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Abstract 

 

 We perform a Bayesian analysis of the upper truncated power Lindley distribution based on type II censored data. 

Using various loss functions, including the generalized quadratic, entropy and Linex loss functions, we obtain Bayes 

estimators and their corresponding posterior risks. As tractable analytical forms of these estimators are out of reach, 

we propose Markov chain Monte-Carlo (MCMC) based simulation approach to study their performance. Moreover, 

given initial values for the parameters of the model, we obtain maximum likelihood estimators. Furthermore, we 

compare their performance with that of the Bayesian estimators using Pitman's closeness criterion and integrated 

mean square error. Finally, we illustrate our approach through an example with real data.  

Key Words: Truncated power Lindley distribution, Bayes estimators, loss function, Pitman criterion, Metropolis-

Hastings algorithm.  

 

1. Introduction 

"Truncated statistical distributions occur when a random variable X follows a known 

distributional model and a portion of the sample space is unavailable for observation. If no 

values of the random variable are observed below a certain lower limit, say  , the distribution is 

said to be truncated on the left at  . A truncated distribution is a conditional distribution that 

occurs when the statistical distribution's domain is limited. As a consequence, truncated 

distributions are used when occurrences are restricted to values above or below a given threshold 

or within a given range. When occurrences are restricted to values less than a certain threshold, 

the lower (left) truncated distribution is obtained. Similarly, if occurrences are restricted to 

values above a given threshold, the upper (right) truncated distribution rises up. (See, for 

example, Dusit and Cohen(1994)). Wingo (1988) proposed parameter point estimation for a 

doubly truncated Weibull distribution. Martinez (1991) investigated the maximum likelihood 

estimation (MLE) of parameters in the upper truncated Weibull distribution. Shalaby and El-

Yousef (1993) presented Bayesian parameter estimators for a doubly truncated Weibull 

distribution, and Shalaby (1993) discussed the estimation's Bayesian risk. Seki and Yokoyama 

(1993) addressed a robust estimation method for the Weibull  and truncated Weibull 
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parameters." "Balakrishnan and Mitra (2012) used the EM algorithm to estimate the parameters 

of the Weibull distribution when the model is truncated on the left and the data is censored on the 

right. Zhang and Xie (2011) investigated the properties of the truncated Weibull distribution and 

demonstrated its applicability to modelling lifetime data. Ahmed et al. (2010) proposed a 

truncated version of the Birnbaum-Saunders (BS) distribution and demonstrated that the 

truncated BS distribution is more appropriate than the classical BS model for describing 

commercial bank financial loss data. On the basis of real-world data, Singh et al. (2014) 

introduced the truncated version of the Lindley distribution and discussed the statistical 

properties of the proposed distribution, demonstrating that the truncated version of the Lindley 

distribution provides better modelling than the Weibull, Lindley, and exponential distributions."  

 

 

"Eltehiwy (2020) proposed the truncation in the power Lindley distribution proposed by 

Ghitany et al. (2013). Boudjerda et al. (2016) investigated the Bayesian analysis of the right 

truncated Weibull distribution with type II censored data and derived Bayes estimators and 

corresponding risks using symmetric and asymmetric loss functions. Aouf and Chadli (2017) 

investigated the Bayesian analysis of the generalised Lindley distribution with type II censored 

data, calculating Bayes estimators and corresponding risks with symmetric and asymmetric loss 

functions. Hamida and Hiba (2021) performed a Bayesian analysis of the upper truncated 

Zeghdoudi distribution based on type II censored data using various loss functions including the 

generalized quadratic, entropy and Linex functions. They obtained  Bayes estimators and the 

corresponding posterior risks." 

 

 "In this paper, we investigate the estimation of the upper-truncated power Lindley 

distribution, which is dependent on three parameters. There are two methods suggested. The first 

is the traditional maximum likelihood estimation method. The second is the Bayesian procedure, 

which is carried out using the generalised quadratic (GQ), entropy, and Linex loss functions. We 

compare the Bayesian estimators with respect to the posterior risks using an exhaustive Monte-

Carlo study. Then, for each loss function, we choose the best estimator. Using the Pitman 

closeness criterion and the mean squared error (MSE), these three Bayesian estimators are 

compared to maximum likelihood estimators."   
  

