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ABSTRACT

Measurements inside a Hame tube are presented and compared for a range of confined
liquid tuel oil, gasgous fuel and dual fuel flames. The operating conditions include a range
of three heat inputs 29 kW, 38 kW and 48 kW. For dual tuel tlames three gaseous fuel
ratios 25 %, 50 % and 75 % are considered. The experimental work takes place using an
industrial type, dual fuel burner that is especially designed and constructed to utilize the
three types of firing. This burner is fitted to a water cooled cylindrical furnace (the
Combustor).

[t is found that, Burning gascous fuel simultaneously with liquid fuel oil, acts as a hot
shield surrounding the oil spray flame. This shield serves to reduce significantly the loss of
combustibles from oil flames, mainly through enhancing the evaporation process of fuel oil
droplets and incre:ising soot burnout at the flame region as well as preventing the
surviving soot particles trom being deposited on furnace walls. The importance of these
conclusions emerges when burning low grade fuels or hituminous fuels which needs a
more carefully designed combustion system.
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NOMENCLATURE

AFH Accumulative Fraction of Heat Transterred, (%)
Cor Specitic Heat of Water Under Constant Pressure, (kJ/kg °C).
C.V. Calorific Value of Fuel Used, (kl/kg ).

Din Combustor Inner Diameter (m).

FH Fraction of Heat Transferred, (%)

HF() Heat Flux to Segment i, kW/m”.

Li Length of segmenti (m).

Me.w Cooling Water Flow Rate, (kg/s).

mg Fuel Flow Rate, (kg/s).

n No. of Combustor Segments.

R Combustor inner radius (m).

Si Segment No. 1

Ti Inlet Temperature of Cooling Water, (°C).

T, Outlet Temperature of Cooling Water, (°C).
1. INTRODUCTION

The main concern in furnaces, boilers and gas turbines design is to obtain a stable flame,
with high combustion efficiency and minimal noise and emission levels at a wide range of
operating conditions. Such flame would allow for more energy savings and for lower
environmental pollution.

The core of any combustion system is its burner. Continuous research and development
work are’ carried out by the burners manufacturers in order to achieve the above aims. A
large amount of information and research work are available for single fuel burners and
multifuel burners which are designed to burn more than one type of fuel, but not
simultaneously [1-20]. This is why sufficient information for simultaneous burning of more
than one type of tuel, is scarce. With the increasing availability of Natural Gas in Egypt,
emphasis has been placed on obtaining sufficient information for the effect of using
gaseous fuel instead or along with the presently used liguid oils. Those information would
contribute to a basic understanding of the structure and characteristics of dual fuel tlames.

[3V]

. EQUIPMENT AND EXPERIMENTAL WORK

2.1 Test Rig Description

The experimental arrangement is shown in Fig. 1. It comprises the combustor which is a
horizontal cylindrcal water-cooled flame tube of 0.4 m inside diameter and 2.0 m long.
Cooling is via water jacket which is divided into thirteen axial segments. Each segment
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receives water at room temperature, and discharges it to drain. The Combustor is fitted
with a coaxial dual fuel burner as illustrated in Fig. 1. The construction of the burner used
is similar to those commonly used in large power stations and petroleum refineries in
Egypt and probably elsewhere: (e.g. Abou-Sultan power station). It is a double-swirl type:
the two swirlers are concentric as shown in Fig. 2. In this arrangement, a liquid fuel oil is
sprayed by a 60° swirl atomizer placed at the center of the primary (inner) air swirler ot
45" vane angle. Four identical holes were opened through the vanes of the outer secondary
air swirler ot 30° vane angle to allow for the fixation of tour identical gaseous tuel burners
These gaseous burners are placed off-axis of combustor, and distributed at equal
circumferential distance along a circle having a diameter of 0.136 m. Hence they are
mounted at the ends of two perpendicular diameters of that circle as shown in Fig. 2
Combustion air is supplied to the burner by an electric air blower. The air flow rate is
measured by a standard, calibrated orifice plate connected to a U-tube water manometer
The liquid tuel used is gas oil (solar) with an approximate weight analysis ot 86.3 % C
12.8% Ha,, 0.90% S. The average heating value and density are 44162 kJ/kg, 820 kg/m”
respectively. The liquid fuel mass tlow rate is measured by means of pressure gauge
indicator which is calibrated to read the mass tlow rate. The gaseous tuel usedis u
commercial LPG tuel with a volumetric approximate analysis of 70% (C4 Hyo) and 30%
(Cs Hg) and an average heating value of 47092 kJ/kg. The gaseous fuel mass flow rate
through each gas burner is measured by means of a calibrated orifice meter.

