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ABSTRACT

An improved dynamical model for vibration damping in composite
structures 1s introduced to incorporate the code number and the degree of
1sotropism against the modal parameters.

A substantial development has been carried out from the fitting of
modal measurements with lowest residual errors to permit an establishment of
quasi uniform mass damping models in terms of normal coordinates system.

The analysis of the obtained results proves not only the efficiency of the
developed model but also its applicability in any wide range of frequency
spectrum of composites.

1. INTRODUCTION

Composite damping or energy dissipation property of vibrating
composite structures, is a name for complex physical dynamic nature that is
amenable to rheological modal analysis. In a broad class of composite
structures, the distinguishing characteristic of the damping mechanism is its
strong- dependence on the eigenfrequencies such that it exhibits little
damping at high frequency level [1.3].

[n contrast to the dynamic nature of tsotropic domain, a furth‘er
complication arises in composite domain due to the mutual effects for various
parameters, such as code number, degree of isotropism (volume fraction),
type of fixation as well as the vibrating mode number on the damping =zna
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stiffness distributions; ‘As:an example, the decreasing. of \’pl;u,m.e~f.r§¢,§19_n-‘of.‘,

fiber enhances energy dissipation By increasing the16ss associated: with

inebulr jgdk UH

matrix composite[2,3,4]. [t might be expected that the natural frequenciééjio)f
vibrating composite structures and in sequence the damping capacity, can be
altered by changing layer's orientations and stacking sequence([5,6], so that
the damping nature as a function of frequencies of composites should be

further studied. .

At the p‘resent time, it is still difficult to determine accuratély the modal
characteristics of composite structures (particularly damping parameters)
throughout analytical approach. The experimental confirmation prediction is
therefore at very least desirable and can be used to form analytically the
mathematical model. In turn it can be used to more clearly understand the

configuration of parameters controlling the dynamic of composite states.

Recently, a mathematical model representing the damping capacity of
composite was established[1]. Based on the student distribution
approximation of the measured values of damping in the fundamental mode,
the modal relationships between the fundamental frequencies and the damping
factors were developed in equivalent to an uniform mass damping of isotropic

structures.

e ozt 1ed

In the present ‘work, an attempt has been m'z'idé“‘;"t'gi improve the
convergence characteristics of the model within a wide range of frequencies

for different code numbers at two levels of volume fraction.

Basically, a weight factor (@) has been introduced for correlating and
updating the mathematical model to the experimental data throughout the
utilization of the curve fitting response function. This has resulted
generalized quasi rectangular hyperbolic relationships between the loss
factors and the natural frequencies with the confidence level 99.5%. These
results permit the uncoupling of simultaneous equations of motion of

composite structures with the lowest residual errors.

In the.experimental work, Fig. (2), cantilever composite beams made
from [iber reinforced plastic ERP are considered as the object of the study for
their simplicity and for wide national applications. Various specimens made
from three plies, Fig. (1), are utilized for two levels of volume fraction (a) a
weakly composite 15% and (b) an average composite 45%.

[n order to evaluate accurately the influnces of code number on the
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damping capacities and natural frequencies, twelve specimens of
unidirectional cross - ply and angle-ply laminate have been fabricated in the
laboratory by using hand lay up technique.

Numerically the first four natural frequencies at the two levels of volume
fraction are computed by the use of modified formula'M.F._M (7] and listed in
the second column of the tables (1) and (2).

For the sake of verification, the experimental results of the natural
frequencies and the loss factors for the first four natural modes are listed in
the third and fourth columns in these tables respectively.

To highlight the idiosyncratic nature of the damping parameters, various
curves representing mutual relationships of modal parameters were plotted in
Fig. (3) and (4).

The close agreement between the mathematical and experimental results
leads to more easly understand and enrich properly the modelling of the
dynamic nature of vibrating damping composite structures.