 "The rest of the paper is arranged into the following sections: In section 2, the truncated 

version of the power Lindley distribution, named  the upper truncated power Lindley (UTPL), is 

introduced. Section 3 deals with the maximum likelihood estimation. In section 4, we propose 

the Bayesian estimators under various loss functions. A Monte-Carlo study is proposed in section 

5. An application with real life data was provided in section 6."  
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 2. The truncated power Lindley distributions  

The probability density function of a random variable   having power Lindley 

distribution can be written as: 

                    (     )  
   (    )

   
        

 
              .                                         (1) 

It can easily be seen that at      , the Equation (1) reduces to the Lindley distribution. 

 

A distribution  (   ) is said to be a double truncated distribution over the interval ,   - 

if it has the cumulative distribution function (cdf) defined as 

                 (   )  
 (   )  (   )

 (   )  (   )
,                                                      (2) 

and probability density function (pdf) is  
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 (   )

 (   )  (   )
                                                        (3) 

 

where,  (   ) and  (   )  are the pdf and cdf of the baseline model and      denotes the 

vector parameter of base line model. Here, three cases can be recognized as  

I. When     and    , it reduces to baseline model. 

II. When    , it is called the upper truncated distribution of the baseline model. 

III. When    , it is called the lower truncated distribution of the baseline model. 

 

In this article, we consider the power Lindley distribution as baseline model with the following 

distribution function : 
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Using (2) and (4), the double truncated power Lindley distribution is defined as   

  (         )  
  

   

 (    )        
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     ,                     

 

 "In the following sections, we will only discuss the upper truncated power Lindley 

distribution. The upper truncated power Lindley distribution has the following pdf  given by"  
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It is denoted by UTPL(     ), and its cumulative distribution function is  

  

  (       )  
    (   ) (  

   

   
)    .  (     )/

(   (   )  )    
 ,                                                           

 

 

The corresponding hazard function at epoch t is given by 
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3. Maximum  likelihood estimation 

"Suppose that            is a type-II cencored sample of size   observed from 

lifetime testing experiment whose lifetime have the UTPL(     ) model. It assumed that  

parameters     and   are unknown, the likelihood function for the parameters is then" 
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1. If     then, equation (6) reduces to complete samples. By taking 

logarithm of Eq. (6), the log-likelihood function is  
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The maximum likelihood estimators   ̂  ̂ and  ̂of     and   are then the solutions of the  

following non-linear equations: 
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 "There is no analytical solution of this system. Then, we need numerical methods, such as 

Newton-Rahphson method to obtain approximate values of the maximum likelihood 

estimators’    ,     , and      of the parameters    and   respectively. If    , the normal 

equation in (8), (9) and (10) will reduce to the normal equations from complete sample in 

Eltehiwy (2020)." 

 

4. Bayesian estimation under different loss functions  

"Now, we deal with the problem of estimating the parameters     and   under the 

generalized quadratic (GQ), the Linex and the entropy loss functions. As the name suggests, 

informative priors are more informative than the non-informative priors and convey specific and 

definite information about the parameters. In our study, we assumed that the prior distributions 

of     and   are independent. This assumption of independence is not new in the Bayesian 

literature, e.g., Punt and Walker (1998),  Punt and Butterworth (2000) and Kundu and Mitra 

(2016). Since the parameters           are assumed to be unknown, the prior distributions for 

         are taken to be Gamma (     ) and Gamma (     ) respectively of the following 

forms:"  
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   "where         and    are called hyper-parameters. Moreover, we choose the improper prior 

of  , which not depend on ( ,  ) and given by  ( )=1/  . There is no objective motivation for 

choosing the gamma family as prior distributions, except for their exibility, tractability and for 

being natural conjugate priors for the exponential distributions. Other prior distribution may well 

be used. Then the joint prior distribution of     and   is given by"  
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The joint posteriors of     and   is obtained as follows, 
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"where K is the normalizing constant. We consider the generalized quadratic, the Linex and the 

entropy loss functions. The following table presents these loss functions and the expressions of 

the Bayesian estimators with the corresponding posterior risks (PR)."  

