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ABSTRACT 
In ea paper we present an alternative formulation for the control problem 

for a class of partially observed systems governed by bffmearstocehnic differe-
ntial equations. The problem is described by three sett of stochastic differential 
equations: one for the systan to be controlled, one for the observer and one for 
the control proem whicktis driven by the obsaver. With this formadatian, the 
stochastic control problem can be converted into an equivalent (deterninistic) 
identification problem in which the cOntroller parameters are the name:woe. 
Using variational arguments we derive the necessary coalitions for optimal idea-
tification.Bastal on these necessary conditiOes, we propose ni iterative algaithm. 
for determining controller parameters along with some numerical simulations to 
illutruate the effectiveness of the proposed control scheme. 

KEY WORDS: Optimal Contort, Stochastic Differential Equations, Parameter 
Identification. 

1,Eyntma1igE 
The Hamilton-Jacobi-Baum (RIB) equation arising from the application of 

Belman's principle of optimality as well as Ito's formula to controlled stochastic 
(comletely or partially observed) systems has been the major tool for detamining 
optimal control laws ( sane for example [ 1,23,4,5,6 1 ). With this approach, one 
is required to solve a novlinear partial differential equation (of parabolic type ) 
on the state space IV :This Ins, so far, posed a major stumbling block in its app-
lication to engineering problecialt seems almost impossible to avoid solving the 
H313 equation if one is interested in determining optimal controls for nonlinear, 
bilinear, or even linear stochastic systems with control constraints. There are, 
however, some techniques that has appeared recently in the literature with the 
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help of which one can determine optimal controls without solving the RIB equ-
ation.These techniques can, however, be applied to a limited class of linear stoc-
hastic systems where no constraints are imposed on controls. In [71, for exam-
ple, Ren and Kumar have considered the stochastic adaptive control problem 
for linear time invariant systems. For this class of systems, they provided several 
algorithms for adaptive filtering, adaptive control and for identification problems 
by employing an indirect or direct procedure and either least square or gradient 
based parameter estimators. In [8] Van Schuppen introduced the concept of tun- 
ing of a stochastic control system governed by linear time-invariant stochastic diff- 
erence equation. The results showed however the limitations of the synthesis proc- 
edure of self-tuning regulation. The reader is also referred to the work of AsCrom, 
Kurnar,Becker,Varaiya, and Goodwin (see [9-18]) where the authors mostly con-
sidered stochastic control or adaptive control, or identification problems for cals-
ses of systems governed by linear (time varying or time-invariant) stochastic diff-
etential (or difference ) equations with no constraints on controls. In [3], Dabbous 
and Ahmed considered the identification problem for a class of systems governed by 
nonlinear time varying partially observed stochastic differential equations of Ito-type. 
Using pathwise [3] formulation of Zalcai equation, the problem was converted into 
an equivalent ( deterministic) identification problem in which the solutions of Zakai 
equation is treated as the state and the unknown parameters as controls. Using variat-
ional arguments the necessary conditions for optimal identification were obtained. 

In [1] Ahmed has proposed a new formulation for stochastic control problem of 
partially observed linear systems governed by stochastic differential equations driven 
by general martingles. With this formulation, the original stochastic control problem 
has been converted into an equivalent ( deterministic ) identification problem for 
which the corresponding necessary conditions of optimality can be obtained by direct 
use of variational arguments. In this paper we consider the stochastic control problem 
for a class of partially observed stochastic systems governed by bilinear stochastic diff-
erential equations with control constraints. Using similar control structure as that prop-
osed in [11, we convert. the original stochastic control problem into an equivalent (det-
erministic) identification problem. Using variational arguments, we develop the corres-
ponding necessary conditions for optimal identification on the basis of which optimal 
al controls can be determined. The paper is organized as follows. In section 2, we form-
ulate the stochastic control problem and present necessary notations and assumptions 
ions needed for the development of the necessary conditions. In section 3, we show how 
the stochastic control problem can be converted into an equivalent (deterministic) ident-
ification problem in which the control parameters are the unknowns. In section 4, we 
utilize variational arguments to develop the necessary conditions of optimality for the 
identification problem Based on these necessary conditions, we propose in section 5, an 
algorithm for computing the unknowns along with some numerical simulations to illust- 
rate some of the results of this paper. 

