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ABSTRACT 
The fourth order three component partial differential equations of vorticity transport in terms of 
three-dimensional stream function vector components are formulated. The generalized Galerkin 
finite element solutions of the governing equations for incompressible flow is then carried out, and 
the results are shown to be very accurate for the lid-driven three-dimensional cavity problems 
examined herein. This numerical accuracy is attributed to the correct definition of three-
dimensional stream function vector components, appropriate finite element interpolation functions, 
associated physically simple boundary conditions, and the rigorous Newton-Raphson scheme of 
solution process, as well as the governing equations being free from pressure oscillations. To the 
best of our knowledge, the present study marks the first attempt to solve the three-dimensional 
fourth order partial differential equations of voilicity transport for the three-dimensional stream 

function vector components. 
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1. INTRODUCTION 

The precise theoretical arguments for the stream function in three dimensions are 
impo

fou
rtant

rth order 
when 

the momentum equations are written in terms of stream function(s), leading to the  
partial differential equations. In two dimensions, the two momentum equations result in a single 
bihannonic equation in terms of a single scalar stream function. Obviously, this is not the case in 
three dimensions. This is because we must deal with streamlines parallel to each of the three 
components of the three-dimensional velocity vector. Thus, it is necessary that the stream function 
be expanded into three components with each component corresponding to each of the three 
velocity components. The existence of three-dimensional stream function vector IP associated 
with the three-dimensional velocity vector have been justified (1-3J. 
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V= Vw x n=V OP= eijk 	 (1) 

= (2) 

W ...is a scalar stream function and n ...is a unit normal vector. 
The stream function vector 11/ and its components 41, described on each surface designated 
by n; as (see Fig. lb): 

= 	 (i = 1, 2, 3) 
with 

= 	= 1// fi2  , and T3  = 1// 113 	 (3) 

Note that Eqs. (1) satisfies identically the conservation of mass in steady state and reduce 
automatically to the two-dimensional incompressible flow in terms of a single stream function 
yr q13  

dy/ ., 	y a u = _ 	
n3  = 	(n3  = 1 on 113  surface) 	 (4) a y 	a y 

dy / ,, 

3 	
0 w v 	 (i, = 1 on fi, surface) 	 (5) a x 	ax 

The vorticity vector assumes the form 

co =V xV=V x(Vx‘P)=V(V-41) — 	= — VIP 	 (6) 

where (V •IP) = 0 arises simply from the geometrical property, V 	= 0 in Fig. l a. Thus, an 
irrotational ideal flow in three-dimensions can be given by VT = 0 in terms of three-dimensional 
stream function vector. 
In the past, solutions of three-dimensional incompressible flows were obtained using the second 
order partial differential equations of momentum with either velocity-pressure formulation or 
velocity-vorticity formulation. In the former, the pressure Poisson equation is solved, assuring the 
conservation of mass. In the latter, however, the pressure gradient terms do not explicitly arise in 
the momentum equation, and the mass conservation is automatically satisfied in the process of the 
derivation of the vorticity transport equation. 
In this paper, we discuss the finite element solution of the fourth order partial differential 
equations derived from the three momentum equations in terms of the three-dimensional stream 
function vector components. First of all, appropriate interpolation functions for the variables must 
be constructed. The variables consist of not only the stream function vector components but also 
their derivatives. This is followed by the tensorial manipulations of Newton-Raphson derivatives 
and finally iterative solutions of the resulting algebraic equations. Accurate solutions have been 
obtained in [2], which are due to the correct definition of three-dimensional stream function vector 
components, associated physically simple boundary conditions, and the rigorous Newton-Raphson 
scheme of solution process. 

with 
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The fourth order partial differential equations of vorticity transport and the finite element 
interpolation functions are elaborated in section 2, followed by the computational procedure in 
section 3 and the computational results in section 4. 

