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ABSTRACT 

Theoretical and experimental investigations have been made to predict the performance of a 
backward-curved blade centrifugal pump. A mathematical model based on steady two-
dimensional incompressible Navier-Stokes (N-S) equations has been developed. The numerical 
solution was made using the primitive variables with artificial compressibility. The predictor-
corrector method proposed by MacCormack was employed. The use of this technique involved 
imaginary rows behind walls, and periodic boundaries at far upstream and downstream which 
adequately improved the convergence to the solution. Based on this model a computer code 
has been developed and used to predict the flow pattern inside the pump and to determine the 
pump characteristics. A test rig was used to measure the real pump characteristic at controlled 
flow rates. Comparison of calculated and measured pump characteristic showed good 
agreement. Examination of the flow pattern at different flow rates might be useful to interpret 
the many performance features of the pump. 
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1. INTRODUCTION 

The backward-curved blade centrifugal pump is commonly used for its quitter operation and 
more stable relationship between the capacity and the pumping head. The velocity of the liquid 
flow experiences a smoother change and a more uniform distribution in the impeller passage as 
compared to the case of radial blade. This gives rise to a reduction in the hydraulic losses in the 
impeller. The theoretical solution of the flow pattern inside a radial blade centrifugal pump is 
presented in reference [1]. The computational-fluid-dynamic scheme was based on primitive 
variables, artificial compressibility and MacCormack predictor-corrector technique. The 
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scheme was then modified to cope with the more sophisticated problem of backward-curved 
blade impeller. 

2. MAIN GOVERNING EQUATIONS 

Consider the polar-coordinate system (r, 0), where r denotes the radial direction and 0 denotes 
the tangential direction. Consider the two-dimensional, incompressible N-S equations for a 
constant property flow without body forces or external heat addition. Using the concept of 
artificial compressiblity [2], the continuity equation, written in the system relative to a blade 
row, is: 

-1,(0=p5[.1(rur)+18 (u9)] 
	

(1) 

where: 
ur, ue 	are relative flow velocity components in r and 9 directions respectively. 
P 	is the operating fluid density. 
8 	is an artificial compressibility factor (constant). 

After the above assumptions, the momentum conservation law for a rotating blade is the N-S 
equations written as [3]: 
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where: 
P 	is static pressure. 
co 	is the angular velocity of the rotating blade. 
✓ is the kinematic viscosity. 

a2 	1 	I a' 
v2()= —()+--()-----7-() or 2 	r ar 	r-  ae - 	(for polar coordinates) 

The artificial compressibility factor 8 can be obtained from[1]: 

5 (u2, + tie') max 
	 (4) 

There are two approaches to calculate incompressible N-S equations: implicit and explicit 
techniques. We will use the explicit one for which the computational procedures are relatively 
easy to implement. The most appropriate system of equations in differential form is the 
Reynolds averaged N-S equations in a rotating polar-coordinate system given by 
Lakshminarayana [4]. 
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Q 	is the conservation variable. 
E, F are the flux vectors. 
S 	is the source term. 
The viscous term will be discarded for its later use as central difference form in r and 0 
directions. Equation (5) becomes: 

1 a(rE) 	1 a(F)1 (6)  
at 	r 	ar 	r ae + r S  

Using Equations (1,2, 3) yields 
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where the elements [p / p] and [p / pJ in the flux vector E and source term S respectively are 

	

1 ap 	 1 p 1 a , 
obtained from substituting [---] in equation (2) with H— — 	kr 001. 
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3. NUMERICAL SOLUTION 

3.1 Blade Profile And Computational Grid 

The present scheme calculates the flow through one blade passage. The blade profile is defined 
in the polar coordinate system by identifying the degree of a polynomial which best fits the 
profile of a real pump. Practically, this can be done by photoscanning a pump sector with two 
adjacent blades, using AutoCad package to interpret the scanned profile as a table, and then 
using GRAPHER package to transfer table data into a polynomial. In the studied case this 
procedure has lead to a 4th  degree polynomial The computational domain presented in a 
polar-coordinate system, is discretized into mesh points, Fig. 1. For this computational grid, 
the following definitions are applied: 64), .4),+, —4), is the incremental angle in (I) direction; 
a i = r,,, 64), is the arc length between points A and (i+1,j); y i  = ri _104,_, is the arc length 
between points B and (i-1,j); Si., = ri.1.6,0 is the arc length between points (i+1,j-1) and 
(i+1,j); and Si_, = ri_,00 is the arc length between points (i-1,j+1) and (i-1,j). 
The computational boundaries comprise the upstream inlet, the downstream exit, the pressure 
and suction side blade surfaces. The blade surfaces are extended along a surface of grid points 
in the upstream and downstream directions in a way similar to that described in ref Di These 
form permeable periodic boundaries. 
The properties at the points A and B can be computed in terms of their values at 3 neigbouring 
points applying quadratic interpolation [5]. 
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3.2 Finite Difference Scheme 