2. PROBLEM STATEMENT

The governing equations of free damped vibration of laminated structural
model of n degrees of freedom may be expressed as :

d 1+ =0
mgred+g=0, (1)
where, m, c, }5 are the n X n mass damping and stiffness matrices,
-~ ~
respectively and q is the corresponding n x 1 displacement vector.
~d

In the absence of damping, the natural frequencies ® and the
corresponding mode shapes V are obtained by solving the eigenvalue
problem:

EV = VP 2)

where, E =m-! kis the n x n inverse dynamic matrix
~

~ N

V is the n x n orthogonal classical modal matrix and B is the n x n
~
diagonal frequency matrix containing the n squared frequencies.

Having obtained the complete set of n eigenpairs, the orthogonality
properties of mass and stiffness matrices are then expressed as :
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M=VTmV =[M], - (3)
K=vT kV = [K(], (4)
where, M and K are thenXxn diagonal mass and stiffness matrices.

~ Considering the invariance of the modal matrix under raising the
matrices E and P to any rational positive number «, the.eigenvalue problem(2)
o~ ~d
may be recast as :

B =22 (5)

~
where D = E* and A =P%.
~ o~ ~ o~
Here « is the control weight factor to be choosen for minimizing the
weighted residual. A special case, at which o (max) = 1, was co_nsidered for
the uniform mass damping matrix of composite in equivalence to the damping
of isotropic structure presented in Reference [1]

3. MATHEMATICAL MODEL OF VIBRATION DAMPING OF
COMPOSITE STRUCTURE :

It was mentioned in Ref. [1] that the hyperbqlic relations between loss
factors (n) and natural frequencies (w) of compbsite plate, vibrating at the
first mode for different boundary conditions, provide a more reliable
prediction throughout the utilization of an umiform mass damping scheme.
These relations were established by utilizing the student distribution
approximation with confindence level 95%.

The demand Fc’),r_,rr‘u‘)rew accurate modelling of composite structures for
various code numbéré within a wide range of frequency spercirum requires a
modification -of hyperbolic relations by introducing the proper weight factor
(o) and the .damping constant {a;) for i th code number.

The complication for selecting the proper current values of the damping
' parameters is a result of the mutual effects of the code number, volume

fraction, aspect ratio, types of fixation and natural mode number.

For establishing a proper equivalent mathematical model let us start by
successive premultiplication of equation (5) by a positive integer j followed
by premultiplication of both sides of the result equation by vTm and we have:
VIimDV = M A (6)

From definition, the right hand side of the previous equation is a

diagonal matrix. It follows that mDJ satisfies the orthogonality conditions.
~ P~
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Let a damping matrix is represented as a linear combinations of the compound

matrix given by :
c= ymD (7
i=o

The proposed form (7) satisfies the orthogonality coaditions such that :

cm-lk = km'!lec.

With regard to equations (6) and (7) this diagonalized damping matrix is then
given by :
S:[Cr]z‘Y‘T’S‘Y‘:ZajMﬁ (8)

Here the damping coefficient of the rth mode is expressed as :

~ N~

C=vicy = Za,-.M,xi (9)
=0

where, A, = @F%°

In view of the hyperbolic relanionship between the loss factor (n) and the
natural frequency derived in Ref. (1), The rth loss factor can be modified to be
e = Qg Wi (10)

j=0

In composite domain the computaion of damping constants requires high

computational effort compared with isotropic one. For simplicity, the series
given by equations (7), (9) and (10) have been truncated respectively to the

forms;
c=a, m (11)
C, = a5 M, (12)
N = ag u)l.'a (13)

In view of equation (13), the quasi hyperbolic relation can be expressed
as:

ne * = ag (14)

Here, the damping constant a5 increases as the volume fraction decreases

and as the code number leading to a low suff composite structure.