2. MATHEMATICAL FORMULATION 

2.1 Governing Equations 

For three-dimensional fluid flow with constant property, the conservation laws for mass and 
momentum can be expressed as: 

p + V • (p V) = 0 	 (7) 

where p is the density; p , the instantaneous static pressure; V, the velocity vector, F, the body 
force vector; and p is the coefficient of dynamic viscosity. 
Taking the curl of the momentum equation (8), we get the vorticity transport equation as: 

— (co •V)V + (V • V)a) +(V • V)co = v v2® 	 (9) 

where co is the vorticity vector given by equation (6). 
For incompressible flow, Eqs. (7) and (9) take the form: 

v v = o 

chi (°) .°) v + (v • v)w = at 

(10) 

V2a 	 (11) 

Substituting Eqs. (1) and (6) into equation (11) leads to: 

et 
—CPT — (VT • VX V x + ((V x 	V)V241  = v 

	 (12) 

This is a fourth-order vector partial differential equation in three unknowns 'P, ‘112 , and ‘1/3 . 
Obviously, this set of governing equations has two main advantages compared with that in terms 
of primitive variables. The continuity equation is satisfied by the three-dimensional stream function 
vector independently from other variables, and the pressure is eliminated from the system. The 
solution of equation (12) represents the first attempt of attacking the fourth order partial 
differential equations in terms of three-dimensional stream function vector components, as defined 
above. Details of the numerical solution can be found in [2]. 

at 

+ p (V -V)V = - Vp + u (V2V + —31V(V • V)) + pF 	 (8) eV 
et 
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2.2 New Three-Dimensional Interpolation Functions 

To solve numerically the governing equations (12) by the finite element method, it is first 
necessary to derive the consistent interpolation functions for an eight node hexahedral element. In 
general these functions have to satisfy the following conditions: 
1- The polynomial must be of the degree at least n-1, where n is the order of the highest derivative 
in the finite element equation. This will assure the continuity of the dependent variables and its 
normal derivatives. 
2- When the number of elements increases, the derivatives within the finite element equation will 
tend to have a constant, or in particular a zero value. Hence it is necessary to include, in our 
function, terms that represent these conditions. 

For equation (12), the highest-order derivatives in the finite element equations are 
asp OsT, a sT, asp 	asp 	asp, 	5311, (PT, 	.63T, 

x3  ' a 313 	z' ' ax'ay ' ay'ax ' ax2az' az2ax ' ay2az
, and az2ay . Hence the 

T, functions must have the following terms: 

= a, + a2 x + a3 y + a4z + a3x2  + a6xy + a2yz + asxz + 	 (13) 
a9y 2 

+ alox
3 

+ au x2  y + a1 2z2  + a1 3x2  z+ a14 xy 2  + 
al5Yz

2 	
crisY 

2 
Z 	a l ,xz 2 + a lixyz + a10 y3 

 + a20z3 

The simplest hexahedral element (brick) has nodes at the eight corners and four variables per node 
as shown in Fig. 2. We take the nodal variable listing as: 

=
a kill  a T1 	a T8 1 

ax' ay' az' 	a z (14) 

Inter-element compatibility requires continuity of 'F, and its normal derivative. Since only the first 
derivatives are included in equation (14), the expansion for 4/ along a face must be cubic, to 
satisfy continuity of . Also, the normal derivatives must vary linearly to satisfy continuity of 
OP 

. The expansion consists of a complete cubic, equation (13), and twelve additional terms. We an, 

can choose the terms arbitrarily but we should preserve symmetry of the expansion to ensure 
invariance of the element matrices. The type of element used is based on the choice of: 

(x3y, xy3 , y 3z, x3z, yz3 , xz3 , xy 2 z, x2yz, xyz2 , xy3 z, x3 yz, xyz3 ) 
The complete expansion is written in the nondimensional coordinate system 	77, 4) as: 

= a, + a2 + a317-4- aS+ a42 4- a6 77+a,774-+as g"-i-a9 77 2 	 (15) 
+ctio 3  +ali 2 77+a124-2  +.213VC+a,4172  +a15774.2  +a1.5772; 
+a1.44.2  a14774-  a19 773  + a20‘3  + a -2.1 3  + a22173  + a 203; 
+a2,434.4"a25774.3  +a264 3  +a277724+a242 774.±a29v ,r7 

Amp2 

+a 3c477 3  + a3I e 71C + a32774-3 
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Differentiating equation (15) with respect to 	77, and 4", we get: 

,4  = a2  +2a54+a6 4+ 	+ 3a1042  +2a11477+2a,34c+a14772 	 (16) 

+a17C2  +als77C+ 3a214277 + a22773  +3a2442c+az64-3  +a2.77724.  
+2a2,4r7 + a29774.2  + a30773C+3a314277C+ a32774.3  

	