 

Table 1: the loss functions and the corresponding Bayesian estimators and the posterior risk of 

the parameters. 

Loss 
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Expression Bayes estimators Posterior risk 
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Under the generalized quadratic loss function assuming   ( )       , the Bayes estimators are 

given by the formulas: 
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The corresponding posterior risks are then 
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Notice that, when  = 1, we have the basic quadratic loss. Under the entropy loss function, we 

obtain the following estimators 
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The corresponding posterior risks are then  
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The corresponding posterior risks are 

  (  )   ( ̂   ̂ );    (  )   ( ̂   ̂ ) ;    (  )   ( ̂   ̂ ). 

 

"Since, we cannot calculate the analytical expressions of all these estimators; we will use MCMC 

procedures as Metropolis-Hastings algorithm in the following Monte Carlo section." 

 

5. Monte Carlo Study 
"In this section, we present some simulation results to compare the performance of the 

different estimations that are proposed in this paper. We compare the performance of the MLE 

and the Bayes estimators of the unknown parameters for the UTPL(     ) distribution under 

type II censored data. In this section, we perform a Monte Carlo study assuming that       

 ,         ,     ,   2 and      . Then, using N = 5000 samples of the upper 

truncated model and using 20% Censored Samples, we obtain the following results." 

 

5.1. Likelihood estimation 

 "Since analytical solutions are not available, to obtain the maximum likelihood estimators, we 

need to use numerical procedures. In this section, we will use the R package BB which is based 
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on the Barzilai-Borwein gradient method developed by Raydan (1997) to derive the numerical 

values of the MLE estimators.The MLE estimates along with the quadratic error, (         ̂)
 
, 

are summarized in table 2 as follows:"  

                                               
Table. 2: The MLE of the parameters with quadratic error (in brackets) 

    Parameter     
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"We remark that the estimated values of   and   are close to the true values of parameters. 

However, the estimation of   is somewhat close to the true value." 

 

5.2. Bayesian estimation 

  

 "The MCMC algorithm is used for computing the Bayes estimates of the parameters  ,   

and  . We consider the Metropolis-Hastings algorithm, to generate samples from the conditional 

posterior distributions and then compute the Bayes estimates. For more details about the MCMC 

methods see, for example, Upadhyaya et al. (2001) and Upadhyaya and Gupta (2010). From 

(13), the marginal posterior density of   is proportional to" 
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  respectively."  The full conditional distributions are not in standard distributional forms; 

therefore, we propose the use of MH algorithm to draw the random sample from the full 

conditionals. A hybrid algorithm of Gibbs and MH samplers consists of the following steps: 

Step 1. Set initial values    ,   and    for θ,   and  . 

Step 2. Using initial values    ,    and   , generate candidate points *            + 

respectively from the  proposal densities   ( 
    ) ,   ( 

    ) and   ( 
    ) where  (     ), 

  *     + is the probability of returning a value of    given a previous value of    . Here, we 

propose the use of asymptotic distributions of MLEs as proposal densities." 

Step 3. Generate a uniform variate on range 0 to 1, i.e.,     (   ). 

Step 4. Calculate Hastings-ratio using candidate point    and previous point    as given by   
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Step 5. Accept the candidate point as  
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  and  set     . 

 

 

Step 6. Now  using the current point   , calculate Hastings-ratio for the parameter   as given by  
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Step 7. Accept the candidate point as  
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Step 8. Now  using the current point   , calculate Hastings-ratio for the parameter   as given by  
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Step 9. Accept the candidate point as  
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" 

Step 10. Repeat Steps 2-9,  =5000 times and obtain posterior sample of size   for the 

parameters     and  .  

