I b

Proceedings of the 7% ASAT Conf. 13-15 May 1997

CAIRO - EGYPT

GC-8 | 673

AEROSPACE SCIENCES &

MILITARY TECHNICAL COLLEGE ﬁ__ ) 7" INTERNATICNAL CONF. ON
=

AVIATION TECHNOLOGY

Tthmihon-heoh—Bchm(lﬂB)maﬂmmgﬁmﬂm application of
Behnln‘sp:inciplec.fop&nalityuwenu Tto's formmia to controfled stochastic
(comlewlyarpuianyobaaved)symhnbecnlhcmajortoolfordmmining
optimat control laws ( scc for example [ 1,2,3,4,5,6]) With ths
is required to solve a nontinear partial differential equation (of parabolic.type)
on the state space R‘.mhn,wﬁ,pondamajwmbﬁngblpckh.iuw



Proceedings of the 7" ASAT Conf. 13-15 May 1897 GC-8

help of which one can determine optimal controls without solving the HJB equ-
ation. These: techniques can, however, be applied to a limited class of lmear stoc-
hastic systems where no constraints are imposed on controls. In [7], for exam-~
ple, Ren and Kumar have considered the stochastic adaptive control problem

for linear time invariant systems. For this class of systems, they provided several
algorithms for adaptive filtering, adaptive control and for identification problems
by employing an indirect or direct procedure and cither least square or gradient
based parameter estimators. In [8] Van Schuppen imtroduced the concept of tun-
ing of a stochastic control system govemned by linear time-invariant stochastic diff-
ererice equation. The resulis showed however the limitations of the synthesis proc-
edure of self-tuning regulation. The reader is also referred to the work of Astrom,
Kumar, Becker, Varaiya, and Goodwin (see [9-18]) where the authors mostly con-
sidered stochastic control or adaptive control, or identification problems for cals-
ses of systems governed by lincar (time varying or time-invariant) stochastic diff-
erential (or difference ) equations with no constraints on controls. In {3}, Dabbous
and Ahmed considered the identification problem for a class of systems governed by

nonlinear time varying partiaily observed stochastic differential equations of Ito-type.

Using pathwise [3] formulation of Zakai equation, the problem was converted mto
an equivalent ( deterministic) identification problem in which the solutions of Zakai
equation is treated as the state and the unknown paramcters as controls. Using variat-
ional arguments the necessary conditions for optimal identification were obtained.
In [1] Ahmed has proposed a new formulation for stochastic control problem of
partialty observed hncarsystemsgomnedbystochasucd:ffcmnnaleqmnnmdnven
by general martingjes. With this formulation, the original stochastic control problem
has been converted into an equivalent ( deterministic ) identification problem for
which the corresponding nccessary conditions of optimality can be obtained by dircct

use of variational arguments. In this paper we consider the stochastic control problem
for a class of partially cobserved stochastic systems governed by bilinear stochastic diff-
erential equations with control constraints. Using sirmilar control structure as that prop-
osed in [1], we converi the original stochastic control problem into an equivalent (det-
erministic) identification problem. Using varational arguments, we develop the corres-
ponding necessary conditions for optimal identification on the basis of which optimal
al controls can be determined. The paper is organized as follows. In section 2, we form-
ulate the stochastic control problem and present necessary notations and assumptions
jons needed for the development of the necessary conditions. In section 3, we show how
the stochastic control problem can be converted mto an equivalent (deterministic) ident-
ification problem in which the control parameters arc the unknowns. In section 4, we
utilize variational arguiments to develop the necessary conditions of optimality for the
identification problem. Based on these neccssary conditions, we propose in section 5, an
algorithm for computing the unknowns along with some numerical simulations to illust-

rate some of the results of this paper.

2. PROBLEM STATEMENT, NOTATIONS, ASSUMPTIONS
Consider the following (bilinear) stochastic system

x(t)= A0t~ BOD) + 20 (Ox(0w; ()
" x(0) = x,; tel =[0,T]

(2.1)

L
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’—wherc A,B ando; 1<1< M, are (nxn), (nxr), and (nxn) matrix valued funct- '
ions, respectively. Further, W= {w,;1<i< M} isa standard Wiener process
with values in R™ and the initial state X, is 2 random variable independent of
W .The control process u(t); t €[, will be defined shortly. Let the observat-
jon process M(); t €1, be related to the statc process x(t); t €|, through the
following (bilinear) stochcastic differential equation
N
dv() = (Hy(Dx(t) + Hy(Hy(D)dt + 25 (0y(0dv;(®) 02

W0)=yy:t el
Here H),H, and G;; 1<1< N, arc (mxn), (mxm), and (mxm) matrix valued fun-

ctions on L. Further, Vz{vi; lSiSN} is an RN-valued standard Wiener process

in dent of W and x. -
Assumhlgﬂ:ataﬂmcmdommocmmdmmdmcﬂbedabove are defined on
some probability space (Q.,B,u.), we wish to design a control system having the foll-
owing (linear) structure : : .
du(t) = Ky (DDt + K (D0 s
w(0)=0,tel, »
where the control parameters {K ,Kz} , are (rxm) matrix valued functicns on L
With this set up, we can now state the stochastic control problem as follows

Problem (P1)
Consider the system (2.1)<2.2) and supposc the controller has the structure (2.3).