2. PROBLEM STATEMENT. NOTATIONS. ASSUMPTIONS 
Consider the following (bilinear) stochastic system 

dx(t)=24.(0x(Odt B(t)du(t) 	(0):Wdw  t( 
	

(2.1) 

X(0) = Xt); t E I -= [0, T], 
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where A,B and a; ; 1 i 5 M, are (nxn), (nxr), and (nxn) matrix valued funct-
ions, respectively. Further, W = tw ; 1 i MI is a standard Wiener process 

with values in Rm  and the initial state xo  is a random variable independent of 

W .The control process u(t); t E I, will be defined shortly. Let the observat-
ion process y(t); t E 1, be related to the state process x(t); t E I, through the 
following (bilinear) stochcastic differential equation 

I•1 
dy(t) = (Iii(t)x(t)+ H.,(t)y(t))dt + a.(t)y(t)dvi(t) 

(2.2) 

y(0) = y0  ;t 1. 

Here Hp  H2  and 	Ii N, arc (mxn), (nixr►), and (=an) matrix valued fun- 

ctions on I. Further, V a; {vt ' 1 5_ i NI is an R N-valued standard Wiener process 

independent of W and x0  . 
Assuming that all the random processes and vectors described above are defined on 

some probability space (0, B,µ), we wish to design a control system having the foll- 

owing (linear) structure 
du(t) = Ki(t)y(t)dt + K2  (t)dy(t), (2.3) 
u(0) = 0, t E I,  

where the control parameters {K1  ,K2} , are (rxm) matrix valued functions on L 

With this set up, we can now state the stochastic control problem as follows 

Problem (P11 
Consider the system (2.1)-(2.2) and suppose the controller has the structure (2.3). 

Then the problem is to choose: the parameter K = {K1 ,K21 such that 

J(K) = E.(or(Q(t)y(t),y(t)) dt = min. 	 (2.4) 

Here (.,.) denotes the scalar product in R m  and Q is positive semidefinite symm-
etric (moan) matrix valued function on I, and E(X) denotes the expectation of the 
random variable X. 

Remark 2.1  
Note that the integral in (2.4) is obtained by assuming K(t); 0 5 t T, and then 

solving the equations (2.1)-(2.2) to obtain y(t); 0 < t < T. Clearly, the solution y 
depends on the parameter K and that is why we have denoted the integral by J(K). 

Remark 2.2  
One may consider several objective functionaLs related to the k.-:bserved process 

y such as: 
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(i) Ji(K) = EfoTp(tXy(t)-yd(t)),y(t)-yd(t))dt, 

(ii) J2(K) = Eicf(Q(t)(At)-yd(t)),S,(t)-yd(t)ylt 

T J3(K) --a Efo  (Q(t)(y(t)-y(t)), 	y(t)ylt, 

where 9(t) = E ty(t)1; t 0, andyd  denotes the desired output to be tracked. 

In this paper we shall only deal with the cost functional (2.4), the others can be 
dealt with in a similar tnarmer. 

Remark 2.3  
Note that in equation (2.4), the controller is required to regulate the process y 

about the origin whereas in J1 , the controller is required to track the desired out-
put yd  . Similar arguments is used to explain the objective functionals Ji  and J2 . 

For the solution of the problem (11) we shall need the following notations and 
assumptions. 
Notations:  

Let R(mcn)  denote the space of all (rum) matrices.For any matrix A E OM), let A' 
denote the transpose of the matrix A and 	denote the norm of A. Let C(I,Rn ) 
denote the space of all continuous functions on I with values in R. equipped with 
the usual sup nonn.We use 	 ) to denote the class of essentially boun- 

ded measurable functions on I having values in R(nuan  ) with the usual L,,,c, nom. 