 

Step 11. Bayes estimates of      and   under generalized  quadratic loss, can be obtained as the 

mean of the simulated sample from their posteriors. Thus, the formulae to obtain Bayes estimates 

of     and   are given by"  
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The approximate Bayes estimates for     and   under entropy loss are given by 
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Also, The approximate Bayes estimates for     and   under Linex loss are given by 
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Here,    (burn-in period) is taken to be 1000. 

 

 

"It well known that rapid convergence is facilitated by choosing appropriate starting values. In 

order to guarantee the convergence and to remove the affection of the selection  of  initial value, 

the first    simulated variates are discarded. Then the selected sample are   ,    and   ,   
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      , for sufficiently large  , forms an approximate posterior sample which can be used to 

develop the Bayesian inference." 

 

 "Table 3 presents the Bayesian estimations and the corresponding posterior risks (PR), in 

brackets, under the generalized quadratic loss function. We remark that the value      gives 

us the best posterior risk and then improve the basic quadratic case. Also, we obtain the smallest 

suitable posterior risk when   is high." 

 

    Table 3: Bayes estimators and PR (in brackets) under generalized quadratic loss function 
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With the entropy loss function, we obtain the following table where we can notice that the value 

p = −0.5 and the cases n = 100 and n = 200 provide the best posterior risk. 
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Table 4: Bayes estimators and PR (in brackets) under entropy loss function. 
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Table 5: Bayes estimators and PR (in brackets) under Linex loss function. 
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(      ) 

         
(      ) 

       
(      ) 

       
(      ) 

       
(      ) 

       
(      ) 

       
(      ) 

       
(      ) 

       
(      ) 

         
(      ) 

       
(      ) 

       
(      ) 

       
(      ) 

       
(      ) 

       
(      ) 

       
(      ) 

       
(      ) 

 

    

 

    

         
(      ) 

       
(      ) 

       
(      ) 

       
(      ) 

       
(      ) 

       
(      ) 

       
(      ) 

       
(      ) 

         
(      ) 

       
(      ) 

       
(      ) 

       
(      ) 

       
(      ) 

       
(      ) 

       
(      ) 

       
(      ) 

         
(      ) 

       
(      ) 

       
(      ) 

       
(      ) 

       
(      ) 

       
(      ) 

       
(      ) 

       
(      ) 

 

"From table 5, one can notice that the value r = −0.5 provides the best PR. From tables 3-5, when 

the effective sample sizes (   ) are increase the PR of the all estimates based on Type-II 

censored data are decrease. If we compare the three loss functions, we notice that the entropy 

loss function provides the best Bayesian estimator of      and  . This is illustrated by the 

following table:" 

                 Table 6: Bayes estimators and PR (in brackets) under the three loss function 

    Parameter Generalized quadratic 

(    ) 
Entropy (  
    ) 

Linex 

(      ) 

 

10 

 

8 
         

(      ) 
       
(      ) 

       
(      ) 

         
(      ) 

       
(      ) 

       
       

         
(      ) 

       
(       

       
(      ) 

 

30 

 

24 
         

(      ) 
       
(      ) 

       
(      ) 

         
(      ) 

       
(      ) 

       
(      ) 

         
(      ) 

       
(      ) 

       
(      ) 

 

50 

 

40 
         

(      ) 
       
(      ) 

       
(      ) 

  1.1442 

(0.0675) 
       
(      ) 

       
(      ) 

         
(      ) 

       
(      ) 

       
(      ) 

 

100 

 

80 
         

(      ) 
       
(      ) 

       
(      ) 

         
(      ) 

       
(      ) 

       
(      ) 

         
(      ) 

       
(      ) 

       
(      ) 



 
 14 

 

 

200 

 

160 
         

(      ) 
       
(      ) 

       
(      ) 

         
(      ) 

       
(      ) 

       
(      ) 

         
(      ) 

       
(      ) 

       
(      ) 

 

5.3. Comparison with the likelihood estimators 

 "In this subsection, we propose to compare the best Bayesian estimators obtained above 

with the maximum likelihood estimator. For this, we propose to use the following criteria: the 

Pitman closeness (Pitman, (1937) Fuller, (1982) and Jozani, (2012)) and the mean squared error 

(MSE) defined as follows:" 

 

Definition 5.1 An estimator    of a parameter   dominates in the sense of Pitman closeness 

criterion another estimator   , if for all      

  ,             -     . 

