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Abstract  
This paper presents an adaptive filtering algorithm for robot manipulators with 

respect to uncertainties including unknown plant parameters (e.g. load/tool changes, 
work piece variations,. ...etc.) when the robot dynamics are excited by random 
disturbances. Using standard variational arguments, we develop the necessary 
conditions for optimal identification. Based on these necessary conditions, we propose 
an algorithm for determining the unknowns and the corresponding estimated states. 
Kalman filter and an appropriate cost functional whose depending upon the states 
estimated and expected values form the basis of this algorithm. This algorithm is 
applied to two degree-of-freedom model of Unimation PUMA/560 Robot to illustrate 
the convergence of the parameters to its actual values during tracking of its end- 

effector. 

L Introduction  
In this paper we consider the adaptive filtering problem for robot manipulator 

which is assumed to be governed by a nonlinear differential equation of the form [1] : 
k(t) = H (x(t),u(t),a.) 	 (1.1) 

where H depends on the input u (control variable) and the unknown parameters cc. 
When the effect of random loading is included in robot dynamics Kalman filter can 
been used to estimate the states of the robot arm. Since some of the robot arm 
parameters are not known, one is required to estimate first these parameters and then 
use Kalman filter to determine the required estimated states. We propose in this paper 
a certain criterion on the basis of which these unknown parameters can be identified. 
Using variational arguments we develop the necessary conditions for optimal 
identification on the basis of which the (optimal) robot parameters can be determined. 
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These parameters are then used in Kalman filter to determine the estimated states of 
robot arm. 

The paper is organized as follows. In section 2, we present the mathematical model 
for robot manipulator. In section 3, we present some results which are required for 
developing the necessary conditions for optimal identification. Further, using 
variational arguments, we present the corresponding necessary conditions for optimal 
identification along with a proposed scheme for determining the unknowns. Finally in 
section 4, we present a numerical example for illustration. 

H. Problem Statement 

Y 

Shoulder 	 X 

Fig. 2.1 Planar two-link mechanism. 

It is known that the mechanical robot manipulator (as shown in fig. 2.1 for 
example) is governed by the following (nonlinear) differential equation [2]: 

t(t) = M(O(t),a)6(t) + NOE:1(0,6(0,a) 	 (2.1) 
where: 
T 	is nx 1 vector of torques or forces applied at the joint (control variable). 

is nx 1 vector of resulting from relative joint rotations. 
M 	is nxn inertia matrix (symmetric and positive definite). 
N 	is nx 1 vector of centripetal and Coriolis torques. 

is unknown system parameter. 
The above nonlinear model can be linearized around the mean, and can be written as: 
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{ x(t) = A(a)x(t)+B(a) u(t)+Gw(t) 

x(0) = xo 
	 t > O. 	 (12) 

where A e9f"°)  , B E 0", 11E9r, and xo  is a random vector with zero mean and 
covariance matrix Po  and vector w(t); t 2 0 is a Gaussian noise representing random 

disturbance in loading. 
The observation process is assumed to be given by: 

Y(t) = Hx(t)+v(t), 	 (2.3) 

where Y(t) E 9im  is a configuration vector, which is a function of the end-effector 
vertical position and the additional task. H E 9i('''")  is a known matrix and v(t) €9r is 

a Gaussian process, independent of w and xo  vector, representing the measurement 

noise. 
Consider the state and observation equations (2.2) and (2.3). Then the optimal 
estimate x(t) satisfies the following differential equation (Kalman, Bucy[4]):- 

{i(0= Ai(t)+Bu(t)+1C(t)[Y(t)-Hil(t)1;t 0  
i(0) =34 
	 (2.4) 

where IC( t) = P( 

P(t)=E{( 	)( x-X )1;t 2 0 	 (2.5) 

denotes the covariance matrix which satisfies the following differential equation: 

{P(t). AP(t)+P(t)A'  - P(t)H 12.-1 HP(t)+GQG ;t> 0.  
P(0).130  

(2.6) 

HI Problem Analysis  
In this section we present necessary Lemmas and Theorems to satisfy the 

solutions of differential equations, and then the optimal parameter is determined_ 