Then the problem is to chooss the parameter K = {KI,K2} such that

J(K) = Ef (Q(»1), ¥(t)) dt = min. 2.4
Here (.,.) denotes the scalar product in R and Q is positive semidefinite symm-
etric (mxm) matrix valued function on L, and E(X) denotes the expectation of the
random variable X. +

Remark 2.1
Note that the integral in (2.4) is obtained by assuming K(t); 0 < t < T, and thea...

solving the equations (2.1)~2.2) to obtain y(t); 0 < t < T. Clearly, the solution y
depends on the parameter X and that is why we l:ave denoted the integral by J(X).

Remark 2.2

e ==

One may consider several objective functionals related to the cbserved process

y such as:

L
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N (i) J1(K) = Efy (QOXAD 34 (000 -4 (0)dt,

i) Jy(K) = Efj (Q(XF0)- 34 (1) 50 - 74O,
(i) 1K) = Efg (Q(XFH(D)- (1), (D) - WO,

where H(t) = E{y(t)}; 120, andy denotes the desired output to be tracked.
In this paper we shail only deal with the cost functional (2.4), the others can be
dealt with in a similar manner.
Remark 2.3

Note that in equation (2.4), the controller is required to regulate the process y
about the origin whereas in J,, the controller is required to track the desired out-
put y,. Similar arguments is used to explain the objective functionals J, and J, .

For the solution of the problem (P1) we shall need the following notations and
assumptions.
Notations: _
Let R(m) denote the space of all (nxn) matrices.For any matrix A R(nxn)’ let A"
denote the transpose of the matrix A and [|A| denote the norm of A. LetCILR™)
denote the space of all continuous functions on [ with values in R" equipped with
the usual sup norm. We use LQO(I.,R“mml ) ) to denote the class of essentially boun-
ded measurable functions on I having vatues in R™™ ) with the usual L, norm.
Let 3% = c{w(e) ; 6<t}and ¥ =o{0); 0< t} denote the G -algebras gener-
ated by the processes y and W up to time t, respectively. We use Ll;)c to denote
the class of Lebesgue integrable functions on R such that {!f(t)‘dt < o0, for amy boun-
ded interval I — R. Further notations will be introduced in the sequel as required.

Assumptions
(A1) All the matrix-valued functions A,B,cs’i,Hl,f{2 and G, are measurable on

1=[0,T].
(A2) The control parameter X = {K|,K,} €, where ¥ is closed, bounded and
convex subset of L_(LR™™ )xLe, (1,R*™).
Remark 2.4
Under the assumptions (Al)~(A2) and for Elxoiz < ©, one can show that the
stochastic differential equation (2.1) has a umque 3tw - adapted sohution which is

continuous with probability one and that E|:c(t){2 <o, forall t eI (see [2]).
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hhmmﬂwhnwﬂnmmwobhm@l)mbem
ted into an equivalent deterministic identification problem in which the control
parameters K = {K;, K, } arc the unknowns. Consider the system (2.1)-(2.2) and
suppose the control process u(t); t2 0, is given by equation (2.3). Then using
(2.3) in (2.1), we have

dx(t) = (A(t)+B(t>lcz(tm1(t))z<t)dt+(B(t)1c1(t)+B(t)K2(t)H2(t))y(t)dt

3.1)
+ T (w0 + ;_le CLACEACHU A
x0)=x,; tel
Defining §:(x,y) it follows that the system (3. l)togedm'wnhmeobsavm
dynamics, equation (2.2) can be wnnen as
dE(t) = A (L K)E(t)dt + ZC (DE(tdw, (1) + ED(t,K)%(t)dV ®
E(0)=&p; tel, (3.2)
where '
A@)+BOK,MH ()  BEXK (D + Kz(t)Hz(t)))
4(tK) !( H,(1) H® , (33

® 0 0 BMK,(1)o; (1)
CH= ( 0), Di(t.lif)s-[O 5.0 ) (3.4)

For the formulation of the (sotchastic) control problem (P1) as a (deterministic)
identification problem, we shall need the following result.

