the values of the distance modulus 

obtained for supernovae la and the values obtained 

for our model 

 

  Redshift 

(𝑧) 

 Supernovae la 

(𝜇) 

 Our model 

(𝜇′) 
 0.0132  30.09 : 30.61  30.43  

0.0133  32.32 : 32.76  32.6 

0.0134  32.88 : 33.32  33.3 

0.0264  33.73 : 34.13  34.1 

0.0274  34.23 : 34.43  34.4 

0.0284  34.38 : 34.84  34.7 

0.0295  34.65 : 34.99  34.9 

0.0398  35.01 : 35.35  35.3 

0.0409  35.68 : 36  36 

0.0399  35.74 : 36.08   36.01 

0.0519  35.93 : 36.25  36.2 

0.0721  36.16 : 36.5  36.48 

0.0619  36.18 : 36.52  36.5 

0.0813  36.59 : 36.91  36.9 

 

 
 
Fig. 4 The distance modulus 𝝁′of our universe (dashed 

line) and the distance modulus  

µ of Supernova la µ (thick line). 

For the interval 0 < 𝑧 < 0.07, the curve of 𝜇′ is 

large than the curve of µ. 
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For 𝑧 > 0.07, 𝜇 > 𝜇′. At µ ≃ 07.0 , we obtained 

an identical value between µ and 𝜇′      (Fig. 4). 

 

6 Solution of the field equations with 

displacement vector and deceleration parameter 

are functions of time  

For 𝛽 and 𝑞 are time dependent functions, we 

can obtain the solution as follow: If we consider 𝑞 

in the form: 𝑞 = −𝑘𝑡 + 𝑚− 1. 
Equation (8) gives:  

𝛽 =
𝑚1

𝑀3 ,                                (29) 

 where 𝑚1 is constant. 

The deceleration parameter is given by:  

𝑞 = −
𝑅𝑅 

𝑅 2
,                                   (30) 

 where 𝑅 is the average scale factor and read as:  

𝑅3 =  −𝑔 =
𝑟2sin [𝜃 ]

 1+
𝑘𝑟2

4
 

3 [𝑀 𝑡 ]3               (31) 

 From (30) we get:  

𝑅 = 𝐾[
𝑘1𝑡

2𝑚−𝑘1𝑡
]

1

𝑚 ,                      (32) 

 Then,  

𝑀(𝑡) = [
𝑘1𝑡

2𝑚−𝑘1𝑡
]

1

𝑚 ,                           (33) 

 where 𝐾(𝑟,𝜃) =
 𝑟2sin [𝜃 ]

3

 1+
𝑘𝑟2

4
 

, 𝑘1 and 𝑚 are constants. 

From (5) and (6), we obtain:  

𝑝 =

−
4𝑘 

𝑡𝑘1
2𝑚−𝑡𝑘1

 
−2/𝑚

+
16 3−2𝑚+2𝑡𝑘1 

𝑡2 −2𝑚+𝑡𝑘1 
2 +3 

𝑡𝑘1
2𝑚−𝑡𝑘1

 
−6/𝑚

𝑚1
2

4𝜒
,(34) 

 

𝜌 =
3 4𝑘 

𝑡𝑘1
2𝑚−𝑡𝑘1

 
−2/𝑚

+
16

𝑡2 −2𝑚+𝑡𝑘1 
2− 

𝑡𝑘1
2𝑚−𝑡𝑘1

 
−6/𝑚

m1
2 

4𝜒
,(35) 

 Equation (29)  

𝛽 =  
𝑡𝑘1

2𝑚−𝑡𝑘1
 
−3/𝑚

𝑚1 .                    (36) 

 For the model (1), the volume element 𝑉 =

 
𝑟4Sin [𝜃 ]2 

𝑡𝑘1
2𝑚−𝑡𝑘1

 
6/𝑚

 1+
𝑘𝑟2

4
 

6 , the Hubble parameter 

𝐻 =
2

2𝑚𝑡−𝑡2𝑘1
, the expansion scalar 𝜃 =

6

2𝑚𝑡−𝑡2𝑘1
, 

the non zero components of the shear tensor (𝜍𝑖
𝑗
) 

given by 𝜍1
1 =   𝜍2

2 =   𝜍3
3 =

2

𝑡 −2𝑚+𝑡𝑘1 
 and the 

shear 𝜍 =  
6

𝑡2 −2𝑚+𝑡𝑘1 
2. 