For calculation of Q, a predictor step is carried out followed by a 'corrector step. The predictor 
and corrector equations are, respectively: 
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The parameters at the points A and B will be calculated using equations 8 and 9 respectively. 

The set of equations are solved following the same solution steps in [1]. The following 
considerations are taken into account: 

• A smoothing term is added in order to suppress high frequency oscillations. This is 
accomplished by adding a fourth-order explicit dissipation term to the primitive variables in 
the two-directions of flow (r, 0) for interior points. 

—Er 6 [(6,r) 4  -- (Q)+ (04 —(Q)] xs  4 
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where se  is the explicit smoothing coefficient. 

The value of se  should be less than approximately 1/16 for stability [6]. 

• The stability condition is 
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where Ft is the time factor. It is found from experience that the time factor up to 0.9 can be 

used. In case of an unstable solution, the time factor is reduced by 0.1. 

Time steps are calculated based on the initial conditions and are not updated during the 

calculations. Thus, the time step varies as a function of grid spacing only. The iteration 

process is repeated until it converges. 

• The computation is considered to be converged when the root mean square (RMS) of the 

residual in the velocity component 1.4 drops below 10-3  
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where: 
Ni is the total number of grid lines from upstream to downstream extensions in r direction. 
M is the number of grid lines from blade-to-blade in 0 direction. 

• The far upstream and downstream boundaries are located about half-chord, and one-chord 
respectively. On the upstream boundary the relative velocity components ur  and ue are 
specified. On the downstream boundary only the static pressure p is required. The other 
variables at both upstream and downstream boundaries are to be obtained by interpolation 
from the interior points. 

• The wall points are considered as if they were interior points for the calculation of all the 
variables. This required to add a grid line before the pressure side and a grid line after the 
suction side. The parameters at these lines were obtained by quadratic interpolation from 
the values at the wall and two interior points. This is numerically exactly the same as 
applying the conservation equations to a point on the half spacing near the wall and then 
extrapolating from this point to the boundary [7]. To simulate blade row conditions, it is 
essential to impose zero radial and tangential velocities in case of N-S equations. At the 
periodic boundary the variables were calculated as the interior points. In this case the 
periodicity condition could be used to obtain the variables which were located beyond the 
boundary. The results at corresponding points were then averaged after each time step. 

• For the initial conditions, the data required for the solution are the major impeller 
dimensions, the blade profile, the flow rate, the fluid viscosity and density, and the impeller 
speed. The radial velocity is obtained from continuity. The tangential velocities in upstream 
and downstream are obtained from Euler's equation. Inside the blade passage, the initial 
tangential velocity is determined by assuming that the relative velocity is tangent to the 
blade. Assuming reasonable starting value for the downstream static pressure, Bernoulli 
constant at downstream is calculated. The initial values of the static pressure at all the grid 
points can be readily calculated. 

3.3 Computer Code 

The developed program is written in the C++ language (version 3.1 for Windows 3.x) with a 
total of about 800 statements. The execution file requires about 90 Kbytes of storage. Up to 
52x23 grid points maximum, with a corresponding memory requirements of approximately 8 
Mbytes, can be used. Time requirements per point per time step were about 4.7x le seconds 
when a computer of type PS-75MHz was used. 

4. EXPERIMENTAL WORK 

A test rig equipped with centrifugal pump and the appropriate measuring instruments has been 
used for investigating the pump characteristics. A photograph of the test rig is shown in Fig.2. 
The corresponding schematic diagram indicating the major components of the test rig, is 
shown in Fig. 3. The centrifugal pump under consideration is of the single stage, one shroud 
type in which a single impeller rotates in a volute casing. Fluid enters the impeller axially 
through the eye, spirals outward and discharges radially from the impeller circumference into 
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the volute casing. The pump is driven by means of a DC motor of variable speed with a 
controller which allows the pump speed to be varied from zero to 3000 r.p.m. 