[n the present work, average flame temperature is measured using a fine-wire
thermocouple, water-cooled probe. The hasic design has been previously used by many
investigators [7,10]. The thermocouple is made of Platinum and 10% Rhodium-Platinum
wires of 100 um diameter and connected to an electronic integrator and a millivolt- mete:
The soot concentration is measured using the well known Bacharach tester. The heat tlux
to the combustor walls is measured through the measurements ot the specific enthalpy ris.:
and the flow rate of cooling water in each segment. The enthalpy rise is calculated bv
measuring the cooling water temperature difference between outlet and inlet. The coolins
water tlow rate in each segment is determined by collecting a certain volume of the outlet
water and measuring the corresponding time [ 18]. Provisions were made to check the tlow
rate through each segment at least two times for cach run. The outlet water temperature .t
cach  segment was measured hy type E thermocouple (Nickel Chromium - Copper Nicke )
which 1s located at the segment exit. The values ol emperature are displayed on digit: |
thermometer having a resolution o O0.1"C. The  heat Tux w cach scgment is calculate |
using the simple formula :

[ o X Cwx (T, =T

/qunri =
(MxDwx L)
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2.2 Experimental Procedure.

The aim of the experimental procedure is to investigate and to compare both the flame
structure and the characteristics ot the combustor under three types of firing. These types
of tiring are :

1. Liquid fuel firing.

2. Gaseous fuel firing.

3. Dual (simultaneous) fuel firing.

A range of three heat inputs are included in each firing type. These chosen three heat
inputs are 29 kW, 38 kW and 48 kW with an excess air factor ot 20% which is kept
constant during the groups of test runs. Also, for the dual fuel firing where liquid tuel and
gaseous fuel are fired simultaneously. three gaseous tuel ratios are chosen namely; 25%.
50% and 75%. Accordingly, a total of 15 test runs are carried out. The operating
conditions for these runs are shown in table 1, whereas Fig. 3 exhibits photographs for the
corresponding tlames .

