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Abstract: Skin lesion semantic segmentation is a vital process that aims to identify each pixel in the input image whether 

it belongs to the foreground (lesion skin) or background (normal skin). Skin lesion image segmentation is an essential step 

in the medical image analysis domain for use in radiotherapy to enhance diagnostic radiology. Misclassified border pixels 

cause a significant reduction in the global accuracy because they maybe belong to the foreground or background. The aim of 

this paper is to improve the skin segmentation results at border pixels by building a deep fully convolutional network fed 

with gradient skin images instead of traditional color images. The proposed segmentation network produces a binary 

predicted output image with efficient inference at all image pixels while giving extra attentions to border pixels. The 

appropriate gradient components of the input skin image are employed to train one of the famous deep convolutional neural 

networks called U-Net with some modifications. Dice loss function is utilized to train the network instead of cross entropy 

network in order to improve the performance segmentation results especially in the border pixels. Several experiments are 

conducted using the ISIC 2018 dataset to evaluate the performance of the proposed network compared to other state-of-

the-art approaches. 
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1 Introduction 

Recent medical statistics indicate a significant increase 

in the number of people diagnosed with skin cancer , , 

which poses a threat to their lives, especially if these 

infections are discovered in advanced stages. Therefore, 

early detection of this infection contributes significantly to 

avoid serious consequences and thus preserve the lives of 

patients. However, the manual diagnosis of such cases is 

considered ineffective method because it requires long time 

and high medical experience in this field. Therefore, 

researchers have resorted to developing a Computer-Aided 

Diagnostic (CAD) system capable of accomplishing this 

task [1, 2, 3, 4], but in a faster time with higher accuracy. 

Automatic segmentation for lesions is an essential step as it 

prepares the data for the lesion classification stage and help 

the dermatologist in making decision. 

The skin lesion segmentation methods face many 

obstacles [5, 6, 7] that hinder the performance of the 

segmentation process with high accuracy. Investigating 

images in popular skin lesion databases
1
 reveals that there is 

a clear color contrast between the portions that represent the 

lesions in the images. In addition to the differences in the 

colors of the portions that represent the background, there 

are also differences in the texture, shape, position, and 

borders of the lesions. Moreover, there are also some 

variations related to the patient himself, such as color, 

texture, position, and size of the skin lesion. It was also 

found that the database images contain some external 

obstacles such as body hair, air bubbles, ruler marks, 

markers sign, uneven shading, some dark corners, ink marks, 

blood vessels, and colored lights. Recent medical statistics 

indicate a significant increase in the number of people 

diagnosed with skin cancer , , which poses a threat to their 

lives, especially if these infections are discovered in 

advanced stages. Therefore, early detection of this infection 

contributes significantly to avoid serious consequences and 

thus preserve the lives of patients. However, the manual 

diagnosis of such cases is considered ineffective method 

because it requires long time and high medical experience in 

this field. Therefore, researchers have resorted to 
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developing a Computer-Aided Diagnostic (CAD) system 

capable of accomplishing this task [1, 2, 3, 4], but in a faster 

time with higher accuracy. Automatic segmentation for 

lesions is an essential step as it prepares the data for the 

lesion classification stage and help the dermatologist in 

making decision. shows samples of variations in skin 

lesions. 

In an attempt to overcome the problems of skin lesion 

related to color contrast variations and irregularity of the 

lesion boundaries, we applied a preprocessing operation to 

the skin images before using them in the training of the 

proposed network architecture. The pre-processing 

operation computes the gradient representation of the RGB 

skin image and feeds it to the proposed network. The 

suggested network architecture, called gradient U-Net (GU-

Net) is based on the well-known U-Net model. The gradient 

U-Net architecture (GU-Net) uses spatial attention units in 

the links between the encoder and decoder paths to focus on 

the location of the lesions in the images. The use of spatial 

attention units improves the network’s ability to determine 

the correct boundaries of the lesions. In addition, the Atrous 

Spatial Pyramid Pooling (ASPP) block is used in the 

bottleneck stage to capture multi-scale skin lesion 

representation information. The following is a list of 

contributions used to address the obstacles faced in 

segmentation of skin lesion 

1. Exploiting gradient skin images instead of 
color images to feed the proposed modified U-Net model.  

2. Using spatial attention units in the links that pass 
form encoder to the decoder paths. 

3. Using spatial Atrous convolution mechanism in the 
bottleneck stage of the suggested architecture. 

4. Experiments were carried out on the ISIC 2018 
dataset and the results are compared with the recent 
methods. 

The organization of the paper is as follows. Section 2 

outlines some related works. In Section 3, the original and 

the modified U-Net model is explained. The experimental 

results are presented in Section 4. Finally, the conclusion is 

presented in Section 5. 

