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ABSTRACT 

An improved dynamical model for vibration damping in composite 
structures is introduced to incorporate the code number and the degree of 
isotropism against the modal parameters. 

A substantial development has been carried out from the fitting of 
modal measurements with lowest residual errors to permit an establishment of 
quasi uniform mass damping models in terms of normal coordinates system. 

The analysis of the obtained results proves not only the efficiency of the 
developed model but also its applicability in any wide range of frequency 
spectrum of composites. 

1. INTRODUCTION 

Composite damping or energy dissipation property of vibrating 
composite structures, is a name for complex physical dynamic nature that is 
amenahle to rheological modal analysis. In a broad class of composite 
structures, the distinguishing characteristic of the damping mechanism is its 
strong- dependence on the eigenfrequencies such that it exhibits little 
damping at high frequency level [1,3]. 

In contrast to the dynamic nature of isotropic domain, a further 
complication arises in composite domain due to the mutual effects for various 
parameters, such as code number, degree of isotropism (volume fraction), 
type of fixation as well as the vibrating mode number on the dampicil, 
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stiffness distributions:, .As: an. example, the decreasing, oi volume. traction ,of 
fiber enhances energy dissipation by increasing the•z•lOSsHassociated•with 

matrix composite[2,3,4
]. It might be expected that the natural frequencies of 

vibrating composite structures and in sequence the damping capacity, can be 
altered by changing layer's orientations and stacking sequence[5,6], so that 
the damping nature as a function of frequencies of composites should be 

further studied. 

At the present time, it is still difficult to determine accurately the modal 
characteristics of composite structures (particularly damping parameters) 
throughout analytical approach. The experimental confirmation prediction is 

therefore at very least desirable and can be used to form analytically the 
mathematical model. In turn it can be used to more clearly understand the 
configuration of parameters controlling the dynamic of composite states. 

Recently, a mathematical model representing the damping capacity of 
composite was established[1]. Based on the student distribution 
approximation of the measured values of damping in the fundamental mode, 
the modal relationships between the fundamental  frequencies and the damping 
factors were developed in equivalent to an uniform mass damping of isotropic 

structures. 

In the present work, an attempt has been inadeto imprbVe the 
convergence characteristics of the model within a wide range of frequencies-

for different code numbers at two levels of volume fraction. 

Basically, a weight factor (a) has been introduced for correlating and 
updating the mathematical model to the experimental data throughout the 
utilization of the curve fitting response function. This has resulted 
generalized quasi rectangular hyperbolic relationships between the loss 
factors and the natural frequencies with the confidence level 99.5%. These 
results permit the uncoupling of simultaneous equations of motion of 

composite structures with the lowest residual errors. 

In the experimental work, Fig. (2), cantilever composite beams made 
from fiber reinforced plastic FRP are considered as the object of the study for 
their simplicity and for wide national applications. Various specimens made 
from three plies, Fig. (1), are utilized for two levels of volume fraction (a) a 
weakly composite 15% and (b) an average composite 45%. 

In order to evaluate accurately the influnces of code number on the 
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damping capacities and natural frequencies, twelve specimens of 
unidirectional cross - ply and angle-ply laminate have been fabricated in the 
laboratory by using hand lay up technique. 

Numerically the first four natural frequencies at the two levels of volume 
fraction are computed by the use of modified formula. M.F.M (71 and listed in 
the second column of the tables (1) and (2). 

For the sake of verification, the experimental results of the natural 
frequencies and the loss factors for the first four natural modes are listed in 
the third and fourth columns in these tables respectively. 

To highlight the idiosyncratic nature of the damping parameters, various 
curves representing mutual relationships of modal parameters were plotted in 
Fig. (3) and (4). 

The close agreement between the mathematical and experimental results 
leads to more easly understand and enrich properly the modelling of the 
dynamic nature of vibrating damping composite structures. 