Let Aw  E a{ w(0) ; 0 <_ t} and AY E y(0) ; 0 t} denote the cr-algebras gener- 

ated by the processes y and w up to time t, respectively. We use Lir to denote 

the class of Lebesgue integrable functions on R such that lif(t)Idt < co, for any boun- 

ded interval I c R. Further notations will be introduced in the sequel as required. 
Assumptions 
(Al) An the matrix-valued functions A,B,cri ,Hi ,H2  and Es, are measurable on 

I E [0, T]. 
(A2) The control parameter K = {K1 ,K,} E9l , where M is closed, bounded and 

convex subset of Lco  (I, R(u)  )x1.00  (I, R (rxm)  ) . 

Remark 2.4  
Under the assumptions (A1)-(A2) and for Elx0 1,2 < 0:) , one can show that the 

stochastic differential equation (2.1) has a unique 3t  w  - adapted solution which is 

continuous with probability one and that Elx(t)12  < co, for all t E I (see [2]). 
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FORMULATION OF DETERMINISTIC IDENTIFICATION PROBLEM 
In this section we show how the stochastic control problem (P1) on be cower-

ted into an equivalent deterministic identification problem in which the control 
parameters K 3 {K1, K2 } are the unlmowns. Consider the system (2.1)- (2.2) and 
suppose the control process s(t); t Z 0, is given by equation (23). Then using 
(2.3) in (2.1), we haw 
dx(t) = (A(t) +B(t)K2(t)//1(t))x(t)cit +(/3(t)Ki(t) + B(t)K2(t)F/2(t))y(t)dt 

+ .Ea.(4x(t)dw.(t)+ .EB(t)K2(t)Fii(t)y(t)dvi(t), 
1-1 1 	1 	1-1 

x(0) = .act; t t EL  I. 
Defming si (x,yY , it follows that the system (3.1) together with the observation 
dynamics, equation (2.2) can be written as 

d4(t) = A (t,K)E,(t)dt + E  C (t)4(t)dwi(t) + XIDi(t,K)4(t)dvi.(t) 
1  

4(0) _40; t el, 
where 	• 

(t,K) (A(t) + B(t)K2(t)iii(t) B(tXK1(t) + K2(t)H2(t))) 

H1(t) 	 H2(t) 

a. (t) 0 [0 B(t)K2(t)&il 
(t) C

0 	0 
, 	D. 0.K) 	 (3.4) 

1 	 1 	0 

For the formulation of the (sotchastic) control problem (P1) as a (de 	r) 
identification problem, we shall need the following result. 

Lemma 3.1 
Consider the system (3.1) and suppose E, W and V are statistically indepen- 

dent. Let 
'(t) E{(0), 
P(t) E{(4(0- (t)X4(t)- (t))'), 	 (3.5) 

‘ A(t) s P(t) + (t)'4/(t). 
Then A(t); t 0, satisfies the following differential equation 

dA(t)  = A (t,K)A(t) + A(t)A' (t,K) + 	
1 
 (t)A(t)C: (t) 

dt 	 i=1  

+ E  /..)-(t,K)A(t)DiV,K) t el, K X, 	 (3.6) 
i=I 1  

A(0) = Ao. 

(3.1) 

(3.2) 

(3.3) 
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Let dik(t,0); 0 S 9 S t, denote the transition operator associated with A (t,.K) 

for any K E X . Then the solution of (3.2) is given by the solution of the following 
stochastic integral equation 

M 	 N 

Ok4,0& E fOk(teKi(e)40)dwi(9)+ fOk(t,e)DitoWeVvi(e) 
i=i 0 	 1=1 

(3.7) 
Taking the mathematical expectation for both sides of (3.7), we have 

4(t) = oko,o)4°  • 	 (3.8) 

Since P(t) Elg(t)-  40X4(0 -(t))'} , it follows from (3.7) and (3.8) that P(t) 

satisfies the following integral equation 

P(t) = 01(4,0) 13(0)01(t0) 	
t
()ic(t,e)Ci ((AP(e) + 40)4 i(0)Kii(0)0i(t,  AO 

(i)k(t,e)Di(13, n(P(9) + 4(0)4 '(0))DiTO,K)4)ic(t,e)de. N t 

(3.9) 