2 Related work 

In this section, we review methods related to the skin 

segmentation field and based mainly on deep learning 

architectures and edge detection methods. 

2.1 Deep learning techniques for skin lesion 

segmentation 

In 2015, Ronneberger et al. work [8] is considered an 

important achievement in the field of medical image 

segmentation. They presented a network with training 

strategy based on data augmentation. This network consists 

of two paths (1) encoder path to obtain spatial feature 

information and (2) similar decoder path to find exact object 

localization. Their network is fast and the structure 

outperforms the previous best method and achieved the best 

results in the 2015 challenge of ISBI cell tracking in 

electron microscopic stacks and in transmitted light 

microscopy images (phase contrast and DIC) categories. 

Later, U-Net network become the model that has been relied 

on by many methods recently. 

Abraham et al. [9] introduced a focal Tversky cost 

function to increase the balance between precision and 

recall semantic segmentation performance metrics. They 

developed an attention U-Net model [10] by merging each 

Figure 1: Example of obstacles in skin lesion image segmentation 
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scale of the input image pyramid into model construction. 

Their method outperformed the baseline U-Net in Dice 

scores and introduced low standard deviations for balanced 

precision-recall scores. Liu et al. [11] proposed an efficient 

skin lesion segmentation based on the improved U-net 

model and their method achieved the latest performance in 

the skin lesion segmentation task. Hashemi et al. [12] 

trained a 3D U-net with an asymmetric similarity loss layer. 

They applied wide-overlapping patches of the image as 

inputs for extrinsic and intrinsic data augmentation. They 

succeed to ease the data imbalance problem and reach a 

much better trade-off between recall and precision. Dash et 

al. [13] suggested a cascaded deep convolutional neural 

network based automated CAD procedure for psoriasis 

segmentation, recognition, and severity evaluation. The 

adjusted U-Net and modified VGG-16 models are used for 

the implementation and training of segmentation and 

classification tasks, respectively. Their modified VGG 

model produced higher classification accuracy using lower 

trainable parameters and shown superior performance for 

both binary and multiclass classification methods. In [14], 

authors proposed three variants of the U-Net model using 

multiple encoders and a single decoder architecture. Each 

encoder is fed with different color space of the input image 

to handle skin lesion color variation problem. Later, this 

work was extended to combine gradient and color 

information using the dual gradient-color U-Net (DGCU-

Net) [15] architecture. 

2.2 Edge detection-based methods for skin 

lesion    segmentation 

In this part, we will consider in some detail relevant 

works that adopted the edge detection technique in their 

proposed approaches. Barcelos et al. [16] presented a 

segmentation approach that merges non-linear diffusion 

equations and the Canny edge detector to automatically 

identify the boundary of the skin lesion. They obtained 

smooth skin image while keeping the boundaries of interest 

to create an accurate edge detection. The experimental 

results showed that the suggested approach is effective and 

can be implemented for images of skin lesions on grayscales 

and color. Their method localized lesion boundaries 

automatically from images involving hair and noise. 