The thermodynamics function of the universe  

𝑺 = 𝐶1. 

The enthalpy (H), the Helmholtz free energy (F) 

and the Gibbs free energy (G) read as: 

 

 

 

 

𝑯 =

32 
𝑟4sin [𝜃 ]2 

𝑡𝑘1
2𝑚−𝑡𝑘1

 
6/𝑚

 4+𝑘𝑟2 
6  4𝑘 

𝑡𝑘1
2𝑚−𝑡𝑘1

 
−2/𝑚

+
16 𝑚−𝑡𝑘1 

𝑡2 −2𝑚+𝑡𝑘1 
2−3 

𝑡𝑘1
2𝑚−𝑡𝑘1

 
−6/𝑚

𝑚1
2 

𝜒
,

(37) 

 

 𝑭 = −
𝐶1

2𝑚𝜋𝑡 −𝜋𝑡2𝑘1
+ 

 

48 
𝑟4sin [𝜃]2 

𝑡𝑘1
2𝑚−𝑡𝑘1

 
6/𝑚

 4+𝑘𝑟2 
6  4𝑘 

𝑡𝑘1
2𝑚−𝑡𝑘1

 
−2/𝑚

+
16

𝑡2 −2𝑚+𝑡𝑘1 
2− 

𝑡𝑘1
2𝑚−𝑡𝑘1

 
−6/𝑚

𝑚1
2 

𝜒
, 

(38) 

 

 𝑮 = −
𝐶1

2𝑚𝜋𝑡 −𝜋𝑡2𝑘1
+ 

32 
𝑟4sin [𝜃]2 

𝑡𝑘1
2𝑚−𝑡𝑘1

 
6/𝑚

 4+𝑘𝑟2 
6  4𝑘 

𝑡𝑘1
2𝑚−𝑡𝑘1

 
−

2
𝑚

+
16 𝑚−𝑡𝑘1 

𝑡2 −2𝑚+𝑡𝑘1 
2−3 

𝑡𝑘1
2𝑚−𝑡𝑘1

 
−6/𝑚

𝑚1
2 

𝜒
.  

(39) 

 The behavior of the thermodynamic functions 

of the universe with the time can be shown as 

follow. The values of the constants are taken as: 

𝑐1 = 1, 𝐶1 = 2, 𝜃 =
𝜋

2
, 𝑟 = 3, 𝑘1 = 0.113, 𝑚1 = 1, 

𝑚 = 2 and 𝜒 = 8𝜋. 

 

 
 
Fig. 5 The Helmholtz 𝑭 (Green line), Gibbs free 

energy 𝑮 (Red line) and the Enthalpy 𝑯 (Blue line) vs. 

time 𝒕, 𝟎 < 𝑡 < 𝟑𝟎. 

 𝐹,𝐺 and 𝐻 begin with large values at 𝑡 = 0 and decrease 

to reach zero values at the end evolution. 
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Fig. 6 The Helmholtz 𝑭 (Green line), Gibbs free 

energy 𝑮 (Red line) and the Enthalpy  

𝑯 (Blue line) vs. time 𝒕, 𝟎 < 𝑡 < 𝟑𝟎. 

For 0 < 𝑡 < 2, 𝐹,𝐺,𝐻 = 0, as 𝑡 > 2, 𝐹 

decreases to reach zero at 𝑡 ≃ 16 and increases 

again to reach large value at the end of evolution. as 

𝑡 > 5, 𝐻 decreases to reach zero at 𝑡 ≃ 16 and 

increases again to reach large value at the end of 

evolution. As 𝑡 > 5, 𝐻 decreases to reach zero at 

𝑡 ≃ 16 and increases again to reach large value at 

the end of evolution. As 𝑡 > 5, 𝐺 decreases to reach 

zero value at the end of evolution.   

 

 
 
Fig. 7 The Helmholtz 𝑭 (Green line), Gibbs free 

energy 𝑮 (Red line) and the Enthalpy  

𝑯 (Blue line) vs. time 𝒕, 𝟎 < 𝑡 < 𝟑𝟎. 