5. RESULTS AND DISCUSSION 

Based on the above scheme, a computer code was developed using the impeller with inner 
radius 0.0235 m, outer radius 0.065 m, number of blades is 6 and blade width is 0.012 m. The 
water was used as the working fluid, with a flow rate ranging from 1 to 5 lit/s and a pump 
speed of 1500 rpm. 
The convergence was predicted for flow rates 0.001, 0.002, 0.003, 0.004 and 0.005 m3/s. 
Figure 4 shows the convergence histories for flow rate 0.004 m3/s. Figure 4a shows the 
convergence of the RMS error in the radial velocity component. About 3100 iterations were 
required to obtain converged solution (RMS error = 104). The convergence of the outlet-to-
inlet flow rate ratio is shown in Fig. 4b. It is clear that the ratio is very close to one. The 
convergence of the radial velocity component near the leading edge is shown in Fig. 4c. Figure 
4d shows the convergence of the static pressure at the upstream boundary. 
Figure 5 shows the difference between the theoretically determined static characteristics and 
the experimentally measured one. As seen from this graph, it is clear that the behavior of both 
graphs is almost similar, but the theoretical values of the pump head is greater than the 
measured values. This change in magnitude may be explained by the pump losses during the 
pump operation. In the theoretical head the only losses considered are the impeller losses due 
to viscous effect between the fluid and the impeller vanes. During experimental work, 
additional losses include shock and friction losses in the volute casing. At low flow rates 
separation and shock losses are dominant. The static pressure distribution on the pressure and 
suction sides of the impeller is shown in Fig. 6. 
Also, distributions of relative velocities and pressure were calculated for the above flow rates. 
The results for a flow rate of 0.004 m3/s are shown in Fig. 7. Figure 7a shows the radial 
relative velocity inside blade passage. The more developed flow downstream can be explained 
by larger flow area. Figure 7b shows the tangential relative velocity inside blade passage. It can 
be shown that the difference of the tangential relative velocity across the radial direction 
becomes more pronounced near the pressure side. The reverse flows are well indicated at this 
flow rate. Figure 7c shows the pressure contours inside blade passage. It is clear that for the 
same grid line, the pressure at the pressure side is higher than that at the suction side. The 
change is more important as one goes upstream. 
The flow pattern at different flow rates is shown in Fig. 8. It could be seen that, at low flow 
rates the effect of rotation is dominant and hence a large vortex is formed, while at high flow 
rates the phenomenon is reversed. 

6. CONCLUSIONS 

A mathematical model based on steady two-dimensional incompressible Navier-Stokes 
equations has been used to predict the flow pattern inside a backward-curved blade centrifugal 
pump. An explicit, finite difference scheme has been developed to solve the Navier-Stokes 
equations presented in polar coordinate system. The pressure field solution is based on the 
artificial compressibility approach in which a time derivative pressure term is introduced into 
the mass conservation equation. A computer code has been developed and used to predict the 
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flow pattern inside the pump and to determine the pump characteristics. The experimental 
investigation showed good agreement with theoretical predictions. 
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Fig. 1 Definition of the computational grid. 
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Fig. 2 Test rig photograph. 

1- Sump tank; 2- Volumetric measuring tank; 3- Centrifugal pump (either radial or backward-curved 
blade impeller pump can be used); 4- DC motor with speed controller; 5- Venturimeter for flow rate 
and velocity measurement; 6- One-meter U tube mercury manometer for differential head 
measurement; 7- A half-meter U tube mercury manometer installed with the venturimeter; 8- Suction 
pressure gauge (-5.0 to 0.0 mH2O); 9- Delivery pressure gauge (0.0 to 20.0 mH2O); 10- Delivery 
control valve; 11- Suction valve; 12- Electric tachometer (0 to 3000 r.p.m). 

Fig. 3 Test rig schematic diagram. 
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Fig. 4a Convergence of RMS error in radial 
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Fig.4 b Convergence of outlet-to-inlet flow 
rate ratio. 
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Fig. 4c Convergence of the radial velocity 
component near leading edge. 

Fig. 4d Convergence of the static pressure at 
upstream boundary. 
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Fig. 7 Distributions of relative velocities and pressure inside 

impeller blade passage (flow rate = 0.004 res) 
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