Sheykhahmad et al. in [17] introduced an efficient method 

to detect borderline of skin lesion image. They introduced a 

narrative approach based on image processing that mixes 

edge detection and the thresholding procedure for skin 

lesions detection. Their technique produced efficient 

discrimination of skin lesions and the experimental results 

indicate the power of the suggested model. Yasmin and 

Sathik [18] have developed advanced iterative segmentation 

methods that use a canny edge detector to detect the 

borderline of certain skin lesions to accelerate the early 

detection of malignant melanomas. Their work is compared, 

and the experimental results indicate good border detection 

of noisy skin lesions by their suggested advanced iterative 

segmentation method utilizing the canny detector. Their 

model was extremely reliable compared to other 

segmentation methods that adopted Canny detector. Pereir 

et al. [19] has focused on segmentation of skin lesion 

images, using both histogram-stretching and clustering 

methods to reduce their limitations. A gradient-based 

technique was invented for optimized thresholding and ROI 

border quality parameter. The obtained segmentation results 

indicated that this approach is very appropriate for 

delineating parts of the related lesion that comprise a large 

in recognizing boundaries of the lesion and was more 

powerful for artifacts in the image. They compared their 

designed method with dermatologist’s manual border 

drawings, the result was 87.7% for the average dice. 

3 Methodology 

3.1 Skin lesion image pre-processing 

The aim of this work is to enhance the U-Net 

architecture segmentation performance, especially at the 

border pixel regions. To achieve this goal, we applied an 

image gradient conversion as a pre-processing step to the 

input images fed to the modified U-Net architecture. This 

conversion is described as follows: 

An image gradient is a term that describes a continuous shift 

from light to dark, or dark to light for a single color, or from 

one color to another in an image. This shift refers 

specifically to the intensity. This means that a single color 

will go from maximum intensity to minimum intensity. For 

images of skin lesions, this change in color or intensity is 

important for lesion borderline detection. Usually, two-

directional images can be generated to capture horizontal 

and vertical changes for any image. When talking about the 

image gradient, several kernels can be used to approximate 

the gradient vector. The gradient of any image has two 

components, which are the horizontal Gx and vertical Gy 

gradients. Gx is the partial derivative in the X direction, 

while Gy is the partial derivative in the Y direction. The 

gradient of skin image can be computed by convolving 

image I with two kernels Kx and Ky. These kernels are used 

to calculate Gx and Gy gradients by applying the following 

equation: 

            𝐺𝑥 = 𝐼 × 𝐾𝑥    ( 1) 

                 
               𝐺𝑦 = 𝐼 × 𝐾𝑦                                      ( 2) 

 
The kernels that are used to approximate these two 

components include Prewitt, Sobel, the central kernel, and 

the intermediate kernel. The Prewitt kernel was first 

proposed in 1970 and its values for the Gx component as: 
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𝐾𝑥 = [
1 0 −1
1 0 −1
1 0 −1

]                                  ( 2) 

And for the Gy component as 

𝐾𝑦 = [
1 1 1
0 0 0

−1 −1 −1
]                           ( 3) 

This type of kernel deal better with noise because both 

of these kernels are normal one-dimensional kernels that 

approximate the derivative in a certain direction convolved 

with a smoothing kernel to smooth the image. Another 

kernel is Sobel that was proposed in 1980. It is the most 

famous kernel and was used in most edge-detector 

applications. Sobel kernel also based on the same idea like 

Prewitt kernel (derivative part and smoothing part) but with 

different values. 

𝐾𝑥 = [
1 0 −1
2 0 −2
1 0 −1

]                                            ( 4) 

And for the Gy component as 

𝐾𝑦 = [
1 2 1
0 0 0

−1 −2 −1
]                                    ( 5) 

The smoothing part in the Sobel kernel is the Gaussian 

kernel, and this explains the superior performance of the 

Sobel kernel. The central operator or ’central difference 

gradient’ is one of the gradient operators where a gradient of 

a pixel is computed as a weighted difference of neighboring 

pixels. Using this operator, Gx is given by: 

 

𝐆𝐱 = 𝐈(𝐱 + 𝟏) −
𝐈(𝐱−𝟏)

𝟐
                               ( 6) 

while, Gy equals 

 

𝐆𝐲 = 𝐈(𝐲 + 𝟏) −
𝐈(𝐲−𝟏)

𝟐
                                  ( 7) 

Likewise, Intermediate or ’Intermediate difference 

gradient. The gradient of a pixel is calculated as the 

difference between an adjacent pixel and the current pixel. 