3. DISCUSSION OF RESULTS

3.1 Liquid Fuel Oil Flame Structure.

The experimental results obtained for the three oil flames of runs 1,2 and 3 together with
visual observations, allowed the formulation of a physical description of the tlame
structure common to the three tflames. The liquid fuel oil leaves the atomizer in the form of
a hollow conical spray with a central air core. The swirled combustion air creates a
recirculation zone which surrounds the tuel atomizer, as also observed previously, e.g.
Chigier[25). The spray sheet travels through this reverse tlow zone and as a result, small
droplets and fuel vapour are recirculated inside this zone. In additon, the presence ot this
recirculation zone displaces droplets found near the centerline towards the outer edge ot
the spray. This results in a tansportation of a number of droplets outside the nominal
spray houndary, Presseretal.[l]. Across the shear layer, which encloses the recirculation
zone. the high turbulent’ mixing rates and the comparatively high temperature ot the
recirculated gas allowed chemical reaction to proceed with a high intensity. This region
extends to the ftuel spray region and there. the resulting high temperature increases the
droplets evaporation and helps w stabilize the flame. The radial protiles of temperature tor
the three oil Hames of runs 1.2 and 3 are shown in Fig. 4. Although the temperature
profiles for the three oil tlames indicate the same general trend. uantitative difterences
exist in the temperature values and in the relative dimensions of the central high intensity
combustion, high temperature zone. The temperature increases appreciably across the
(lame  boundaries e.g. at axial locanon ol ¥D=0.125 and /R=0.2. Far downstream
locations. at x/D >0.623. the combustor is lully occupied with non-luminous combuston
cases and the wemperature levels exhibit gradual decline along the combustor down-stream
dircction  due o convective heat ranster to the cooling jacket. The shape of these protiles
tends to even-out due to turbulent dilfusion effects. The final concentration of soot at exit
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15 expected to be determined by the combined effects of formation and burnout, which are
nfluenced by the temperature throughout the flame [14]. In general, high temperature
levels lead to lower soot concentration. It is clear, therefore, that the values of
temperature and soot concentration are different when comparing the three oil tlames ol
runs 1,2 and 3. These ditferences may be attributed to the spray quality of each flame
which indirectly atfects the temperature tield. The droplet size which is greatly affected by
the fuel atomization pressure plays a major role in the combustion performance of spray
tflames, Chigier[25]. The three flames correspond to three atomizing pressures namely;
3.5. 7.5, 12 bars. For the tflame of run 1, the slow evaporation of its comparatively large
droplets provides a small amount of fuel vapor at the spray region and, therefore, the
diluton and quenching of chemical reaction effects of the surrounding air stream will
result in a reducton in the combustion intensity. This is supported by the relatively low
temperature values measured along the combustor. In addition., it is also contirmed by the
relatvely high accumulation rates of condensed fuel vapor experienced in the sampling
system  during soot concentration measurements. For the flames of runs 2 and 3 which are
characterized by higher atomization pressures, larger number of finer droplets and hence
faster evaporation rate is experienced. Accordingly, an intense chemical reaction will be
ensured, leading to elevated temperature levels. This is evident by referring to Figs. 4(b.c)
which show a higher temperature values compared to the oil flame of run | shown in Fig.
(4.a).

=

3.2 Gaseous Fuel Flame Structure.

The flames of the gas burners used are partially premixed, by virtue of the existing ports of
the hurner tube. The fuel/air mixture issuing from the burner entrains secondary air trom
the combustor space, intermingle with it, and burmns intensely with a blue-coloured flames |
see Fig. 3. Such premixing results in a single peak of temperature that coincides nearly on
gas burner centerline. which is strictly true at close distances from gas bumner exit. This is
clear in Fig. 5 (a.b.c) where the maximum temperature occurs at i/R=0.30) and x/D=().]125.
At fturther downstream locations, temperature values tend to fall oft, and even out across
the combustor flow cross-section. mainly due to heat transter o walls and gas mixing,
augmented by swirl motion. The level of saot for the gaseous tlames is found neglhgible,
which indicates the ¢lean combustion pattern of gaseous Hames.

3.3 Dual Fuel Flame Strucrire.

a. Gaseous Fuel Ratio 235,

For such low gas fuel ratio (runs 7.8.9) the gaseous four tlames are wa small 1o
stignilicantly interact with the oil Tame. reter 1o Fig. 3. However. the existence ol Lds20us
Hames around the oil flame seems o improve . somehow. the evaporation ol some Tuel ou
droplets i the near vegion ol gas burners. This is consistent with the reduction i soot
levels  at combustor exit in this case. as shown in Fig. 6. compared with the corresponding
levels of pure fuel vil flames. Close inspection to these ftgures suggests that the basic dual
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fuel flame structure has a combined features of both oil flames and gaseous flames. As
shown in Fig. 6, , two peak temperature values are recorded at x/D = 0.125, /R = ().15
and 0.35. The first peak corresponds to the oil flame whereas the second to the gaseous
flame. The spreading of the oil flame seems to be slightly reduced at x/D = 0.375
compared to the cases of pure oil tlames, compared with Fig. 4. This is attributed to the
existence of the four gaseous tlames that contributes, in this case, to some extent in
rectifying the oil tlame.

b. Gaseous Fuel Ratio 50%.