For the sake of graphical linearization, the previous equation can be

transformed into the following logarithmic form :
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In n+alnuﬁ=1nao (15)

The isotropic state can be considered as a limiting case at which the

weight factor reaches its maximum value here as :
a* = tan & =1
consequently equation (15) will be recast as:
Inm+lnw = Ina” (16)
In equation (16) the two limiting isotropic states arise here as :
1. a* = aj represents 2 fully fiber domain at which v¢ = 100%

2. a* = a»_,: represents a fully matrix domain at which v = 0.0%

A set of family curves representing composite domains of various

degrees of isotropism in the physical state can be then bounded as follow :

*
o< a < o
al < ag <an
o<n<l
[t is obvious that the rate of change (slope) depends on the degree of

isotropism at which a = tan-} 45°. Also the damping constants for each

specimen increase as the volume of fraction decreases.

The vélidity of orthogonality condition permits the decoupling of natural

modes. Consequently, the equation of motion in the r th modes is expressed

as :
MY +CY +K Y = F (17
The steady state rcsponsé in the r th mode is then expressed as :
Y, = [B2).5. sin @+ o) (18)
K.

Here the magnification factor in the r th mode is given by :

l

(19)

-2

8= [(1-Z2P +(ne. ZF]

where, Z, = Q/ w,
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0= 1/m for a<l,
d=1/m; for ~a=1,

where, N =n ol

4. EXPERIMENTAL MODEL OF VIBRATION DAMPING OF
COMPOSITE STRUCTURAL BEAM, FRP

A verifications of the equivalent mathematical model of the damping
distribution in relation to the frequency spectrum of the composite structure
in the light of the tested data is-represented. The frequency response tests
were performed on cantilever composite beams made from fiber reinforced
plastic FRP by utilizing fast fourier transform dual channel analyzer in
conjunction with the computer as shown in Fig. (2).

A typical specimens FRP composite beam of dimension (210 x 20 x 3
mm) made of three plies with I mm thickness for each ply is shown in Fig.
(1). Two composite level were selected for each code number. These are
weakly composite specimen of volume fraction V¢ = 15% and the average
composite specimen of Vi=45%. '

To study the effect of lamina orientation and stacking sequence on the
modal parameters, six code numbers of specimen were fabricated and stated
as (0/0/0), (0/30/0), (0/45/0), (0/90/0), (45 /- 45/ 0) and (45 / 0 / 45) for
each volume fraction.

Within the frequency range (8000) Hz, the frequency response and half
power tests were performed for the measurements of the first four loss factors
and the correspondihg eigenfrequencies and listed in the third and fourth
columns of tables (1) and (2). For the sake of verification, the first four
natural frequencies listed in the second column of the tables were computed
by modifying the developed formula [7] and the form;

s L
2k (i
2 L2 \Pe-t

where, D* = Condensed bending stiffness modulus.

With the utilization of the least Square technique on the measured values
of the loss factors and natura] frequencies at the first four natural modes, the
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quasi rectangular hyperbolic curve fitting are plotted with the confindence
level 99.5% as shown in Fig. (3, 4).

To study the effect of the ply orientation on the damping capacity, we
have firstly consider the effect of changes of inner piy orientations and
secondly the effects of changes of outer ply orientation compared with the
changes of inner ones. A glance at Fig. (3) and (4) indi;:ates that the damping
capacity increases monotonically, (natural frequencies decrease), with the

increase of angle of orientation of the inner layer.

With regard to the experimental results listed in tables (1) and (2), it is
obvious that the changes of outer orientations have significant effects on the
damping, (and stiffness), of the specimens compared with the changes of the
inner orientation. As example the experimental results of the loss factors for

(0/0/0), (0/45/0) and (45/0/45) show that the loss factor increases by 16% due

to the increase of the inner layer (by 45°), while it increases by 87% and
105% due to the increase of the two outer layers (by 45°) for vf = 45% and

15% respectively

In Fig. (5, 6) the logarithmic forms of quasi hyperbolic relations for all
cases are plotted in linear forms. [t is noticed that the slopes assigned by the
weights factor are depending mainly on the degree of the isotropical state
while the damping constant depends mainly on the flexibility of the specimes.