So the vertical gradient is given by the following formula: 

 
𝐺𝑦 = 𝐼(𝑦 + 1) − 𝐼(𝑦 − 1)                            ( 8) 

while, the horizontal gradient Gx equals 

 
𝐺𝑥 = 𝐼(𝑥 + 1) − 𝐼(𝑥 − 1)                           ( 9) 

When dealing with a gradient image, sometimes we need 
more gradient information like, how quickly the image is 
changing? and in which direction the image is changing 
most  

high-level features, and in the decoder, the size of the 
feature map rapidly? To answer these questions, we should 
calculate the gradient magnitude Gm and direction Gdir 
for the image. Using Gx and Gy, the magnitude of the 

gradient Gm can be written as the following formula: 

 
𝐺𝑚 = √𝐺𝑥

2 + 𝐺𝑦
2                                            ( 10)   

and the gradient direction Gdir 
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𝐺𝑑𝑖𝑟 = 𝑡𝑎𝑛−1 (
𝐺𝑦

𝐺𝑥
)                                        ( 11) 

Figure 2 shows the gradient components using different 

gradient operators for an image of skin lesion. 

Proposed Gradient U-Net (GU-Net) 

Architecture  

The structure of original U-Net model is a symmetric 
design and from that its name was derived (i.e., U letter). It 
consists of two corresponding paths, an encoder path, 
which extracts the features, and the decoder path, which 
builds up a mask from the features. These two paths are 
interconnected with each other to enrich features used for 
classification. Both paths have four convolution blocks. In 
the encoder subnetwork, every block involves two 
convolution layers that use the ReLU activation function 
and a max-pooling layer that shrinks the feature map size 
by half. In the decoding procedure, every block is initiated 
with a deconvolution layer to double the dimensions of 
each feature map while reducing the collection of feature 
maps by half. Going through the encoder path, the Going 
through the encoder path, the number of filters is doubled; 
conversely, the number of filters shrinks as the decoder 
reaches the prediction layer. Therefore, in the U-Net, there 
is a concatenation layer that joins feature maps of the same 
volume in the two paths. This merger contributes to obtain 

extra details that are required for perfect segmentation. 
shows the main structure of our designed GU-Net. The 
encoder path progressively reduces the size of the feature 
map to derive gradually increases to fit the mask size. 
However, the suggested structure involves some 
improvements in the original U-Net to establish a better 
convenient for detecting and extracting the boundary 
pixels that represent the lesion edge, hence improving its 
performance and accuracy. The proposed GU-Net network 
accepts the pre-processed input image and passes it 
through the four levels of the encoder, where the number 
of applied filters is duplicated at each level, starting from 
64, 128... until reaches 512 at the end of last (fourth) level 
of the encoder. The resulting feature maps of each level 
pass through a spatial attention unit to focus on the spatial 
features of the lesion images. Then, the resulted maps are 
concatenated with their corresponding feature maps on the 
decoder path. The final level of encoder feature maps 
passes through the Atrous Spatial Pyramid Pooling (ASPP) 
block with different rates before reaching to the first level 
of the decoder where there is a deconvolution layer at the 
beginning of each block. After each deconvolution layer, 
two convolution layers are implemented to cut down the 
number of feature maps. The last layer is a convolution 
layer with kernel 1×1 and the total number of feature maps 
The last layer is a convolution layer with kernel 1×1 and 

Figure 2: Example of skin lesion image gradient components (Gx, Gy, Gm, and Gdir) using Sobel kernel 
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the total number of feature maps equals 2, which is proper 
for two-class segmentation process. In the following, we 
will summarize our modification on the traditional U-Net. 

 

 At the beginning, the input image to the network 
should be pre-processed by calculating the 
gradient components (Gx, Gy) of the image.   

 Replacing the bottleneck stage in the traditional 
U-Net by five successive atrous spatial pyramid 

pooling layers with different dilated rates. 

    
 Adding a spatial attention unit before each 

concatenation layer in each level of the 
connection between encoder and decoder paths. 

 Finally, adding a spatial attention unit before the 
soft- max layer at the end of decoder path.  

 

 

3.2.1 Spatial Attention Unit 
 

At the lower layers on the encoder path of the U-Net, 

we have more spatial information which provides the 

context features of the image. Thus, when the concatenation 

is done through the skip connection, it combines the spatial 

information from the down-sampling path with the 

corresponding up-sampling features path. This mechanism 

is very helpful for providing rich spatial information. 