2. PROBLEM STATEMENT 

The governing equations of free damped vibration of laminated structural 
model of it degrees of freedom may be expressed as : 

mqNN NN NN 
+ c4 + kq = 0 , 	 (1) 

where, 	m, c, k are the n x n mass damping and stiffness matrices, „, 
respectively and q is the corresponding n x 1 displacement vector. 

In the absence of damping, the natural frequencies w and the 
corresponding mode shapes V are obtained by solving the eigenvalue 
problem: 

EV = VP 
NN M11 (2) 

where, E = 	k is the n x n inverse dynamic matrix 

V is the n x it orthogonal classical modal matrix and P is the n x n 
diagonal frequency matrix containing the n squared frequencies. 

Having obtained the complete set of n eigenpairs, the orthogonality 
properties of mass and stiffness matrices are then expressed as : 
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(3)  

(4)  
m vT m v = [Me] ,  
N N es/ eV 

K= VT k V = [Kr], 

where, M and K are the n x n diagonal mass and stiffness matrices. 
es■ 	••■1 

Considering the invariance of the modal matrix under raising the 

matrices E and P to any rational positive number a, the•eigenvalue problem(2) 

may be recast as : 

DV = VA 
	 (5) 

■■• N N ".1 

where D = Ea and A = Pa  . 

Here a is the control weight factor to be choosen for minimizing the 
weighted residual. A special case, at which a (max) = 1, was considered for 
the uniform mass damping matrix of composite in equivalence to the damping 

of isotropic structure presented in Reference [1] 

3. MATHEMATICAL MODEL OF VIBRATION DAMPING OF 
COMPOSITE STRUCTURE : 

It was mentioned in Ref. [1] that the hyperbolic relations between loss 
factors (1) and natural frequencies (w) of composite plate, vibrating at the 
first mode for different boundary conditions, provide a more reliable 
prediction throughout the utilization of an ,u,niform mass damping scheme. 
These relations were established by utilizing the student distribution 

approximation with confindence level 95%. 

The demand for more accurate modelling of composite structures for 
various code numbers within a wide range of frequency sperctrum requires a 
modification-off'hyperbolic relations by introducing the proper weight factor 
(ai) and the damping constant .(ai) for i th code number. 

The complication for selecting the proper current values of the damping 
parameters is a result of the mutual effects of the code number, volume 
fraction, aspect ratio, types of fixation and natural mode number. 

For establishing a proper equivalent mathematical model let us start by 
successive premultiplication of equation (5) by a positive integer j followed 
by premultiplication of both sides of the result equation by VTm and we have: 

VTrnDiV = M 	
(6) 

From definition, the right hand side of the previous equation is a 
diagonal matrix. It follows that mDi satisfies the orthogonality conditions. 

eV "I 
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Let a damping matrix is represented as a linear combinations of the compound 

matrix given by : 

c= 	aim Di 
	

(7) 
j =0 

The proposed form (7) satisfies the orthogonality conditions such that : 

c m -I k = k m-1  c. 
N ti 	ew 	■••■1 •■• 

With regard to equations (6) and (7) this diagonalized damping matrix is then 

given by : 

C =[C,]= VTcV=IaiMA 
	 (8) 

Here the damping coefficient of the rth mode is expressed as : 

Cr = VT C Vr 
"4 NN 

 

J ai • Mr A.r 
j=0 

(9) 

where, kr  — 

  

In view of the hyperbolic relationship between the loss factor (1) and the 
natural frequency derived in Ref. (1), The rth loss factor can be modified to be 

rlr = 	wa(2j-1) 	 (10) 
j=o 

In composite domain the computaion of damping constants requires high 
computational effort compared with isotropic one. For simplicity, the series 
given by equations (7), (9) and (10) have been truncated respectively to the 

forms; 

c = ao  m 	 (11) 

Cr  = ao  Mr 	 (12) 
-a 	 (13) ao 

In view of equation (1.3), the quasi hyperbolic relation can be expressed 

as: 

rt w a  = ao 	 (14) 

Here, the damping constant ao  increases as the volume fraction decreases 

and as the code number leading to a low stiff composite structure. 