Consider the estimates    (i=1… N) Obtained with N samples of the model. 

 

Definition 5.2 the mean square error is defined as 

    
∑ (    )

  
   

 
. 

"In the following, we present the values of the Pitman probabilities, which allow us to compare 

the Bayesian estimators with the MLE under the three loss functions where     , p = −0.5 

and r = −0.5. Table 8 should be read as follows: when the probability is greater than 0.5, the 

Bayesian estimator is better than the MLE estimator. Then, we notice that, according to this 

criterion:" 

-When n is not high, the Bayesian estimators    and    of    and   are better than the MLE’s 

     and     . The generalized quadratic loss function provides the best values.  However, 

     is closer to the true value than all the Bayesian estimators.  

- When n is high, the MLE of the three parameters performs better than the Bayesian estimators.  

 

                        Table 7. Pitman comparison of the estimators      and   . 

    Parameter Generalized quadratic 

(    ) 
Entropy (  
    ) 

Linex 

(      ) 
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  "Table 8 presents the values of the mean squared error of the Bayesian estimators of the 

parameters under the three loss functions, and the maximum likelihood estimators.  According to 

this criterion, when n is small, the Bayesian estimators    and     provide the smallest MSE for 

  and   comparatively to      and      . furthermore, the values provided by the generalized 

quadratic loss function are relatively equivalent to the entropy and linex. But, the MSE of      

is smaller than the MSE of the Bayesian estimators. If n is high, then, all the Bayesian estimators 

perform better than the MLE estimators, and the generalized quadratic loss function provides the 

best values of the MSE."  

 

                       Table 8. The MSE of the estimators      and   . 

    Parameter MLE Generalized quadratic Entropy  Linex 

 

   

 

  

                              

                              

                              

 

   

 

   

                              

                              

                              

 

   

 

   

                             

                              

                              

 

    

 

   

                              

                              

                              

 

    

 

    

                              

                              

                              

 

6. Application 

 "In this section, we consider a real-world data set to demonstrate how Bayesian 

estimation works in practice. Aljuaid (2013) obtained Bayes and classical estimators for two 

parameters of the exponentiated inverted Weibull distribution when the sample is available from 

a complete and type II censoring scheme. They analyzed real data sets for the purpose of 

illustration using the non-informative gamma priors for the parameters, that is , when the 

hyperparameters are zero."  
 

"In this section, we use the MCMC technique to estimate the unknown parameters of the 

distribution using the non-informative gamma priors under different loss functions as discussed 

in Section 5, assuming that,               0. R software was used to perform all 
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computations. The uncensored data set below consists of 46 observations reported on active 

repair times (hours) for an airborne communication transceiver discussed by Dimitrakopoulou et 

al. (2007). The entire data set is provided below:" 

  

0.2 0.3 0.5 0.5 0.5 0.5 0.6 0.6 0.7 0.7 0.7 0.8 0.8 1.0 1.0 1.0 

1.0 1.1 1.3 1.5 1.5 1.5 1.5 2.0 2.0 2.2 2.5 2.7 3.0 3.0 3.3 3.3 

4.0 4.0 4.5 4.7 5.0 5.4 5.4 7.0 7.5 8.8 9.0 10.3 22.0 24.5   

 

 "The truncation point is clearly known and equal 24.5 for complete data and 4.7 for censored 

data when the failure time, m=36. Estimates of the parameters of upper truncated power Lindley 

model  by MLE and Bayesian with three loss functions are given in the table 9 for activity repair 

time data. The PRs under Generalized quadratic, Entropy and Linex loss functions are presented 

in Table 10."  