= a3  + a64+ a7;+ 2a977 +Gene +2a144r7+a15V "1-2a1611‘ 	 (17) 

+ais4C+ 3a19772  aze +3a224772  +3a23772C+az5V +2a27477c 

+a2842C+ a294‘1  +3a3047724.+a-3143C+,7324C3  
117„c  = a4  + a7 q+a,4+2a,24"+a,342  +2a1577C+a,6772  +2a174" 	 (18) 

+a,8477 + 3a204-2  +a23773  + aue +3a7.5774.2  + 3a
/

26 52  +a274772  

+72284277 + 2a 29477C + a304773  + a314377 + 3a324774.2  

where al  - a32  are unknown coefficients to be determined. Writing Eqs. (15-18) in terms of the 
nodal values, shown in Fig. 2, yields 

[111 = [Cl [al 
	 (19) 

where [CI is a coefficient matrix. Thus 

[al = [C] I DF1 
	 (20) 

Substituting equation (20) into Eqs.(15) via (18) yields 

( 	 + /%1 (a qj,) 
Na (111); 	Ni a 4 	L x17 ;  

(21) 

where the subscript j denotes element node number (j=1,2, ... 8). The functions N?, 	/srf , and 

N33  have been proven numerically to satisfy the following relations: 

N I;(4k ,11k,ck)= 0  

N1(4k • rik 	0  
, 

N j -(4k  rlk 401' jk 
a Iv  

j  + (y k  qk  k  )1 

a r 
( k  14.01= 

071 

(22) 
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3  (k qk 4.1c = 
Clq 

[N1  (k , 77k , 	= 0  

-- [N3  (4k 77k Ck = 5  A,  

Equation (21) may be written in the following form: 

tPi (4, 77, 4) 	(1),(4, 17, 4) FPI), 	(r = 1, 2. 	32) 
	

(23) 

where the interpolation functions Or  are given in [2]. 

3. COMPUTATIONAL PROCEDURE 

3.1 Three-Dimensional Finite Element Formulation 

The fourth order partial differential equations in terms of the three-dimensional stream function 
vector components (equation (12)) may be written as the residual, 

R = — VIP + ((V x 'P) • V')V21P – (V2T•VX V x 	vV4IF =0 at 

or using index notations, 

R = 
at

(1 )+sikr‘Fk.  0- e 	sr - v 	= ski 	r , 	k , 	, Alck (25)  

where the subscripts i, j, k, m, r, and s take the values 1, 2, and 3. 

The Generalized Galerkin finite element (GGFE) formulation of equation (25) in the combined 
spatial and temporal domain requires the successive inner product of the form [4], 

(*(), (Oa  , R, )) = AT( [IQ  (D. R df ]d =0 

where cD. and NV(") denote the spatial and temporal test functions, respectively, f, is the non-
dimensional temporal variable given by: 

4 _ 	 (27) 

(24) 

(26)  

Assuming that the variation of is approximated in the form: 
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(28) 

we substitute Eqs. (25) and (28) into equation (26) and integrate the resulting equation by parts 
twice in the spatial domain to obtain: 

4 
A7()[AthoTo  +13TTo  — CthomaToT,k  — IC„„T G.] =0 

	 (29) 

where 

Kap  

B 

Car = 

Gm  = dr 

(30)  

(31)  

(32)  

(33)  

(34)  

Choosing a linear variation of the variables and their products in the temporal domain, such that: 

(35)  

(36)  

Substituting Eqs. (35) and (36) into equation (29) and performing the integration, we get: 

(rAtKao  — A ao  )TV + i7,6,4-13Tro'l 	+C''1= 
	 (37) 

—((1 ii)Atico  + A „o )TIO — (1— 77),At[-Bthe,VOT7 + Coothnn I + AtGa, 

where 77 is the temporal parameter defined as: 

To  = (1- T21  + 

To% = (1-) T'Ork  + ofirixpri 

(38) 

with 1-1 = 1 being used in this study for full implicitness. Equation (37) is the nonlinear finite 
element equations for the governing fourth order partial differential equations (12). 
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3.2 Newton-Raphson Method 

The nonlinear finite element equation (37), is rewritten in the form: 

= (ma 	— Aafl)Wr + 04-F1 1171TV Catm;174171 ]+ 
	 (39) 

((1— ri)Atice  + A43)11rt: + (1— ri)At[-F3 1P;irk  + C006,11/71.‘17,]— AtG m  = 0 

One of the most efficient approaches to solve nonlinear equations is the Newton-Raphson 
developed from Taylor series expansion of the residual, Ea;, of the type in equation (39). 