Using the fact that A(t) = P(t) + 	V); t 0, it follows that 
M t 

A(t) = 4)k(t,O)A(0)0i(t,0) + E fOk(t9)Ci(0)A(0)Ci'(0)(K(t,0XIO 

M t 
+ 14)(t, )Di  (0, K)A(0)D'(O KA)i(t,O)de 

Differentiating (3.10) with respect to t and noting that for each K E X, 

aok(o) (tiook(te), 
at 

4k(9,0) =I, 0505T, 
equation (3.6) follows. This completes the proof. ❑  

Define 
Q(t).zi (

0 
	0 .` 

Q(t)) 
Then, using the definition of A, one can easily verify that (2.4) can be written as 

J(K) = jtr Ca(t)A(t))dt, 

where tr(A) denotes the trace of the matrix A . 
With this preparation, we can now state the following (deterministic) identifi- 

cation problem. 

(3.11) 

(3.10) 
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Problem 2)  2 (Deterministic Identification Problem) 
Find K°  EX so that J(K°) J(K) for all K EX subject to the dynamic cons- 

traint (3.6), where J is given by (3.11). 

4. NECESSARY CONDITIONS OF OPTIMALITY  
In this section we make use of variational arguments to derivb the necessary 

conditions for optimal identification for the problem P2. In our derivation we shall 
follow similar arguments as those of [14]. Let K° EX be the solution of the prob-

lem (P2), and let K' (t) = (t) + E(KM-K3(t)); t E I, s e[0,1], K EX . 

Since the parameter set X is assumed to be convex, it is clear that Kt  is also an elem-

ent of X . Let A°(t) A(t,K°) and Ac(t) = A(t,Kc ), t z 0, be the solutions of 

(3.6) with K being replaced by K° and K' , respectively. Let 

, K - 	) M-61 	(t) - A°  (t)); t 0, 	(4.1) 

denote the Gateaux differential of A at K° in the direction (K - K°) . The follow- 

ing lemma claims that the Gateaux differential A exists and satifies a related differen- 
tial equation. 

Lemma 4.1  
Consider the problem (P2) and suppose the parameter set X is convex_ Then for each 

pair K,K° E X , the Gateaux differential X. of A exists and satisfies the following 

differential equation 

dA(t) A (t,K°)A(t)+ A(t) A (t, K°) + s Ci  (t)A(t)C.'(t) 
dt 

D. (t, 	)21T (t) D (t, K°  ) + (t, K - 	)A°(t)+ A°(t)34 '(t,K 	(4.2) 
i=1 I  

w. Z(D. (t, IC°  )A°(t)bi(t,K - K° ) + 13i(t,K - K°)P..°  (t)Di(t, )) 

1=1 
X(0) = 0, t 

Here A and b. • 	i N, are the (Gateaux) differentials of A and Di ; 15 i N, 

in the direction (K - K° ), respectively. 

Proof 
The proof follows from standard computations (see [14-16]). ❑  
With the help of the above lemma, we can now present the necessary condit- 

ions for optimal identification for problem (P2). 

Theorem 4.2 (Necessary Conditions of Optimality) 
Consider the problem (P2) and suppose Lemma 4.1 hold. Then the optimal par- 
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Tameter E X 
tial equation 

dA°(t)  _ 
dt  

can be determined by the simultaneous solutions of the differen- 

$4 (t,K3 )A°(t) + A°(t)A'(t,K°)+ ZC.(t)A°(t)Ci'(t) 
1=1 

+ D. (t, ) A°(t)Dii(t,K°) 1=1  
A°(0)= Ao, t 

the adjoint equation 

(4.3) 

d 	(t) 	 F°(t)A (t,K°) + l'iC.'(t)r°(t)Ci(t) ,1"(t,K°)1-°(t)+ 
dt 	 i= 	1  

+ Z..04t,K°)r°(t)D1(t,K°) + am, (4.4) 

r°cr)=o, 	ter, 
and the inequality 
T 
fir 

( 
r°(t),1 (t,K -K°)A°(t) + Er° (OD! (t,K° )A° (t)bi(t,K - K°)) dt 	?_ 

i=1 
0, (4.5) 

for all K E X. 