Therefore, including spatial attention units before doing 

concatenation is the most suitable location to get the best 

context information extraction. 

 

The spatial attention unit was presented by Bahdanau 

et al. [21] to enhance the representation strength of context  

 

features. This is done by passing the encoder feature maps 

Fc×h×wto max-pooling layer to get Fmax
1×h×w and the average 

pooling layer to get Favg
1×h×w. Then a concatenation is applied 

to both of the pooled features Fmax, avg before sending 

them to the convolution layer that is followed by the 

sigmoid activation function. The final spatial attention 

features FSFM are obtained by applying the element-wise 

multiplication between the output of the sigmoid function 

SAM and the encoder feature maps entered F as shown in 

Using spatial attention units helps to create highly accurate 

and logical semantic features and pick out the most relevant 
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information to feed into the decoder path. The following 

equations describe the steps used to calculate spatially 

attentioned feature maps: 

 

𝐹𝑚𝑎𝑥,𝑎𝑣𝑔 = 𝑐𝑜𝑛𝑐𝑎𝑡(𝑚𝑎𝑥𝑝𝑜𝑜𝑙(𝐹), 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑝𝑜𝑜𝑙(𝐹))   ( 12) 

𝑆𝐴𝑀 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑅𝑒𝐿𝑈(𝐶𝑜𝑛𝑣. (𝐹𝑚𝑎𝑥,𝑎𝑣𝑔)))   ( 13) 
𝐹𝑆𝐹𝑀 =F ⨂ 𝑆𝐴𝑀  

 ( 14) 

3.2.2 Atrous Spatial Pyramid Pooling (ASPP) 
 

In deep learning, it is necessary to transform the input 

data and reduce the dimensionality so that the model can 

learn more high-level features. Most of the convolutional 

neural networks used for segmentation/classification tasks 

perform multilevel convolution with a stride operation to 

create high-level features. Another way of down-sampling 

feature maps is by using max grouping with a window size 

2×2 and stride 2. However, subsequent pooling processes 

cause the feature map to lose a lot of information. To avoid 

this problem, a dilated convolution using Atrous filters can 

be employed instead of regular convolutions. In regular 

convolution, we take a patch of an image that may be of size 

3×3 and then multiply it by the kernel of the same size to 

obtain one output value in the output image. But with the 

dilated convolution, the image that we get is equally sparse. 

This is done by putting zeros in-between pixels of the 

kernel, which leads to an increase in the field of view. 

Actually, increasing the field of view is useful to capture a 

larger context of the image if we want to accomplish 

classification or segmentation of large objects. In the dilated 

convolution, we stack multiple 3×3 convolutions with 

various dilation rates. Therefore, with the dilated 

convolution, we can adjust the field of view with the 

dilation rate parameter. Increasing the dilation rate will add 

more zeros in the kernel and hence increase its effective 

field of view. One advantage of using dilated convolution is 

that we use the same number of parameters and the same 

amount of computations while keeping the data resolution 

of the output. The first presentation of the idea of atrous 

convolution or dilated convolution was in [22, 23]. 

Traditional Convolution is similar to the Atrous convolution 

with a rate ratio of r=1. Figure 5 shows how the atrous 

convolution technique appears at various rates. ASPP block 

consists of successive atrous convolution layers with 

different rates connected in serial. Figure 6 displays the 

structure of the ASSP used in the bottleneck stage in our 

proposed GU-Net. It consists of five blocks connected in a 

serial manner; each block has a 3 × 3 convolution layer with 

different rates followed by a ReLU activation function and 

batch normalization layer with a number of filters equal to 

1024. the rate r takes the values 1,2,4,8,16 respectively to 

output feature map of size 16 × 16 × 1024. 

3.2.3 Dice loss function  

 
Dice coefficient is a very important statistical metric to 

evaluate segmentation results with a large set of images. It 

is defined as 2 multiplied by the overlapped area between 

predicted and ground truth mask images divided by the total 

number of pixels in both predicted mask images (X) and 

ground truth (Y). Mathematically it is given by: 

             𝐷𝑖𝑐𝑒 =
2|𝑋∩𝑌|

|𝑋|+|𝑌|
         ( 15) 

where the |X ∩ Y| is the common pixels between X and Y. 

