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Abstract _ g
This paper presents an adaptive ﬁltcringalgorhhmforrobotmmﬁpnhtmswith

respect to uncertainties including unknown plant parameters (e.g.~ load/tool changes,
work piece variations,. ...ctc.)whcntiwrobotdymmicsmexcitedbymdom
disturbances. Using  standard variational arguments, we develop the necessary
conditions for optimal identification. Based on these neccssary conditions, we propose
an algorithm for determining the unknowns and the corresponding estimated states.
Kahnmﬁﬂerandmappropﬂatcmfuncﬁomlwhoscdepeﬁdinguponthcstatcs
csﬁmawdandcxpectedvaluesfomlmcbasisofﬁﬂsalgoﬁthmMaIgOMis
applied to two degrec-of-freedom model of Unimation PUMA/560 Robot to illustratc
the convergence of the parameters to its actual values during tracking of its end-
effector.

L Introduction

In this paper we consider the adaptive filtering problem for robot manipulator
which is assumed to be governcd by a nonlincar differential equation of the form [1] :
x(t) =H (x(t),u(t),a.) (1.1)
where H depends om . the input u (control variable) and the unknown parameters .
When the effect of random loading is included in robot dynamics Kalman filter can
been used to estimate the states of the robot arm. Since some of the robot arm
parameters are not kmwn,oneisrequiredtocsﬁ:'natcﬁrstﬂwseparametersmdthen
use Kalman filter to determine the, required estimated states, We propose in this paper
a certain criterion on the basis of which these unknown parameters can be identified.
Using variational arguments we develop the necessary conditions for optimal
identification on the basis of which the (optimal) robot parameters can be determined.
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These parameters are then used in Kalman filter to determine the estimated states of
robot arm.

The paper i3 organized as follows. In section 2, we present the mathematical model
for robot manipulator. In section 3, we present some resulis which are required for
developing the necessary conditions for optimal identification, Further, using
variational arguments, we present the corresponding necessary conditions for optimal
identification along with a proposcd scheme for determining the unknowns. Finally in
section 4, we present a numerical example for illustration.

-

IL Problem Statement
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Fig. 2.1 Planar two-link mechanism.

It i8 known that the mechanical robot manipulator (as shown in fig. 2.1 for
example) is governed by the following (nonlinear) differential equ;uion [2]:

() = M(e(t),a)8(t) + N{6(t),8(t),x) @1

where: |

i8 nx1 vector of torques or forces applied at the joint (control variable).

i8 nxl vector of resulting from relative joint rotations.

is nxn inertia matrix (symmetric and positive definite).

8 nxl vector of centripetal and Coriolis torques.

is unknown System parameter.

The above nonlinear model can be lnearized around the mean, and can be written as:

R Z g o A
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x(t) = Ala) x(t)+B(a) u(t)+Gw(t)
t=0. 2:2)
x(0)=xo
where A e®R" BeR"™, ue®R® and x, is a random vector with zero mean and
covariance matrix P, and vector w(t);t>0 is a Gaussian noisc reprosenting random
disturbance in loading.
The observation process is assumed to be given by:

v(t) = Hx(t)+v(t), ' (2.3)

where Y(t)e®™ is a configuraion vector, which is a function of the end-cffector
vertical position and the additional task. He®R™* is a known matrix and W(t) eR" is
a Gaussian process, independent of w and x,,wctorrcprmnngmcmeanmmcnt
noise.

Consider the state and observation equations (2.2) and (23) Then the opumal
estimate %(t) satisfies the following differential equation (Kalman, Bucy[4]):-

i(t) = A%(t)+Bu(t)+ K (t)[¥(t)- Hx(t) ];t i .4
i(O)_—.‘io
where K(t)=P(t)H'R™.

P(t)=E{( x-% )( x-% )'};tzo (2.5)
denotes the covariance matrix which satisfies the following differential equation:
P(t)= AP(t)+ P(:)A_' -P(t)H 'R"Hp(t)+GQG e 2.6)

P(0) =P,

IIL Problem Analysis
In this section we present necessary Lemmas and Theorems to satufy the

solutions of differential equations, and then the optimal parameter is determined.

Lemma 1:
. Dine S(t)sE{(x(t)—’i(t))(x(t)—i’(t)) };t;o, en

and (1) = {(g(:) —x())(&(1)-x(r)) }; £20, 32)
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where  &(t)=%(t,a) is the  soluion of (24) for any o and
i(t)EE{x(t)};taO.The following Lemma shows that the matrix P, S and I satisfy
certain differential equations:-

dg{s(t) = A(a)S(t) + S(t)A(a)’ +GQG ' t=>0 (3.3)
s(0)=Pp,
and

%F(t) - A(o)T(1)+ T A(e) + K () {¥()-Hi(ta)}e (1)

e () - B2 o)} K (0) +K (o) RE () £20 (3.4)