Lemma 1: 
Define S(t) Ef(x(t)- "g(t))(x(t)- Te(t))'}-, t 0, 	 (3.1) 

and l"(t) {01(0- X(t))(k(t)- 	t 0, 	 (3.2) 
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where 	i(t) X( t, a.) 	is 	the 	solution 	of (2.4) 	for 	any 	a, 	and 
31(t) = E {x(t)}; t 0 .Tlie following Lemma shows that the matrix P, S and F satisfy 

certain differential equations:- 

{fit  SW= A(cc)S(t)+ S(t)A(cc)'  +GQG 

	

t z0 	 (3.3) 
S(0) = Po  

and 
tlir(t).A((x)r(t)+ r(t)A(c)' + K.(t,a).[Y(t)—Hi(t,c0le '(t) { 

+ e(t)IY(t)—Hi(t,a.)} K.*(t,a) +1C(t,a.) R K*(t,cr..)'  
r(o).o 

where K*  ( t, cc) = P( t, cc) H R."' and for 	every a, the matrix P( t, a ); t z 0, satisfies 
the differential equations (2.4) and (2.6). Further, e(t) = 01(0 - R(t)); t z 0, satisfies 

the following differential equation [6]: 

dt 
{-5-1-e(t) = A(a) e(t) + K.  (t, cc) {Y(t) - I i X (01 t0. 	 (3.5) 

e(0) = 0 

Remark 1: 

	

Let L(t,m) = P(t,ct.)-S(t,a.)+F(t,o.), 	 (3.6) 
where P, S, and F are the solutions of eq.(5.2-5), eq.(3.3) and eq.(3.4), respectively. 
Note that when the true parameter is introduced to the Kalman filter equation, it is 
clear that there is a time t* such that IP( t, ct)li ( e for all t) t*  for any sufficiently 

small e )0. Using 	this 	fact 	in equation (3.5) it follows that e(t) = 0 for all 

t) C.This implies that x(t) x(t) for all t ) t*  and in this case L(t, cc) 0 for all 

t) t*. However, for any other a the above argument does not hold and hence 
L(t,a)# 0 for all t. Based on the above discussions, we may take the performance 

index as: 

t 0 (3.4) 

J(a) = tr(-1 	{L(t,co.(,,a,)} dt) 
2 Ao 

to be our measure for estimating the unknown parameter a and the corresponding 
state. 
With this set up we can now state the adaptive filtering problem as follows: 

(3.7) 
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Problem 1: 

	

Given the driving signal u( t); t ... 0, find 	an ce E a (parameter set) so that 
J(a°  ) 5 J(a ) for all a € a, where 	J(a) is as 	given by eq.(3.7), subject to 

the dynamic constraints (2.4)-(2.6) and (3.3X3.5). 
In the remaining of this section we shall develop the corresponding necessary 
condition for the Problem 1 and present some numerical simulation for illustration.. 
Using (2.6), (3.3), (3.4) and (3.6), we have: 

{—d   
d t

LW= A 0) +L(t) A' + P(t)H' 12.-liv.  (t)e'(t)+ e(t)*'(t)R-IIIP(t) 
 (38) 

L(0). 0 	 ;t>0 

where 
*(t)=Y(t)-HX(t). 
The following Lemma shows that X, e, P, and L have Gateaux differentials that satisfy 

related differential equations. 
We shall make use of variational arguments and the (Gateaux) differentiability of the 
functions on the parameter set P to develop the necessary conditions for solving the 
problem. For that we shall need the following definitions. Let a.' si a°  -4- s (a - cca').  

for cc°  ,a G a where a°  denotes the (optimal) solution to the problem 1. Since the 
parameter set a is convex ,it is clear that a 	is also an element of a. Let 

iimx.(t)-x°(t);  

wheres denotes the (Gateaux) differential of x at a°  in the direction (cc - a°  ) . 