The interrelations of the weight parameters (a, a5) and the code numbers
for each level of volume fraction are listed in monotonic manner in table (3)
and plotted in Fig. (7) and (8). It 1s found that the weight parameters

increase linearly with the increase of ply-orientation of either inner or outer
layers.

CONCLUSION

In the present work, the modelling of damping distribution in vibrating
composite structures is established with the lowest residual errors. The fitted
results of the measured values indicate that :

I. There is an existence of generalized quasi rectangular hyperbolic
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relationships between the loss factors and natural {requencies of composite
structures and can be found at any selected ranges of frequency spectrum.

2. The developed quasi uniform mass damping matrix by utilizing the
proper weight factors permits the utilization of normal coordinate systems for

uncoupling equations of motion of composite structure with the high
confidence level 99.5%

3. The angle orientations of the outer laminate have significant effects
on the modal parameters of the composite compared with the inner laminate.

4. The angle of orientation 45°, at which the shearing parameter reach
highest values has the highest influence on the modal parameters compared
with the other angle orientations.

5. The obtained values of the weight factors may be considered as
indicators of the degree of isotropity of the composite structures.
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Table 1: The numerical and experintental nodal pa

R

rameters of the first four modes of the

fixed- free GRP beam of volume fraction 15%

[0/0/0] ((190/0 |
Mudene., i Frequency, @ | Frequency, @4 Dempmng, 7 Mode no. § Frequencr,@ | Frequency, vy Dampng, 11
{rad/sec) (rad/yec) %) (rad/tec) . (rad/sec) )
| 211,109 188.496 13.334 1 208.482 175.929 16.072
2 1322.981 1294 336 4,370 2 1306.526 1231.504 5612
3 i 3704.384 1694513 2.552 3 3658 309 3568.349 2.728
T | 7259115 7250.796 2.080 4 7168325 | 6572.212 | 2.486
;= 2.248738345 () 053724390 m; = 3.011008077 (w; 5545630955
confidence level = 99.4803% confidence level = 99.0364%
[0/30/0] (45/-45/0]
Muode e, i ‘ Frequency; w- | requency.ay 1 Demping, 17 Mode mu, i Freq y, o2 | Freq ywg | Damy T
\ (rud/see) (radsirec) %4 (rad/sec) (rad/sec) (%)
1 I 209.544 185.354 13.398 1 l 171.160 163.363 20.000
2 “ 1313.186 1244.071 4,546 2 ] 1072.640 1043.009 6.024
I
3 ‘ 3676.953 3606.548 2614 3 i 3003 .425 2978.230 3.798
4 i 7205.362 7200.530 2.094 4 l 5885.510 3811.946 2.648
i = 2463872500 (1 0- 3463537063 n; = 356531542 (g 05694874493
confidence levei = 99.5838% confidence level = 99.6619%
[0/45/0) [45/0/45]
Vnde ner i t Frequency, W' ' Frequency,wy ! Damping, 11 Mode no.,i Frequency, ® Frequency,wy 1 Dawping, 17
! (rad/sec) (rad/sec). (*3) (rad/sec) (rad/sec) \ (%)
1 i 208936 l 179.071 ‘ 14.912 | \ 123.615 1 112381 l 23.684
) | 1307 206 1 1237788 1 3.076 2 i 774 A66 ! 766.349 !_ 3196
| | | | !
3 1 3661.049 i 1581.416 l 2.632 3 2169 094 L 216i.416 ’ 4.534
4 *: 7174191 iw—b‘T‘jd,d'lﬁl ] 2.280 4 | 4250.556 i 4234 .367 E 3 086

-0.5762650855

-0.55319630319 ; =3.797399516 (w;)

n; = 2.7436093 11 (wj)
conridence level = 99.9998%

confidence level = 99.3578%
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Table 2: The numerical and experimental modal parameters of the first four modes of the