Proof 
Define 

J(Kc ) = TfotrO (t)Ac (t))dt, 

J(K°)=--- ItrO (t)A° (t))dt, 

70(K - K° )=- 	 J(K° )), 

where 70(K - K°) denotes the Gateaux differential of J at K°  in the direction 

(K -Kt) ). In order that I attains its minimum at 	, it is necessary that 

To(K K°) = 	(t)A(t))dt 0, 

where A satisfies (4.2). The inequality (4.7) can be further simplified by intro-
ducing the adjoint variable F° (t); t 0, which satisfies the (backward) differe-
ntial equation (4.4). Using (4.2), (4 4) and (4.7) and noting that 

dt 
(A(t)ri,r°(t)l) dt =0, for all >7 E Rn  , 

one can easily verify that 

(4.6) 

(4.7) 
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T_ 
Str(Q (t)A(t))dt = 2S trF°(t)i (t,K - 	) (t) + Er°(t)Di(t,K°)A°(t)/5i(t)) dt. 

(4.8) 

The inequality (4.5) now follows from (4.7) and (4.8).This completes the proof. 0 
In the following section we propose a numerical algorithm, which is based on 

Theorem 4.2, for determining the optimal parameter K°  along with some numeric-
al simulations to illustrate some of the results of the paper. 

5. ALGORITHM AND NUMERICAL SIMULATIONS  
In this section we uriliiP the necessary conditions of optimality obtained in the 

previous section (see Theorem 4.2) to device an iterative scheme for deteimining 
the (optimal) control parameters K1  and K, . We also present a worked out example 

to illustrate the effectiveness of the proposed control scheme. 

Algorithm 

1. set n=1 and guess the control parameter K(n)  = 1/411) ,K(2)} 

2. Solve the differential equation (4.3) and get A.(n)(t) a A(t,e)); t 0. 

3. Solve the adjoint equation (4.4) and get r(n)(t) = r(t,e1) ); t 0. 

4. Using the inequality (4.5), obtain the gradient vector in)  (t) = g(tel)). 

5. If in)(t) = 0, then K(n)  is a local minimizing element. 

If in)  (t) 0, update the parameter 101)  using the following relation 

en+1)(t) = K(n) t) +E g(n)  (t); t > 0, 

where s 0) is chosen so that K(1+1)  EX and that J(en+1)) S  j(K(n)).  

6. If .1(K-(1+1))-J(en)) 5_ 8 , for some sufficiently small 8 (> 0), then stop; 

otherwise set n=n+1, and len) 	K(n+1) and go to step 2. 

Remark 5.1  
In the above algorithm we have added another constraint to the control parameter K . 

This constraint gauarantees that the chosen K is such that lu (t)115. (3 for some positive 

constant (3 (see equation (2.3)).The example given below shows this fact. 

Example 
Consider the following (bilinear) stochastic differential equation on the state 

space R 
dx (t) = aix(t)dt + 	u(t) + ci.x(t)dwi  (t) ; 	t 0, x(0) = xo, 

cly (t) = (a2x(t) + b2y(t))dt + c2y(t)dw2(t) ; t 0, y(0) = 0, 

where x and y are the state and output (scalar) variables, wl  and w2  are indep- 

endent standard Wiener processes, a1, a2, b1, b2, c1, and c2  are given constants 

(5.1) 
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land x denotes the initial state which is assumed to be constant We wish to design a 
o 

 

controller having the following structure 

where K1  and K2  
some constant (3, 

with X. being any 

letting 4 = (x,y) 

d4 (t) = 

4(0)-40; 
where 

(K) 