Lemma 2 
Consider the Problem 1 and suppose the parameter set P is convex. Then 

X, e, P, and Lhave Gateaux differentials denoted X, E, P, and L, respectively, and that 

they satisfy the following differential equations: 

d  i(t) = (A°  - P°H' R-'14) il(t)+ P(t)H,  R -Nii° + A i° 

	

d t 	 ;t>0 	(3.10) 
X(0) = 0 

{—d  E(t) = A°  6(0+ A e°  +P(t)H' 12.-1*(t)-P°H' It"' H ct(t) 

	

t 	 ; t > 0 	(3.11) 
'6(0= 0 

d t 
{-1-P(t).-- (A° - p°1-r R -iii) P(t)+ P(A° - p°1-1' R -Iii) +A P° + P°A' 

(3.12) 
P(0). 0 	 ;t.>..0 

t > 0 	 (3.9) 
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{—̀1  C(t). A L0  + A°  1(0 + L°A,  +EA°1  4- Ql (t) 
dt 	 ;to 

I:m.0 
where 

Q1  (t) PH' 	-P°1-11 10H le°  -P°H' R'ir°  

+E(t)W°  12-1HP°  - eg'H'12-1HP°  + 

(3.13) 

(3.14) 
where A°  = A(t,cc° ), 	°(t) = Y(t)- H ;OW and cc° , e°  and P° 	the solutions 

of the differential equations (3.10), (3.11) and (3.12) with a being replaced by (30 
(optimal parameter). 
Based on the above Lemma, we now present the following necessary conditions of 
optimality. 

Theorem 1: (Necessary Conditions) 
Consider the Problem 1 and suppose Lemma 1 hold. Then the optimal 

parameter a°  can be determined by simulations of the following set of differential 
equations and inequality: 

at {-c--I  fc° (t)= A(t,e)i° (t)+P°11`12. -1 [Y(t) 

)-0(0) . g(o) 

{LI  e°(t) = A(t,a°)e°(t)+Folia-i[Y(t) - 
dt 

e° (0)= eo  

1 III-P° (t) = A(t,a3 )V(t)+ e(t)A'(t,a.° )+ GQG'-P°H'It -113P°  

P°(0) = Po 
 dt 

—d L° (t)= A(t,a° )0(t)+L° (t)A'(t,a° )+P°H'It -1 [Y(t)- ILi0(t)]e°'  
dt 

+ e°{Y(t)- I-W(t)] 
L° (0)=L0  ; t z0 

(3.18) 

   

{-A-4//(t)=1111(t)A(t,c0) + k(t,c0)11/1(t)l- OW ; 
dt 	 t z 0 	 (3.19) 

'iii(T)=0 

{-L ,P2(t) = As(t,a°)T2(t)+[Y(t)- Hi°(t)112. -IHP°Ift (t) ;t  > 0  
dt 	 (3.20) 

`);'2(T)=0 

-ta°(t)1;t 0 

H5e(t)] ; t?_0 
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{

--T3(t)-= (A(t, GO) - P°1-FR -101,3(t)- P°H12.-11-P-Pl (t)'  e°  
dt 

— P°1-1112-11-1112 ( t) 
`113 (T) = 0 

(3.21) 

( t) = '1/4 (t)(1l(t,ce)— P°1.11R-1H)+(A(t,a.° )— P°}11R -1H) 'F4 (t) 

+BRIY(t)— }WWI e°  tic(t) 

+1-FRIY(t)— IR°(t)] Nfl(t)+11;(t)] 
I-14 (T). 0 	 ;t?_ 0 

(3.22) 

  

rf _nt„„„ t„,, 	n 
tr A L" M'ill (t) - e(t)tfilm + 2A P - 	P 4 kt)+ 1F3 kt AIA 51-  ) 	dt o 

(3.23) 
The proof follows from standard computations [6]. 
Based on the above necessary conditions, we haven the following algorithm. 

is:fthurt: 
1. Set m=1 and guess of a(m) . 
2. Solve the differential equations (3.15)-(3.18) and get x(' (t), e(4(t), P(') (t), and 

L(m) (t). 
3. Solve the adjaint equations (3.19)- (3.22) and get tIJI(')  , ‘P2(m)  , T3(m)  and '1/4(m) . 