For the sake of graphical linearization, the previous equation can be 
transformed into the following logarithmic form : 
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In 	+ a In cu = ln ao 
	 (15) 

The isotropic state can be considered as a limiting case at which the 

weight factor reaches its maximum value here as : 

a* = tan S = 1 

consequently equation (15) will be recast as : 

In 1 + Inw = In a* 
	 (16) 

In equation (16) the two limiting isotropic states arise here as : 

1. a* = a l  represents a fully fiber domain at which of = 100% 

a* = al represents a fully matrix domain at which vf = 0.0% 

A set of family curves representing composite domains of various 
degrees of isotropism in the physical state can be then bounded as follow : 

o < a < a
* 

a1 < ao < a2  

o < 1 < 1 

isotropism at which a 5 tan-1  45°. Also the damping constants for each 

specimen increase as the volume of fraction decreases. 

It is obvious that the rate of change (slope) depends on the degree of 

The validity of orthogonality condition permits the decoupling of natural 
modes. Consequently, the equation of motion in the r th modes is expressed 

as : 

Mr Yr + CrYr + Kr Yr = Fr 
The steady state response in the r th mode is then expressed as : 

yr  = 	Sin (Qt + a) 

Here the magnification factor in the r th mode is given by : 

O r = [(1 - 4) +(11r. Zr)21 2  

where, 	Z r  = Q I w r  

(17)  

(18)  

(19)  
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or= 1 / rk for 	a <1, 

	

Or  = 1 /rh7  for 	a =1, 

where, rir =ri; 
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4. EXPERIMENTAL MODEL OF VIBRATION DAMPING OF 
COMPOSITE STRUCTURAL BEAM, FRP 

A verifications of the equivalent mathematical model of the damping 

distribution in relation to the frequency spectrum of the composite structure 

in the light of the tested data is represented. The frequency response tests 

were performed on cantilever composite beams made from fiber reinforced 

plastic FRP by utilizing fast fourier transform dual channel analyzer in 
conjunction with the computer as shown in Fig. (2). 

A typical specimens FRP composite beam of dimension (210 x 20 x 3 

mm) made of three plies with 1 mm thickness for each ply is shown in Fig. 

(1). Two composite level were selected for each code number. These are 

weakly composite specimen of volume fraction Vf = 15% and the average 
composite specimen of V f = 45%. 

To study the effect of lamina orientation and stacking sequence on the 
modal parameters, six code numbers of specimen were fabricated and stated 
as (0/0/0), (0/30/0), (0/45/0), (0/90/0), (45 / - 45 / 0) and (45 / 0 / 45) for 
each volume fraction. 

Within the frequency range (8000) Hz, the frequency response and half 

power tests were performed for the measurements of the first four loss factors 

and the corresponding eigenfrequencies and listed in the third and fourth 

columns of tables (1) and (2). For the sake of verification, the first four 
natural frequencies listed in the second column of the tables were computed 
by modifying the developed formula [7] and the form; 

03; = k
∎ 	lY 

23t  L2 13,c  . ti 

where, D *  = Condensed bending stiffness modulus. 

With the utilization of the least square technique on the measured values 
of the loss factors and natural frequencies at the first four natural modes, the 
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quasi rectangular hyperbolic curve fitting are plotted with the confindence 
level 99.5% as shown in Fig. (3, 4). 

To study the effect of the ply orientation on the damping capacity, we 

have firstly consider the effect of changes of inner ply orientations and 

secondly the effects of changes of outer ply orientation compared with the 

changes of inner ones. A glance at Fig. (3) and (4) indicates that the damping 

capacity increases monotonically, (natural frequencies decrease), with the 

increase of angle of orientation of the inner layer. 