The radial temperature at different axial locations are shown in Fig. 7 for the flames having
gaseous fuel ratio of 50% which correspond to runs 10,11.12. During these runs, gaseous
fuel flow rates are increased whereas liquid fuel oil rates are decreased while maintaining
the same fixed three heat inputs mentioned above. Although the reduction in fuel oil rates
was accompanied by a corresponding reduction in fuel oil atomizing pressure, the
existence of the four gaseous tlames seem to compensate the drawback of this by
modifying the evaporation characteristics of the fuel oil droplets. It is also observed that
the soot concentrations at the exhaust port of the combustor during these runs are lower
than those ot the cases of 25% gas-tuel ratio (runs 7,8 and 9).

¢. Gaseous Fuel Ratio 75%.

Under this high value ot gaseous fuel rates, (runs 13-15), great interaction seems to occur
hetween the oil flame and the gaseous flames. The colour of the oil flame is converted
from a dark luminous tlame to a bright luminous one characterised by lower levels of soot
tormation and higher levels of temperature compared to runs (1-3 and 7-12) which relate
to cases of lower gaseous ratio. In addition. the existence of this intense interaction
hetween the tlames greatly contributes in 5h01‘tcmm, the oil tflame length via accelerating
evaporaton of oil droplets. Fig. 8 1llustmtes the radial protiles of temperature. In
comparison with the case of less gaseous fuel ratio, it is observed that the region ot
interaction hetween gaseous tlames and fuel oil flames is further extended to cover more
space in the tuel oil flame. The gaseous fuel flame seems to survive up to x/D =0.375 .
munifested by the single pr.ak temperature whereas the oil flame peak temperature is
almost vanished.

3.4 Heat Flux Distribution to The Combustor Walls.

Fig. 9ta.b.c) shows the heat Mux distibuton to the combustor walls atdifferent eyt
mputs and under different lypes of liring. As 2 common teature. heat flux peaks at about
«/D=0.250). where this region ‘is characterized by an intense chemical reaction as well as
favourite radiation charactenistics. The effect of varying the heat input on the peak heat
Mux was lound (o dic down as the gascous luel ratio increased. For example tor pure oil-
fuel Mame. it was found that increasing the heat input from 29 w 48 kW would increase
the peak heat Tux by 4 factor of 2.2%. On the other hand this same factor is reduced o
1.71 for the lame of 75% gascous fuel ratio, and reduced even turther o only .57 for
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the pure gaseous-tuel tlame. This indicates that using gaseous fuel simuitaneously with «
liquid-fuel flame would cause the heat tlux peak value to be less sensitive to variations in
heat mput to the combustor (i.e. versus variable load operation of the combustor). This
may be attributed to the sensitivity of the atomization process of oil flames under variable

load. A process whose effect is overshadowed when gaseous tlames coexist with oil
flames. 4

3.5 The Accumulative Heat Transferred to The Walls.
The accumulative heat transterred to the combustor walls equals the sum of the heat
transterred to all segments of the wall. For any segment , for example no.(i) , the fraction
of heat transferred to it is given by :

[m-« x Cpe X (T. = T

FHi) = X 1009
(mxCV.) i)

The accumulative fraction ot heat transterred that is given off by the tlame up to segmen:
no.(n) is given by :

(AFH)(n) = z FH(i) (3)

It 'n” in this equation designates the last segment of the wall, (AFH) value would equal the
total fraction of heat transferred to the combustor wall . i.e. equals the thermal efticiency
ot the combustor [17,22].

As shown in Figs. 10(a.b.c) for a fixed heat input, increasing the gaseous fuel ratio greatly
ncreases the accumulated heat transterred. This result directly reflects a favourite effect of
introducing gaseous tlames together with oil tflames. This is mainly due to the contribution
of. gaseous flames in enhancing the evaporation and combustion characteristics ol oil flames
spectally at poor alomizing conditons which 1s likely to ensue, for example, at low oil fuel
percentage.