 

Table 9: Likelihood and Bayesian estimation of the parameters under three loss of function. 

n m parameter MLE Generalized  quadratic Entropy Linex 

       ̂           6             

 ̂                         

 ̂ 2.488 2.531 2.501 2.605 

       ̂                       7 

 ̂     6           8       

 ̂ 2.548 2.563 2.516 2.616 

 

                           Table 10:  Posterior risk under the three loss function 

    Parameter Generalized  quadratic 

(    ) 

Entropy (  

    ) 

(      ) 

 

   

 

   

                       

                       

  0.0051 0.0042 0.0063 

 

   

 

   

                       

                       

  0.0087 0.0043 0.0094 

 

   "From  table 10, it is clear that the result based on real life data has a smaller amount of 

posterior risks for uncensored data as compared to censored data. This is because of the loss of 

information during the censoring. When the three loss functions are compared, the entropy loss 

function estimates are associated with lower amounts of posterior risks and provide the best 

Bayesian estimator of      and   . From tables 11, and 12, we conclude that the Bayesian  

performance by the three-loss functions method is better than the likelihood method." 
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                          Table 11. Pitman comparison of the estimators       and    

    Parameter Generalized quadratic 

(    ) 

Entropy (  

    ) 

Linex 

(      ) 

 

   

 

   

                    

                  4 

  0.478 0.395 0.397 

 

   

 

   

                    

                    

  0.348 0.351 0.328 

           

 Table 12 : The MSE of the estimators of  ,   and   

    Parameter MLE Generalized quadratic  

(    ) 
Entropy(      ) Linex (      ) 

 

   

 

   

       4                        

                               

  0.3857 0.3482 0.3693 0.3534 

 

   

 

   

                               

                               

  0.3761 0.3351 0.3033 0.3040 

 

7. Conclusion 

  "In this study, the MLE estimation and the Bayesian estimation based on the generalized 

quadratic, entropy and Linex loss functions for the unknown parameters of the upper truncated 

power Lindley distribution have been discussed based on the Type-II censored samples. In the 

Bayesian estimation, for each loss function, we obtained the suitable parameter, which optimises 

the Bayesian estimation. Then, our Monte Carlo study showed that the entropy loss function 

provides the smallest posterior risks. These selected Bayesian estimators are compared to the 

maximum likelihood estimators of the parameters using the Pitman closeness criterion and the 

mean square error. Then, using our exhaustive Monte Carlo procedure, we showed that when n is 

small, the Bayesian estimators are better for   and   and not for  . If   is high enough, the 

MLE’s are closer to the true values but provide the highest MSE than the Bayesian estimators. 

Finally, we illustrate our study with an example of real life data."  

 
Acknowledgements The authors would like to thank the  referees for carefully reading the paper 

and for their comments which greatly improved the paper. 

 

 

 

 



 
 18 

 

References 

1- Ahmed, S.E., Castro-Kuriss, C., Leiva, V., Sanhueza, A. (2010). A truncated version of the 

Birnbaum-Saunders distribution with an application in financial risk. Pakistan Journal of 

Statistics, 26(1), 293-311. 

 

2- Aljuaid, A. (2013).Estimating the Parameters of an Exponentiated Inverted Weibull 

Distribution under Type-II Censoring. Applied Mathematical Sciences, 7(35), 1721 – 1736. 

 

3- Aouf, F. and Chadli, A. (2017).  Bayesian estimations in the Generalized Lindley model. 

International Journal of Mathematical Models and Methods in Applied Sciences; 11, 26-32. 

 

4- Balakrishnan, N. and Mitra, D. (2012). Left truncated and right censored Weibull data and 

likelihood inference with an illustration. Computation Statistics and Data Analysis.56 (12), 4011-

4025. 

 

5- Boudjerda, K.,  Chadli,  A., Fellag, H. (2016). Posterior Analysis of the Compound Truncated 

Weibull Under Different Loss Functions for Censored Data. International Journal of 

Mathematics and Computers in Simulation, 10, 265-272. 

 

6- Dimitrakopoulou, T., Adamidis, K., Loukas, S. (2007). A lifetime distribution with an upside-

down bathtub-shaped hazard function. IEEE Transactions on Reliability, 56, 308- 311. 

 

7- Dusit, C. and Cohen, A.C. (1994). Estimation in the singly truncated Weibull distribution with 

an unknown truncation point. Communications in Statistics-Theory and Methods; 13 (7), 843-

857.  