While X + Y are all pixels in X and all pixels in Y. The first 

version of Dice coefficient was Sørensen–Dice coefficient. 

The metric value ranges from 0 which indicate no overlap to 

1 which indicates perfect overlap. 

When using Boolean data and TP, FP, FN metrics, the 

equation 16 can be reformulated as: 

 

                    D𝑖𝑐𝑒 =
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
       ( 16) 

where FN, TP, and FP denote false negatives, true positives, 

Figure 3: The structure of ASSP used in the proposed GUNet. 
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and false positives, respectively. From Eq.              𝐷𝑖𝑐𝑒 =
2|𝑋∩𝑌|

|𝑋|+|𝑌|
         ( 15), we conclude that FP and FN have equal 

weights for the precision and recall trade-off. The dice loss 

function is calculated from the following formula: 

                               𝐿𝐷𝑖𝑐𝑒 = 1 − 𝐷𝑖𝑐𝑒       ( 17) 

 

                          𝐷𝑖𝑐𝑒 =
2 ∑ ∑ (𝑋𝑖𝑐𝑌𝑖𝑐)𝐶

𝑐=1
𝑁
𝑖=1

∑ ∑ 𝑋𝑖𝑐
2𝐶

𝑐=1
𝑁
𝑖=1 +∑ ∑ 𝑌𝑖𝑐

2𝐶
𝑐=1

𝑁
𝑖=1

( 19) 

 

            𝐿𝐷𝑖𝑐𝑒 = 1 −
2 ∑ ∑ (𝑋𝑖𝑐𝑌𝑖𝑐)𝐶

𝑐=1
𝑁
𝑖=1

∑ ∑ 𝑋𝑖𝑐
2𝐶

𝑐=1
𝑁
𝑖=1 +∑ ∑ 𝑌𝑖𝑐

2𝐶
𝑐=1

𝑁
𝑖=1

                    ( 18) 

In which Yic and Xic represents i values of the expected and 

actual values at a specific class c, respectively. Dice loss is 

used efficiently to address the data imbalance situations 

between the foregrounds and background pixels and 

achieved good results in the semantic segmentation tasks. 

So, we adopted it as a loss function in our proposed model 

and used the available Matlab function2.  

4
https://www.mathworks.com/help/vision/ref/nnet.cnn.

layer dicepixelclassificationlayer.html 
5
https://isic-challenge-

data.s3.amazonaws.com/2018/ISIC2018 

Task1-2 Training Input.zip 

 

4 Experimental results 

This section explains in details the results of the 

experiments conducted using our introduced (GU–Net) on 

ISIC 2018 dataset and the comparisons with other recent 

algorithms that used the same dataset to make fair 

comparisons. 

4.1 Dataset 

The performance of GU-Net model is verified using 

ISIC 2018 dataset
3
 that was produced by the International 

Skin Imaging Collaboration (ISIC) as a large-scale 

 
 

 

dermoscopy images dataset. It contains a 2594 JPG RGB 

images with ranged dimensions from (576×768) to 

(6748×4499). We separated the available training set images 

into (2076) images (80%) for training and (518) images 

20% for testing with size (256×256). Figure 5  shows some 

sample images from ISIC 2018 dataset. 

4.2 Implementation details 

In our implementation, we used MATLAB software  

 

 

 

package running on desktop with 16 GB RAM, Intel 

Core i7 processor, and NVIDIA RTX 2080 Ti GPU card 

with 11 GB memory. The implemented network structure 

was the same as explained in the previous section. The 

training parameters used to train GU-Net model include 

initial learning rate = 0.05, 4 for mini-batch size, SGDM 

optimizer with 0.9 momenta, and 30 epochs using the dice 

loss function, without data augmentation. All these 

parameters were chosen after performing various 

experiments to find the optimal values for each parameter. 

4.3 Evaluation metrics 

Six evaluation metrics are used to evaluate the 

performance of the introduced GU-Net, including Dice 

Similarity Coefficient score (Dice)        ( 16, Sensitivity 

(Se), Specificity (Sp), Accuracy (Acc), Jaccard Coefficient 

(Jac), and Area under curve (AUC). Sensitivity measures 

the capability of a model to accurately determine lesions. 