T(O) =0

where K'(t,a)=P(t,a)H ‘R and for every o, the matrix-P(t,a); t 20, satisfies
the differential equations (2.4) and (2.6). Further, c(t):(i(t)—i t );tzO, satisfies
the following differential equation [6]:
%c(t):A(a) o(t)+ K" (t,a){¥(t) - HE(t)}
¢(0)=0

; 62 0. 3.5)

Remark 1:

Let L(t,a)=P(t,a)-S(t,a)+ T (t, ), (3.6)
where P, S, and I are the solutions of ¢q.(5.2-5), ¢q.(3.3) and cq.(3.4), respectively.
Note that when the true parameter is introduced to the Kalman fiter equation, it i8
clear that there is a time t such that “P(t,a)“(a for all t )t~ for any sufficiently

small )0. Using this fact in equation (3.5) it follows that e(t)=0 for all
t)t".This implies that %(t)=%(t) for all t)t" and in this case L(t,a)=0 for all
tyt". However, for any other o the above argument does not hold and hence
L(t,a)= 0 for all t Based on thc above discussions, we may take the performance

index as:

(a)= u(% [ Lo (b a:) @.7)

to be our measure for estimating the unknown parameter o and the corresponding
state.,
With this set up we can now state the adaptive filtering problem as follows:
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Problem 1: ‘

Given the drving signal u(t);t20, find an o’ ca (parameter set) so that
Ha®)<Ha ) for al cxeca, where J(o ) is as given by eq.(3.7), subject to
the dynamic constraints (2.4)<2.6) and (3.3)~(3.5). ) |
In the remaining of this section weshalldcvclopﬂmcon'espmdingdeceu'uy
condition for the Problem 1 and present some numerical simulation for illustration.
Using (2.6), (3.3), (3.4) and (3.6), we have:

%L(t): AL(t)+L(t) A +P(t)H R"ﬁr(t)c'(t)+ e(t) W (t)R'HP(t)
L(0)=0 20

(3.8)

where

w(t) =Y(t)-Hz(t).

The following Lemma shows that £, e, P, and Lhave Gateaux differentials that satisfy
related differential equations. '

We shall make use of variational arguments and the (Gateaux) differentiability of the
functions on the parameter set Ptodevclopﬁwnocessarycondxhomforsolvmgthe
problem. For that we shall need the following definitions. Let o” = o’ +& (- a®)
for a’,0.€d where o’ denotes the (optimal) solution to the problem 1. Since the
parameter set & is comvex ,it is clear that a® is also an clement of 4. Let

%(t) = hmi-(t—)ﬂ)- t>0 3.9)

€
where % denotes the (Gateaux) differential of x at o in the direction (a—a®).

Lemma 2

Consider the Problcm 1 and suppose thc paramcter set P is convex. Then
%, e, P, and Lhave Gateaux differentials - denoted %, 8, P, and L, respectively, and that

they satisfy the following differential equations:
—x(t) (A° - P°H’ R'H) %(t) + BP(t)H' R'W° + A %°

{ i ; 620 (3.10)

\ x(0) =

: 4 o .

= =A° o 'RIa -P°H'R? X

—&1)= A" &(1) + A& + B(O)H' RMW(1) - PH'R H"(‘);tzo 3.11)
go)=0

J -:—tf-"(t) =(A° - P°H' R'H) B(t) + P(A° - P°H" R“H)' +AP° +P°A’

) (3.12)
P(o)=0 1> 0
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il".(t) AL+ A L(1)+ LA +LA° +Q,(t)

dt ) 120 3.13)
L{0)=0
where
Q,(1)= PH' R W0 ¢’ ~PUH'RVHES +-PH R &)
+&(t)w° 'RUHP? - 3 HR'HP® + "% R 'HP, (3.14)

where A° = A(t,a’), w°(t)=Y(t)-H&’(t) and %°c°and P° are the solutions
of the differential equations (3.10), (3.11) and (3.12) with o being replaced by o’
(optimal parameter).

Based on the above Lemma, we now present the following necessary conditions of
opfiimality.

Theorem 1: (Necessary Conditions)
Consider the Problem 1 and supposc Lemma 1 hold. Then the optimal
parameter o’ can be determined by simulations of the following set of differential

equations and inequality:

{%i"(t) = A(t,oﬁ)i‘(o(t)+P"I‘I"R'1 [Y(i)—mq(t)] 20 (3.15)
%°(0) = %(0)

\ o*(t)= A1, )’ (1 )+ PPHR[Y(1) - B (1)]. | (3.16)
e’(0)=¢,

SP°(1) = A(1,a%)P°(1)+ P (1)A'(1,0°) + GQG - P*HR'HE® | o G.17)

14: P°(0)=P

r%U() At,a® )L (1) +L°(t)A(t,a®) + P°HR ™ [Y(t) - HR*(t) "
4 + 0 [¥(e)- ER(0)] REP° N
L°(0) =L, 620
{—E\Pl(t)= H(DAL?) + A (L0t (00 o 19
¥ (T)=0
{—i‘l’z(t)=A’(t,ao)"!’,_(t)+[Y(t)—mo(t)]rR'lHPD"Pl(t);tzﬂ (3.20)
¥, (T)=0
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—%‘!’,(t) = (A(t,a")— PPHR H)¥,(t)- P°H'R“H~y1(r)' e