3.6 Thermal Efficiency of The Combustor and Soot Concentration at Exhaust Port
Fies. 11and 12 show comprehensive comparisons ol the combustor characteristics unde:
ditterent tvpes of fuel admitted and atditferent heat inputs. Fig, 11 shows the effect of
gaseous ratio and  heat input on thermal efficiency while Fig. 12 presents the eftect of the
same two vanables on soot levels at combustor exit These ligures indicate that therma
ctliciency ot the combustor can be raised and soot emission levels reduced by means oi
the tollowing two actions:

a1 increasing the gaseous tuel ratio :or

h) increasing the heat input.
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4. CONCLUSIONS

From observations and analysis of the experimental results, the tollowing main conclusions
may he summarized as follows :

|. Adoption of the gas tlame jets, placed around the central oil tlame, assisted by the
swirling motion of air, acts as a hot jacket to the oil tlame. This jacket reduces
significantly the loss of combustibles from the oil flame, presumably through
evaporating and burning the falling and tlying oil droplets and soot particles

2. For a tixed heat input, increasing the gaseous fuel ratio, has the tollowing advantages:

(a) Faster attainment of uniform radial distribution of temperature which augments the
convective heat transter rates.

(b) Obtaining more uniform heat flux along the combustor downstream direction.

(¢) Increasing the accumulative heat transfer to the combustor walls, and consequently
raising the thermal etficiency.

(d) Reducing the soot concentration levels at combustor exit.

(e) Less sensitivity of the peak value of the heat flux to variations ot heat input (i.e.
versus variable load of the combustor)

3. For the three types of firing examined, under the volume and contiguration of the
present combustor, an increase in loading(heat input) within the tested range (29-48
kW), causes an increase in both heat flux intensity and thermal etficiency.

4. The adoption of dual fuel tiring makes it easy to control heat transfer mode and stream-
wise distribution of heat flux. Thus dual firing with low gas ratio should be adopted for
a principal radiative-heat-transfer-mode with a peak at the region close to the burner
end. On the other hand dual firing with high gaseous fuel ratio may be used for a
process that is dependent on convective heat transter mode with a rather more uniform
heat flux distnbuton.
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Fie. 4 Radial Profiles of Temperature at Different Axial Locatlions and Soot Concentration at

Combustor Exit - Runs 1,2,3.
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Equivalence Ratio{$)-0.833
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Fig 5 Radlal Proflles of Temperature at Different Axial Locatiens and Sool Concentration at
Combustor Exit - Runs 4,5,6.

Fuel Type : Gaseous Fuel (LPG) - Gaseous Fuel Ratio = 100 % - . Equivalence Ratio($)-0.833

(a) Heat Input = 29 kW
{b) Heat Input = 38 kW
(c) Heat Input = 48 kW
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Fig_ 6 Radial Profiles of Temperature at Differsnt Axial Locations and Soot Concentration at
Combustor Exit - Runs 7,8,9.

Fuel Type : Dual Fuel - Gaseous Fuel Ratlo = 25 % - Equivalence Ratio($) ~0.833
(a) Heat Input = 29 kW

(b) Heat
(c) Heat

Input
Input
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Fig, 7 Radlal Profiles of Temperature at Different Axlal Locationa ahd Soot Concentration at
Combustor Exit - Runs 10,11,12.

Fuel Type : Dual Fue! - Gaseous Fuel Ratlo = 50 % - pguivalence Ratic($) -0.833
(a) Heat Input = 29 kW

(b) Heat input = 38 kW
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Fig, 8 Radilal Profiles of Temperature at Different Axlal Locations and Sool Concenttation al
Combustor Exit - Runs 13,14,15.
Fuel Type : Dual Fuel - Gaseous Fuel Ratlo = 75 % - ZEquivalence Ratio($)-0.833
(a) Heat Input = 29 kW
(b) Heat Input = 38 kW
(c) Heat Input = 48 kW
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O HEAT INPUT = 29 kW
& HEAT INPUT = 18 kW
T HEAT INPUT = 48 kW

Fig. 11 Comparison Between Thermal Elficiencies st Diflerent )fr’pn of Fuel
and af Differant Heat Inpuis.
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