8- Eltehiwy, A, M. (2020). The truncated power Lindley distribution: Model, Properties and 

Applications. هالمجلة العلمیة للدراسات والبحوث المالیة والإداری , (1) 5, 1-26. doi: 

10.21608/masf.2020.110992. 

9- Fuller, W.A. (1982). Closeness of estimators. Encyclopedia of Statistical Sciences,  2, Wiley. 

 

10- Ghitany, M., Al-Mutairi, D., Balakrishnan, N., Al-Enezi, L. (2013). Power Lindley 

distribution and associated inference. Computational Statistics and Data Analysis, 64, 20–33. 

 

11- Hamida, T and Hiba, A. (2021). On truncated Zeghdoudi distribution:posterior analysis 

under different loss functions for type II censored Data. Pakistan Journal of Statistics and 

Operation Research, 17 (2) 497-508. 

 



 
 19 

 

12- Jozani, M. J. (2012). A note on Pitman’s measure of closeness with balanced loss function. 

Statistics, 1-6. 

13- Kundu, D. and Mirta, D. (2016). Baysian inference of Weibull distribution based on left 

truncated and right censored data. Computational Statistics and Data Analysis, 99, 38-50.  

14- Martinez, S. (1991).On a test for generalized upper truncated Weibull distributions. Statistics 

& Probability Letters 12(4):273-279. 

 

15- Pitman, E. (1937). The closest estimates of statistical parameters. Mathematical Proceeding 

of the Cambridge Philosophical Society, 33(2), 212-222. 
 

16- Punt A. E, Butterworth D. S. (2000). Why do Bayesian and maximum likelihood 

assessments of the Bering–Chukchi–Beaufort Seas stock of bowhead whales differ?. Journal of 

Cetacean Research and Management, 2 (2),125–133. 

 

17- Punt A. E, Walker T. I. (1998). Stock assessment and risk analysis for the school shark 

Galeorhinus galeus (Linnaeus) off southern Australia. Marine and Freshwater Research. 49(7), 

719–731. 
 

18- Raydan, M. (1997). The Barzilai and Borwein Gradient method for the large scale 

unconstrained minimization problem. SIAM Journal of Optimization, 7 (1), 26–33. 

 

19- Seki, T and Yokoyama, S. (1993). Simple and robust estimation of the Weibull distribution 

.Microelectronics. Reliability,33, 45-52.  

 

20- Shalaby, O. A., and EL-youcef. (1993). Bayesian analysis of the parameters of doubly 

truncated Weibull distribution, Microelectronics Reliability, 33(8),1199-1211.  

 

21- Shalaby, O. A. (1993). The Bayes risk for the doubly truncated Weibull distribution. 

Microelectronics. Reliability, 33 2189-2192. 

 

22- Singh, S. K., Singh, U., and Sharma, V. K. (2014). The truncated Lindley distribution: 

Inference and application. Journal of Statistics Applications & Probability, 3(2), 219-228. 

 

23- Upadhyay, S. K, Vasishta, N., and Smith, A. F. M. (2001). Bayes inference in life testing 

and reliability via Markov chain Monte Carlo simulation.  Sankhya A, 63(1), 15-40. 

 



 
 20 

 

24- Upadhyay, S. K and Gupta, A. (2010). A Bayes analysis of modified Weibull distribution via 

Markov chain Monte Carlo simulation. Journal of Statistical Computation and Simulation, 80, 

241 – 254. 

 

25- Varadhan, R and Gilbert, P. (2010). An R package for solving a large system of nonlinear 

equations and for optimizing a high-dimensional nonlinear objective function. Journal of 

Statistical Software, 32(4), 1-26. 

  

26- Wingo. D.R. (1988). Parametric point estimator for a doubly truncated Weibull distribution. 

Microelectronics Reliability, 28 (4), 613-617. 

 

27- Zhang T. and Xie M. (2011). On the upper truncated Weibull distribution and its reliability 

implications. Reliability Engineering and System Safety, 96, 194–200. 