OE°"' 
EV-r+I  = EV' + 	ATV.' +...  = 0 

04'4  
(40) 

Equation (40) implies that the residual at a given time station n+1 as incremented to the r+1 cycle 
from the previous one should vanish for equation (39) to be satisfied. Retaining only the first order 
term in equation (40) yields 

= 	 (41) 

where Er" is the residual at the r cycle(equation (39)), 

Al7fr21171a +I = xp,7+1 ,r +I 	a 

and rai+,61-̀  is the Jacobian given by: 

aE ro- I a 
jn+I:r 

7/1 	Iiin+ I a 

Substituting equation (39) into equation (43), we obtain 

Jna2+n)hr (ThAtic„ — As,,,)(54 + Ott-B.0447'J - B 8 11T' + 	 (44) 
ca/3,111k  xp;+1 a c 	Tr 1a 

aR11c11  

3.3 Application of Boundary Condition 

The boundary conditions we may encounter in the use of the stream function vector formulation 
will have the following forms: 

(42)  

(43)  

= 
	 (45) 
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T, — 	= 0 or U 
	 (46) 

where i, and j = 1,2 ... 12 (12 is the number of unknowns per node). 

Application of the boundary condition given by equation (45) is straight forward, since the type of 
element introduced in the preceding section has in addition to the variable its first derivatives. 
Such type of elements has the advantage that the boundary conditions involving the variable and 
its derivatives can be directly inserted into the element matrix as usually done with Dirichlet 
conditions. On the other hand, application of the boundary conditions given by equation (46) 
requires special attention especially with the nonlinear problem at hand. We will refer to these 
boundary conditions as the coupled boundary conditions. Two suitable ways to incorporate the 
coupled boundary conditions into the system of equations are presented in [2]. The first method 
will be presented in the global formulation of the finite element method and the second will be 
presented in the local level of the formulation. These boundary conditions for Laplace equation are 
discussed in [4] and [5], respectively. 

The second method is to modify the element matrix with boundary conditions implemented 
directly. This modification is done to all element matrices that surround the boundary node under 
consideration. To impose such boundary conditions we first rewrites equation (41) in the local 
level as: 

J(e)AT(e) + D'T" — —F" old — 
	 (47) 

where P)  is the Jacobian matrix J/*,a'r , D( )̀T„(1̀ ,1 + F( )̀  is right hand side of equation (41) E',„:1' . 

The dimension of the matrices in equation (47) is 96*96 (96 is equal to the number of unknown 
per node multiplied by the maximum number of nodes per element). Then, to impose the coupled 
boundary conditions, equation (46), into the element equation matrices, equation (47), we proceed 
with the following procedure with both matrices J(e)  and D( )̀  engaged unless otherwise noted. 
1 For those elements that have the boundary node under consideration in common, the row 
corresponding to T, is multiplied by 1 and added to the row corresponding to T j  

2. To effect the substitution of T, = 	+ U in the system of equations the column corresponding 

to T, is multiplied by 1 and added to the column corresponding to T j  , and the column 

corresponding to T, in the Dm  matrix is multiplied by U and subtracted from the right hand-side 

3. The row and column corresponding to T, is replaced by zeros. 
4. To eliminate the zero on the diagonal of the tlf, equation arising in the previous step, simply 
insert the condition '1/, — T j  = U directly in the row corresponding to IF, by entering 1 and -1 in 

the column corresponding to 'I', and tisi  , respectively and insert U in the right hand-side. 

This procedure incorporates the coupled condition equation (46) as one of the system of equations 
with the necessary modification as described above. However, it is noted that this method makes 
the system of matrices nonsymmetric, which is often a disadvantage. 
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Since the system of matrices given in equation (41) is already nonsymmetric, we have adopted the 
second method in our computations. 

3.4 Physical Model 

From the numerical viewpoint, three-dimensional flows in cavities serve as ideal prototype for 
testing numerical codes. Some of the attractive features of the cavity flow are its simple geometry, 
its simple boundary conditions, its recirculating nature, and the availability of numerical results by 
other investigators. In the cubic cavity the flow is driven by the uniform translation of one of its 
walls while all other walls are held at rest. Due to the symmetry of the three-dimensional cavity 
flow, see for example [6], only one-half of the computational domain needs to be solved. 