For 0 < 𝑡 < 2, 𝐹,𝐺,𝐻 = 0, as 𝑡 > 2, 𝐹 

decreases to reach zero at 𝑡 ≃ 15 and increases 

again to reach large value at the end of evolution. 

As 𝑡 > 5, 𝐺,𝐻 are decreasing  to reach zero at 

𝑡 ≃ 20 and increase again to reach large value at 

the end of evolution. 

From (22)-(24) we find the distance modulus 𝜇 

in the form :  

 

𝜇 = 5ln(2.46[
2

𝑘𝑘1
(

2.46

𝑘(1+𝑧)
+ 1)−1 −

2

𝑘𝑘1
𝑙𝑛(2 −

2(
2.46

𝑘(1+𝑧)
+ 1)−1) + 1](1 + 𝑧)) + 25.(40) 

 

 As a pervious case, we makes a comparison 

between the values of the distance modulus 

obtained for supernovae la and the values obtained 

for our model.  

 

 

 

 
 
Fig. 8 The distance modulus 𝝁′ of our universe 

(dashed line) and the distance modulus 𝝁 of 

Supernova la 𝝁 (thick line). 

 For 0 < 𝑧 < 0.6, 𝜇′ > 𝜇.At 𝑡 ≃ 0.06, we obtain 

𝜇 = 𝜇′ . As 𝑡 > 0.06, 𝜇′ < 𝜇. (Fig. 8). 

 

 

 

 

 

 

 

 

 

 

 Redshift(𝑧)
 

 Supernovae la 

(𝜇) 

 Our model 

(𝜇′) 
 0.0132  30.09 : 30.61  30.30  

0.0133  32.32 : 32.76  32.4 

0.0134  32.88 : 33.32  32.99 

0.0264  33.73 : 34.13  33.9 

0.0274  34.23 : 34.43  34.3 

0.0284  34.38 : 34.84  34.5 

0.0295  34.65 : 34.99  34.8 

0.0398  35.01 : 35.35  35.2 

0.0409  35.68 : 36  35.8 

0.0399  35.74 : 36.08   35.9 

0.0519  35.93 : 36.25  36.1 

0.0721  36.16 : 36.5  36.3 

0.0619  36.18 : 36.52  36.4 

0.0813  36.59 : 36.91  36.7 
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7  Conclusion 
In the present paper, we studied (FRW) 

cosmological model in Lyra geometry in different 

forms of the time component of the displacement 

vector 𝛽 and the deceleration parameter 𝑞. In the 

case of 𝛽 = 𝛽∘ (constant) we obtained a static 

cosmological model with 𝑀(𝑡) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. This 

result is consistence with the result obtained by 

Halford [39]. The pressure 𝑝 and the density 𝜌 are 

constants. The entropy 𝑺 of the universe is constant 

that means we deal with an adiabatic process. The 

thermodynamics function of the universe are 

constants. In the case of 𝛽(𝑡) is a function of 𝑡 and 

𝑞 is a constant, we deal also with an a diabetic 

process as 𝑺 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. The functions 𝑭,𝑮 and 𝑯 

for the cases (𝑘 = 0,1,−1) begin with small values 

at the beginning of evolution and increase 

uniformly to reach large values at the end of 

evolution. In the case of 𝛽 and 𝑞 are functions of 

time  𝑡, we obtain a different behavior of the 

thermodynamic functions of the universe 

comparing with the second case 𝑞 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 
The functions 𝑭,𝑮 and 𝑯 begin with large values at 

the beginning of evolution and reduce to reach 

small values at the end of evolution. In three cases 

the additional term introduced by Lyra has an effect 

on the behaviores  of the pressure and density but 

has no effect on the entropy of the universe because 

it is not a part of the energy momentum tensor. This 

result in agreement with Hegazy and Farook [36] 

and Hegazy [37]. The curve of the distance 

modulus 𝜇′ of our universe obtained in the case of 

time dependent deceleration parameter is closer to 

the distance modulus 𝜇 of Supernova la than the 

curve obtained in the case of constant deceleration 

parameter. 
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