4. Using the inequality (3.23) obtain the gradient vector le . 
5. Update the parameterct(m+1)using the following relation a.*+1)  = a — Qg(')  where 

a) 0 is chosen so that ct(m'')  ea and d(cc('.1)  ) 5 J(ci*  ). 

6. If 	J(a.)(arti)  — J(cc)(41 8, 	800) is 	sufficiently 	stnall 	then stop, 

otherwise, set m=m+1 and a(m) 	Ct(m+1) go to step 2. 

IV. Application  
For convenience we choose the UNIMATION PUMA 560 ROBOT for 

application as a planer mechanism moves in x-y plane with two degrees of freedom as 
shown in fig. 2.1. Using equation (2.1) and setting n=2, then the nonlinear differential 
dynamical equations of motion that relate the joint torques (ri  , T2 ) to the angles 
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(01 , 02  ), the velocities (61 ,62  ) and accelerations (61,e2  ) of the joints are given by 

[3] 
= (as  + cos62)es  + (as  + (-3-2)cos62)62  

2 

- ((az sine2)(02÷I))+ (a4  cos% + as  coOs  +62)) 

=I as  + (12-)cos02) 61  + [as162  + ((a2  sines) -el) 
2 	 2 

+(as  cos(61 + 02)) 	 (4.2) 

where [ai  15 i 5 5] are constant parameters which depend on the masses {my  m2} 

and the lengths {Ls, /2} of the robot links. 
Let y(t) E 91 denote the vertical coordinate of the end-effetor and, y(t) t Z 0 is 

related to the joint angles 01(t) and 62( t) by the following forward kinematic 

equation (output equation): 
y(t) = e s  sin (e,(t))+ e, sin (61(t)+ 02(t)). 	 (4.3) 

The joint angle 61(0 is assumed to be held at 6 (t) = 45° (additional task), and 

61(0= 0 at all time. 
For the UNIMATION PUMA 560 ROBOT, the following parameters are given by 

[3], m1  =5.91 kg. , m2= 11.36 kg., t = e 2= 0.432 meter, a1=3.82, al= 2.12, as= 

0.71, a4= 81.82, and as  = 24.06. 
Using Taylor series we make linearization for the nonlinear equations (4.1) and (4.2) 
and evaluating by the values of parameter a and the nominals, the matrices A , B and 

H of eq. (2.2) and (2.3) are: 

	

' 0 1 0 0` 	 0 	0 
25.7536 0 -1.1308 0 0.71 -1.5783B  

A- 	
- 

 o 	o 
0, -51 3647 0 18.4562 	 -1.5783 5.5566  

and 

H= 
(0.7309 0 0.4254 0 

	

0 	0 	1 	0 

• Simulated Example:  

The initial time t0  = 0 sec., the final time tf = 2 sec. and the no. of time 

interval is 100. The adaptive filtering algorithm is applied to linearized model of 
UNIMATION PUMA 560 ROBOT. The numerical simulation given in Figures 

(4.1) 
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[(4.1)-(4.5)] show the behavior of the actual and estimated states, P, S, F and L, 
respectively. These results are taken when the initial values of the second row 
elements of matrix A of unknown parameters are (40 1 1 1). From these results it 
clear that although some of the robot parameters are not knOwn, we have been able, 
through the proposed algorithm, to obtain a reasonable estimates for the states and for 
the unknown parameters. Note that in some cases the estimated parameter is quite 
different from the actual (underlying) parameter (see Figure (4.6) of the first element 
of A) . This deviation in parameter estimate is not of great imporlance as long as the 
estimated states follow closely the actual states (i.e., the estimated error is small). 

V. Conclusion 
In this paper we have considered the adaptive filtering problem robot manipulator 
which some o the parameters are not known exactly. We have proposed a suitable 
criterion on the basis of which these unknowns can be determined. This criterion 
depends on Kalman filter estimates and the observation process. Using variational 
arguments we have present the necessary conditions for optimal identification. Based 
on these necessary conditions we have proposed an iterative scheme for determining 
the unknowns and the estimated states of the robot arm. The numerical results showed 
that the proposed scheme produces estimates which is very close to the true states. 
Further, the results also show the converges of the estimated parameter to the true 
underlying parameter. 
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