{ ‘ 3.21
- P°HR™HY,(t) . Sl
¥, (T)=0 ;120

=20, - w, (X Ar) - porrmom) « (Al 00) - PR *H) (0

+ +HR[Y(1)-E2(1)] ¢ % (1) EEE

CHR[Y()- B0 (1)] [22(0)+ ¥ ()]
{ ¥,(T)=0 20

J:u'{ﬂL"(t)‘I'l(t)+f\e°(t)‘¥;(t)+2}i Po()e, (1) + %, (1) A x)} g3

(3.23)
The proof follows from standard computations [6].
Based on the above necessary conditions, we have the following algorithm.

orithm:

1. Set m=1 and guessofa

2. Solve the differential cquatmns (3.15)<3.18) and get £™(t), ¢ (t), P*(t), and
L("')( ) ‘
3. Solve the adjoint equations (3.19) (3.22) and get ¥, ¥, CRMALRPPS IR A

4. Using the inequality (3.23) obtain the gradient vector g(

5. Update the paramctera"" Dusing the following relation o
o)0 is chosen so that o’ €@ and J(a""’")sl(a‘“‘)).

6 If |J(a)('”’"-1(a)""’|ss, 5()0) is sufficientty  swmall  then stop,

{m*1)

=™ — g™ where

otherwise, set m=m+1 and ol 5 o= go to step 2.

IV. Application _
For convenience we choose the UNIMATION PUMA 560 ROBOT for

application as a planer mechanism moves in x-y plane with two degrees of freedom as
shown in fig. 2.1. Using equation (2.1) and setting n=2, then the nonlincar dit¥erential
dynamical ecquations of motion that reiate the joint torques (7,,7,) to the angles
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(6,,6,), the velacities (él,él) and accelerations (ét,éz)of the joints are given by
[31:
7, =(a, + 3,086, )8, + (a, + (ﬁ) cos@1)§1

7
—[(a—x Sinez)[éléz + %2’-) +(a,c086, +a5co6, +6,)) (4.1)
BRI
+(a, cos(6, + ez)) (4.2)

where [a, 1<is<5] are constant parameters which depend on the masses {m,,m,}
and the lengths {£,,£,} of the robot links.

Let y(t)e®R denote the vertical coordinate of the end-effetor and, y(t);t=0 is
related to the joint angles ©,(t) and  6,(t) by the following forward kincmatic
equation (output equation):-

y(t)= ¢, sin (8, (1)) + ¢, sin (8, (1) +0,(1)). (4.3)

The joint angle 6,(t) is assumed to be held at 8,(t)= 45° (additional task), and
6,(t)= 0 atall time.

For the UNIMATION PUMA 560 ROBOT, the following paramcters are given by
3], m =591 kg , m,= 1136 kg, ¢,=£,= 0.432 moter, 3,=3.82, 2,= 2.12, a,=
0.71, a,= 81.82, and a, = 24.06.

Using Taylor serics we make linearization for the nonlincar equations (4.1) and (4.2)
and evaluating by the values of parameter a and the nominals, the matrices A,B and
H of eq. (2.2) and (2.3) are:

0 1 0 0 0 0
_ 25.7536 0 ~-1.1308 0| 8= 0.71 -1.5783 |
0 0 0 i 0 0]
-51.3647 0 18.4562 0 -1.5783 5.5566

and

=

0.7309 0 0.4254 O
0 0 1 o)

- Simulated Example:

The initial time = Osec., the final time tf=2sec.and the no. of time

t
0
interval is 100. The adaptive filtering algorithm is applied to linearized model of
UNIMATION PUMA 560 ROBOT. The numerical simulation given in Figures
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[(4.1)~(4.5)] show the behavior of the actual and estimated states, P, S, I" and L,
respectively. These results are taken when the initial values of the second - row
clements of matrix 4 of unknown parameters are (40 1 1 1). From these results it
clear that although some of the robot parameters are not known, we have been able,
through the proposed algorithm, to obtain a reasonable estimates for the states and for
the unknown parameters. Note that in some cases the estimated parameter is quite
different from the actual (underlying) parameter (see Figure (4.6) of the first element
of A). This deviation mparamctcresmnatemnotofgrcatnnpmjanccasbngaaﬂm
cstimated states follow closely the actual states (ie., the estimated error is small).

V. Conclusion

In this paper we have considered the adaptive filtering problem robot manipulator
which some o the parameters are not known exactly. We have proposed a suitable
criterion on the basis of which these unknowns can be determined. This criterion
depends on Kalman filter estimates and the observation process. Using variational
arguments we have present the necessary conditions for optimal identification. Based
on these necessary conditions we have proposed an iterative scheme for determining
the unknowns and the estimated states of the robot arm. The numerical results showed
that the proposed scheme produces estimates which is very close to the true states.
Further, the results also show the converges of the estimated parameter to the truc
underlying parameter.
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