In the present investigation the cubic cavity flow is assumed to be steady, laminar and 
incompressible Newtonian fluid, with constant properties. So Eqs. (25), (37), (39), and (44) will 
take the following forms, respectively. 

R, = 	jk, Tk 	T, rss„ - edu 	Tk  „ - v T, mick  = 0 (48)  

13 	— C „sow. 'VA. Ts, — Kai  TA 	G 	= 0 (49)  

E 	= Barfk T* 	— Camior 'FA T* — K at;P~ + G = 0 (50)  

J mD  =- K 	8,j  - B cryiii 	-13,* 	+ C amink  kijo, 	C alsaj  Ts, ] (51)  

Fig. 3 shows the geometry considered in the numerical simulation of the cubic cavity of length 
L=1.0 m. The motion of the cavity is driven by the top wall with constant unit velocity, Ur. = 1.0 
m/s, in the positive x-direction, while the other surfaces remain stationary with the boundary 
conditions as shown in Table 1. 

4. COMPUTATIONAL RESULTS 

The eight corner nodes hexahedral element with four variables per node (see Fig. 2) has been 
adopted in our computations. The numerical integration using Gaussian-qudrature has been tested 
with the number of Gaussian points ranging from 2 to 5, showing that a complete convergence 
occurs at four points as shown in Fig. 4. The calculations were terminated when the solution 
vector obtained at the end of two successive Newton-Raphson iterations differs by a small 
number. The convergence criteria used in the computation are in the form 

El = max(AT) 	e 	 (52) 
(v 	 l uz 

trir+I  -`1Jr1-  
E2 — :=1  

II:tp r+ 1 
:=1 

  

< (53) 2 
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where N is the total number of unknowns in the finite element mesh, 1J; solution unknown at 

node i and rth iteration, and e = 10-5 . Only a few cycles were need to obtain convergence. 
In addition to the above criteria, the RMS error of the residual R, equation (39), is monitored 
during the computation and it is found that its value is reduced by 10 orders of its original value 
when convergence is reached. 

Tablel. Boundary Conditions (3-D Cayity) 

At x 	0, 1 
= 112 = 1112.2 	1112.3 = 413 = 413, 

-'P3.1 
=0 , '2.1 - 111.2 =0 

'P1.3 = 'P2.2 	413 = 113,1 = 113,3 

3.2 - W2.3 = 0 , 	T2.1 - 1111.2 = 0 At y = 0 

At y = 1 
= 111.1 	1111.3 = 112,2 = 	= 413,1 = 413,3 

	

T3,2 - (Pm = Uri=  , 412.1 - 	=0 

At z = 0, 1 
111 = T1,1 = 1111.2 = 1112 = 112.1 = tP2,2 = 1113.3 

T3.2 - 1112.3 = 0 , 	 - 11'3.1 =0 

At z 0.5 

Computations are performed for Re = 10, and Re = 100 using a uniform grid of 11*11*6 and 
15*15*8, respectively. The computations of the three-dimensional cavity were performed on the 
C-90 Cray machine. Approximately 11 megabytes of core is required for these simulations with 
the 11*11*6 mesh, while 31 megabytes is required with the 15*15*8 mesh. Table 2 shows the 
average CPU time per one iteration for the solution of the 3-D lid-driven cavity..  

Table 2. CPU Time per One Iteration (3-D Cavity) 

Re Average CPU per one 
iteration for Forming 
System Matrices (sec) 

Average CPU per one 
iteration for GMRES 

Solver (sec) 

Total Average CPU per 
one iteration (sec) Mesh 

Size 

11*11*6  10 77 52 129 

11*11*6  100 77 92 169 

15*15*8 100 210 495 705 
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Fig. 5 presents velocity profiles along the vertical centerline of the cubic cavity for Re = 100. In 
this figure, the solid line represents the present prediction (15*15*8 finite element mesh) 
compared with Goda [7] (20*10*20 finite difference mesh using the velocity-pressure 
formulations), Mahallati and Militzer [8] (21*11*21 finite difference mesh using the vorticity-
vector potential formulations), and Takami and Kuwahara [9] (20*10*20 finite difference mesh 
using velocity pressure formulations). It is seen that agreement with these results is reasonable. 
The effect of mesh size on the velocity profile along vertical and x-horizontal centerlines of the 3-
D cavity for Re = 100 is shown in Fig. 6 indicating that convergence has already been reached 
with the coarse mesh of 11*11*6. The rapid convergence of the solution for Re = 10, and Re = 
100 is shown in Fig. 7. It is seen that the required accuracy is obtained in a few iterations. 