With regard to the experimental results listed in tables (1) and (2), it is 

obvious that the changes of outer orientations have significant effects on the 

damping, (and stiffness), of the specimens compared with the changes of the 

inner orientation. As example the experimental results of the loss factors for 

(0/0/0), (0/45/0) and (45/0/45) show that the loss factor increases by 16% due 

to the increase of the inner layer (by 45°), while it increases by 87% and 

105% due to the increase of the two outer layers (by 45°) for of = 45% and 

15% respectively 

In Fig. (5, 6) the logarithmic forms of quasi hyperbolic relations for all 
cases are plotted in linear forms. It is noticed that the slopes assigned by the 
weights factor are depending mainly on the degree of the isotropical state 
while the damping constant depends mainly on the flexibility of the specimen. 

The interrelations of the weight parameters (a, ao ) and the code numbers 
for each level of volume fraction are listed in monotonic manner in table (3) 
and plotted in Fig. (7) and (8). It is found that the weight parameters 

increase linearly with the increase of ply-orientation of either inner or outer 
layers. 

CONCLUSION 

In the present work, the modelling of damping distribution in vibrating 
composite structures is established with the lowest residual errors. The fitted 
results of the measured values indicate that : 

1. There is an existence of generalized quasi rectangular hyperbolic 
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relationships between the loss factors and natural frequencies of composite 
structures and can be found at any selected ranges of frequency spectrum. 

2. The developed quasi uniform mass damping matrix by utilizing the 
proper weight factors permits the utilization of normal coordinate systems for 
uncoupling equations of motion of composite structure with the high 
confidence level 99.5% 

3. The angle orientations of the outer laminate have significant effects 
on the modal parameters of the composite compared with the inner laminate. 

4. The angle of orientation 45°, at which the shearing parameter reach 
highest values has the highest influence on the modal parameters compared 
with the other angle orientations. 

5. The obtained values of the weight factors may be considered as 
indicators of the degree of isotropity of the composite structures. 
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Table 1: The numerical and e_xperimett fa! modal parameters of the first four modes of the 
fixed-free GRP beam of volume fraction 15% 
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[010101 
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Table 2: The numerical and experimental modal parameters of the first four modes of the 
fixed-free GRP beam of volume fraction 45% 
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,„133333M(6 = H424.1 

I = 210 mm 
b = 20 mm 
t = 3 mm 

Fig. (1) 3-layered beam model 

6 

1: Beam model 
2: Impact hammer with built-in force transducer 
3: Conditioning amplifier '- 
4: Piezoelectnc accelerometer 

5 Charge amplifier 
5 Dual-channei signal analyzer 
7 t Computer 
tt ?tinter 

Fig. (2): Schematic block diagram of the measuring circuit 
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Fig.(3) Quasihyperbolic relation between the damping lose factor, n and the 
natural frequency, to for the fixed-free GRP be= of volume fraction 15% 

Quaeltyrnatolic reinuon ben‘ctin 	daniping k ..vs (actor. r :md the 

natural frequency. u) ter the fixed-tree t ;RP hennt ot volume traction 45%.. 
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Fig. (5) Logarithmic relation benacen damping loss factor, q 
and natural frequency. as of fixed-free  GRP beam of 
volume fraction 15%. 
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Fig. (6) Losantiume relaunn between damping loss factor, tt 
and natural frequency, to of fixed4ree GRP beam of 

volume traction 43%. 
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Table 3 : Damping parameters of the sir code numbers affixed-free GRP beam for the two 

volume fractions, (Vr) 

Code no. 	I 	10/0/01 	[0/30/01 

VP' 15% 
a 	2.248738345 	2.4638725 

a 	0.53724390 0.5463537063 
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1.973894157 	2.288586882 

0.5243924613 	0.5362827918 

4.00 7  

0 	 2 	3 	4 	5 	6 	7 
Code no.. S 

Fig. (7) : Quatthearr relation between the damping conatant.. A and the 
code no.. 3 for the lined-free GRP beam of volume fraction 
15% and 13% 
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