C 

du(t) = /Co/(t)dt + K2dy(t); t 
arc unknown constants which are 

and that 

	

J(K) a A. EfoT  (y(t))2  dt 	min. 
arbitrary positive constant. Substituting 

, equation (5.1) can then be written 

A (K) 4 (t)dt + C 4 (odwi  (t) + D(K)dw2(t), 

t 

+ bla2K2 	b1(K1 + b2K2) 

a2 	 b2 	 ) 

c, 	01 	 bic2K2) 
0 	0 i 	D"C)  

0, 	 (5.2) 

chosen so that I u(t)I 	for 

(5.3) 

(5.2) into (5.1) and 

as 

(5.4) 

(5.5) 

	

. 	
(5.6) 

2 	) 

Now the problem is to find a control parameter K e IC so that the performance 
index J is minimized subject to the dynamic constraint (3.6), with A, C, and D 
are as given above and that 

J(K) itrjtrRAM)dt, 	 (5.7) 

where 

(0 0 
Q :41 ) x • 

The solution of this (identification) problem is given by the necessary conditions 
(4.3)-(4.5) (see Theorem 4.2) with 

74(K - K°)-==(
"22 -Kf) biRKI - lq)+ b2(K2- K))]1 

0 	 ' 
(5.8) 

and 
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D(K - K°) m ( 0 bic2(K2- 
0 

Using the inequality (4.5) one can easily verify that the gradient vector g (g1,g2  

is given by 

= b1111(0Al2(0± b1  A22(t)1-12(t) 

g2(t) = 	b1(A11(t)a2  + 	 c K2) Al2(t) b2 Al2(t) b2i 4  
+ rum b1(Al2(t) a2  + A22(t) b2 A22(t)ci)- 

(5.10) 

Note that the gradients g1  and g2  given above have been used in step 5 of the 

algorilm for updating the control parameters K1  and K2. 

For numerical simulations, we have taken al  = b1  = c2  = 02, a2  = b2  = 05, 
and c2 = 1 Using the above algotillui, we have determined the optimal (control) 

parameters Kt  and; , the control process u (t); t > 0, and the corresponding state 

and output processes.Table (I) shows the values of Ki  and K2  as a function of 13, 
whereas Fig. (5) shows the control u for different 13. From these results it is clear 
that for each 1i, the choice of control parameters K1  and K2  satisfies the fact that 

lu(t) 15 	Figs.(2-4) show the processes x, y, and Aid; t, j =1,2, for different 

13's. From these figs. one observes that the proposed controller is capable of regulating 
the state and output processes about the origin. Further, it is also clear that as we relax 
the control constraints (i.e. increasing 13) regulation becomes faster and viceversa. It 
should be noted also that there is a range for 13 beyond which the system may become 
unstable or the controller fails to regulate the system. In this example, this range is found 
to be 15 <13 < 50. 

Table (II 

R K1  K2  
15 -1.4 -1.93 
22 -0.26x103  -0.19x103  
25 -0.50x103  -0.35x103  
30 -0.60x103  -0.27x103  
35 -0.65x103  -0.22x103  
45 -0. 73x1 03  -0.15x103 
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T6. CONCLUSIONS  
In this paper we have considered the optimal control problem for a class of partially 

observed bilinear stochastic systems with control constraints. Assuming linear control stru-
cture., driven by the output process, we have converted the original stochastic control prob-
lem into an equivalent deterministic identification problem in which the controller paramet-
'as are the unknowns. Further, using variational arguments and the Gateaux differentiability 
of the process A on the parameter set, we have obtained the corresponding necessary condit-
ions for optimal identification.Based on these necessary conditions, we have presented an 
iterative scheme for computing the optimal parameters (and hence optimal control ) along 
with some numerical simulations to illustrate the effectiveness of the proposed control scheme. 
The results showed that the proposed controller is capable of regulating the state and output 
processes about the origin effectively. Further, as it has been indicated in figs. ( 1.4 ), regulat-
ion of the state and output process have improved as we relaxed control constraints ( i.e., 
increasing 13). 
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