Fig. 8 shows the xrcomponent of the velocity profiles of Re = 100 at the x = 0.5 and x = 0.786 
planes, respectively. It is seen that the velocity profiles in planes close to the wall are less 
developed due to the boundary layer effects than that in the symmetry plane. Goda [7], and 
Mahallati and Militzer [8] present similar profiles at the symmetry plane of the cubic cavity for Re 
= 100. It is difficult to compare their graphs directly with the present ones, but a visual inspection 
indicates that all agree very well. 

For the 3-D cavity flow the streamlines at the symmetry plane (z = 0.5), and the z = 0.2 plane are 
shown in Fig. 9. It is noted that, for higher Reynolds number (Re=100), the vortex center moves in 
the downstream direction with the position of the vortex center for Re=100 at the r=0.2 plane is 
close to the moving boundary than that at the symmetry plane (z=0.5), as expected. Fig. 10 shows 
the velocity profiles along the vertical and horizontal centerlines of the symmetry plane of the 3-D 
cavity. It is seen that, in Fig. 10a, an increase in Reynolds number tends to reduce negative x-
velocity in the region around y = 0.6, with the point of maximum negative x-velocity moving 
downward. At the same time, the y-velocity becomes less positive upstream and more negative 
downstream as the Reynolds number increases, with the position of zero-velocity shifted toward 
downstream as shown in Fig. 10b. 

5. CONCLUSIONS 

The vorticity transport for three-dimensional incompressible flow has been recast into the fourth 
order partial differential equations in terms of the three stream function vector components. The 
finite element formulations with new interpolation functions and Newton-Raphson iterations led to 
excellent computational results. Although computations are expensive there are several significant 
advantages which make the present approach extremely attractive. Higher order finite element 
interpolation functions corresponding to the fourth order partial differential equations are capable 
of producing very stable and convergent solutions. Furthermore, boundary condition 
implementation is much simpler and versatile as compared with other currently available methods. 
Finally, accuracy achieved in the proposed scheme opens the door to many three-dimensional 
flows, particularly in acoustic or unstable wave problems and most importantly the transition 
toward turbulence, by constructing the three-dimensional version of Orr-Sommerfeld type 
eigenvalue problems. These projects are currently under progress. 
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FIG. 1. General Description of Three-Dimensional Stream Functions 

FIG. 2. Hexahedral Element 
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FIG. 3. Geometry of the Cubic Cavity Flow 

FIG. 4. X-Component of the Velocity Vector at the 3-D Cavity Center for Re = 10 Versus 

Number of Gaussian Points 
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FO-3 17Z1 

FIG. 5. Velocity profiles on vertical centerline of the 3-D cavity for Re = 100. 

FIG. 6. Effect of Mesh Size for Re = 100 on the 3-D Cavity: (a) Vertical Centerline; (b) X-

Horizontal Centerline 
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FIG. 7. Convergence History of the Solution of the 3-D Cavity for. (a) Re = 10, Mesh 11'11'6, 

Logarithmic Scale; (b) Re = 10, Mesh 11"11"6, Arithmetic Scale; (c) Re = 100, Mesh 

15*15"8, Logarithmic Scale; (d) Re = 100, Mesh 15'15'8, Arithmetic Scale 
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FIG. 8. Profiles of the X-Component of the Velocity for the 3-D Cavity flow of Re = 100 at: (a) 

the X = 0.5 Plane; (b) the X = 0.786 Plane. 
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FIG. 9. The 3-D cavity streamlines (`F; ) at (a) the symmetry plane (z = 0.5) for Re = 10, (b) the 

symmetry plane (z = 0.5) for Re = 100, (c) the z = 0.2 plane for Re = 10, (d) the z = 

0.2 plane for Re = 100. 
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FIG. 10. Velocity Profile on the 3-D Cavity: (a)Vertical Centerline: (b) X-Horizontal Centerline 
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