[ixed-free GRP beam of volume fraction 45%

[0/0/01
Aodena.,i Freq y, @ | Freg @y | Demping, n
(rad/sec) (rad/sec) <e)
i 299004 295.310 10.106
2 1873.816 1859.823 3.632
3 5246.742 5152.212 2.256
4 10281.522 | 10040.530 1.564
n; =1 _973394157(0)”-0.52439246 13
confidence level = 99.9324%
[0/30/0]
MHodeno,i | Frequemcy, » | Frequemcp,wy | Damping,
(rad/sec) (rad/sec) (%)
l i 296,372 289.027 : 10.870
2 | 1857310 1847.256 | 3.996
3 5196.766 | 4988.349 I 2.330
4 ; 10190.975 ‘ 10027.964 J_ 1.630

nj = 2.288586882(w;)"0-3362827913
conridence level = 99.9956%

[0/45/01
Mudena., i Freq o ar l Freg Y. arg Damping, 7
(rad/sec) (rad/sec) { re)
[ 294926 182.743 | 11.112
2 1848281 | 1359873 | 4222
315175234 | 4951150 | 2.348
4 1 10141.394 | {0015397 | 1.662

0i = 2.200855 191 (w;)0- 5394284987
conridence level = 99 9872%

[0/90/0]
Made no.,s Frequency, m Frequency,my Dammng, n
(rad/sec), frad/sec) )
i 294 631 276.460 11.932
2 1846.433 1822.124 4396
3 5170.069 | 4913451 2.430
4 10131.272 | 9952.566 1.704
n; = 2.765085107(w;)"0-3522194691
confidence level = 99 9926%
[45/-45/01
Hode no..i Freq ) Freq @y Damping, n
(rad/sec) (rad/sec) (=)
U | 230643 | 213.618 | 15294
2 ! 1445 403 1432.566 5.702
3 i 4047176 4021.239 2312
4 | 7930.844 7929.380 2.298
nj = 3.097594465(«;) 0-3536083162
confidence [evei = 99 6275%
[45/0/45]
Mode no..i i Fr , @ Freq Tiary Damp n
: (rad/sec) (rad/sec) %)
1 ¢ 141.529 138.230 | 200910
2 | 386960 | 341.947 | 7462
3 2483511 l 2475 575 ] 3.808
4 | 4866.691 | 4863185 | 2.342

n = 3_5Q|00|Q6”mi)'0.574l 157503

confidence level = 99 8897°%,
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4 [ =210 mm
1 = b b=20 mm

e o Ll
t =3 mm

Fig. (1) : 3-layered beam model
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AT *T Ch B
| i |
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l | !
1: Beam model 5 : Charge amplifier
2: Impact hammer with built-in force wansducer 6 - Dual-channel signal malyzer
3: Conditioning amplifier 7 . Computer
4: Piezoelectric accelerometer $ : Printer

Fig. (2): Schematic block diagram of the measuririg circuit
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Table 3 : Damping parameters of the

volume fractions, ( Vf}
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six code numbers of Stxed-free GRP beam for the o

1.50
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| ] i I I I 1
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Fig. (7 : Quasili lation b the damping consmat, 2 and the
c0de no.. 3 for the fixed-fres GRP beam of volume fraction
13% and 43%
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Code ne. [0/0/0) ' [0/30/0) [0r45/0] [0/90/0] [48/~45/0] [45/0/45)
1,248738345 2.4638725 2.743609311 3.011008077 . 3.56531542 3.797399516
V= 15%
@ | 0.53724390 | 0.5463537063 0.55319680819 | 0.5545636963 0.56°4§7“°S 0.5762650855
|
1.973894157 | 2.288586882 2.40085519) 1.765085107 3.097594465 3.591001961
V= 459,
0.5243924613 0.5362827918 0.5394284987 ‘0.5512194697 0.5536083162 0.5741157503
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