Specificity measures the ability of a model to correctly 

identify the background without the lesions. Accuracy 

measures the ability of the model to differentiate infected 

pixels from healthy pixels correctly. Jaccard Coefficient 

measures the similarity for the predicted images and the 

corresponding ground truth, with a range from 0% to 100%. 

AUC measures the area under the receiver operating 

characteristic (ROC) curve. These metrics are defined with 

the following formulas: 

Figure 4: Example of three 3×3 dilated convolutional kernel 

https://www.mathworks.com/help/vision/ref/nnet.cnn.layer
https://www.mathworks.com/help/vision/ref/nnet.cnn.layer
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𝐽𝑎𝑐(𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐼𝑂𝑈) =
𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁
                        ( 19) 

 

𝐴𝐶𝐶 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
                                                ( 20) 

𝑆𝑝 =
𝑇𝑁

𝐹𝑃+𝑇𝑁
                                                                 ( 21) 

𝑆𝑒 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                 ( 22) 

𝐴𝑈𝐶 =
𝑆𝑒+𝑆𝑝

2
                                                              ( 23) 

 

 

 

 

 

4.4 Studying the effect of changing the input 

gradient component on the proposed GU-Net: 

 
 In this experiment, we present the results obtained by 

altering the components of the gradient image on the 

designed GU-Net. We conduct this experiment by applying  

varied combination of Sobel kernel gradient 

components including Gx, Gy, Gm, Gdir, GxGy, and 

GmGdir. Table 1 demonstrates the results of the evaluation 

of each gradient component and the results of the 

combination of two complementary components. Results 

indicate that combining Gx and Gy components performs 

better than the alternative components in all evaluation 

metrics. 

    Table 1: Segmentation results by changing the input 

gradient component of the proposed GU-Net 

 

4.5 Studying the effect of changing Gradient 

kernel on the proposed GU-Net: 

 This experiment examines the effect of varying gradient 

kernel on the performance of GU-Net model. This 

experiment is conducted by applying GxGy gradient images 

on various kernel types. shows the evaluation results for 

each kernel. The results indicate that the Prewitt kernel 

gives the best results in comparison to other kernels. These 

results conclude that the combination of GxGy gradients of 

the Prewitt kernel improves the segmentation results of skin 

lesion.  

 Table 2: Evaluation metrics with different kernels of GxGy 

gradient images 

Gradient 

component 
Acc% TPR% TNR% Dice% Jacc% AUC% 

Gx 92.87 81.25 96.64 84.81 86.82 88.95 

Gy 93.20 84.08 96.16 85.84 87.46 90.12 

GxGy 93.75 83.04 97.23 86.68 88.32 90.13 

Gm 91.88 76.33 96.92 82.15 85.04 86.62 

Gdir 89.82 66.66 97.33 76.23 81.40 81.99 

GmGdir 90.83 70.14 97.54 78.94 83.12 83.84 

Figure 5: Sample skin images from ISIC 2018 dataset and their corresponding ground truth 
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4.6 Comparison with other state-of-the-art 

Approaches  

The performance of several state-of-the-art methods is 

compared with our proposed GU-Net method. shows the 

results of various evaluation metrics for our proposed 

method. The table demonstrates the superiority of our 

results over other compared methods in the Jacc index, 

where it achieved 88.50%. Other evaluation metrics 

achieve competitive results with state-of-the-art approach in 

[24]. 

Table 3: comparison with some recent methods 

 

5 Conclusion 

In this work, we introduced a novel gradient model 

based on the U-Net architecture called (GU-Net) for skin 

lesion image segmentation. GU-Net takes full advantage of 

the characteristics of the U-Net architecture to extract the 

high-level features of the image. Additionally, selecting the 

optimum gradient kernel and components (GxGy) and the 

modifications applied to the traditional U-Net structure have 

enhanced the performance of the network. Proposed GU-

Net can distinguish the boundaries of the lesions within 

images well and differentiate them from the healthy pixels. 

Our work achieved state-of-the-art performance on the ISIC 

2018 dataset in Jaccard coefficient. The use of gradient 

components of the image and the use of spatial attention 

units helped GU-Net to make network better focusing on the 

borderline of skin lesions.  
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