Lemma 3.1
Consider the system (3.1) and suppose £, W and V are statistically indepen-
dent. Let N ’
&) = EG) |
Py = EfE®-Eoxem-Emy ) 6.9
A® = PO+ E(DE().

Then A(t); t2 0, satisfies the following differential equation
M '
LD LMY + MO L0+ 2 GOADSG O
l=

N
d ,Zng(tK)A(t)D;(t,K) stelL KeX, (3.6)
1= ,
A0)=Aq.
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| Proof T

Let d)k(f,e)“, 0<6<t, dcnotzmeu-ansiﬁonoperatoraswciatedwim 4, K)
for any K € . Then the solution of (3.2) is given by the solution of the following
stochastic integral equation
Mt Nt
£ = (6080 & [B (OGO @)+ 3 [h CODOEORE)

3.7
Taking the mathematical expectation for both sides of (3.7), we have

E(t) = 6, (£0)E,- (3.8)
Since P(t) = E{(&(t)-é(t))(&(t) (0], it follows from (3.7) nd. 0. tha PO)
satisfies the following integral equation ‘
Mt - A
P(t) = ¢, (t0) P(0)y (£.0) + _g.l gtbk(t 0)C, OXP(B) +E(B) '(9))Ci'(9)¢§(t,9)d9

+ §1 icbk(t, 0)D,(8, K)(P(O) + EO)E (0)DI(6,K)$; (10)de.

(3.9)
Using the fact that A(t) = P(t)+ E(DE (1), t 2 0, it follows that

M
A® = b EDAORLEO T [ (LOCOAGICOM (0

8 (3.10)
+ £, [ (tODOKAODO K (018 |

Differentiating (3.10) with respect to t and noting that for cach K €¥,
0
B2 — 4K (10)
$,(0,0) =L 0<8<T,
equation (3.6) follows. This completes the proof. O

Define
0

om= (0 Q(zt))'

Then, using the definition of A, one can easily verify that (2.4) can be writien a8
j -
I(K)= gﬁ (Q (AL, (3.11)

where tr(A) denotes the trace of the matrix A .
With this preparartion, we can now state the following (deterministic) identifi-
cation problem.
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B ]

\

Problem (P2) (Deterministic Identification Problem) :
Find K° €% so that J(K°) < J(X) for all X €¥ subject to the dynamic cons-
raint (3.6), where J is given by (3.11).

4. ﬂEﬁ%&Y CONDITIONS OF OPTIMALITY

In this section we make use of variational arguments to derive the necessary
condiﬁnmforopﬁmﬂidcnﬁﬁca&onfmmcprobl:mm.lnomdcﬂvaﬁonwcshaﬂ
follow similar argnments as those of [14]. Let K° ¥ be the solution of the prob-
lem (P2), and let K‘a(t)=K°(t)+e(K(t)-K°(t)); tel e€[0,1], K €X.
Since the parameter set ¥ is assumed to be convex, it is clear that K is also an elem-
ent of ¥ . Let A°(t) = A(tL.K®) and A°(t) = A(t,K®), t 20, be the solutions of
(3.6) with K being replaced by K° and K®, respectively. Let

N4y = A = It l/.¢ o .

A(t) = ALK’ K-K°)= él_l;lb—g(}\. ®-A®); t20, (4.1)
denote the Gateaux differential of A at K° in the direction (K—K").IThc follow-
mglemmaclmsmattthatcmduﬁ'ermnal A exists and satifies a related differen-
tial equation.

Lemma 4.1
Consider the problem (P2) and suppose the parameter set ¥  is convex. Then for each

pair K,K° €¥ , the Gateaux differential A of A exists and satisfies the following
differential equation
95&%9 = AL KR+ AW 4K+ fﬁlci OAOC®)

D KRR T (KK O KK
- H{DKICOBIK-K) + BLK K ODEK)

1=1

A(0)=0, tel

“Here T and Di; 1<i <N, arc the (Gateaus) differentials of 4 and Dj; 1<i<N,

in the direction (K - K°), respectively.
The proof follows from standard computations (see [14-16]). o
With the help of the above lemma, we can now present the necessary condit-
jons for optimal identification for problem (P2).

N33

Theorem 4.2 (Necessary Conditions of Optimality)
Consider the problem (P2) and suppose Lemma 4.1 hold. Then the optimal par- _—l

—_—
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Tameter K° €¥  can be determined by the simultancous solutions of the differen-

tial equation
AN - 4 KON+ AL (CK) + ECON O

N
+ 2D, 6K AODEK)
l=
A°0)=A,, tel

the adjoint equation
-dI:t(t) _ ;'(t,K°)F°(t) 3 [‘O(t)A (t,Ko) -+ iflci'(t)ro(t)ci(t)

N
+ L DILKCMD (LK) + 0,
r°(T)=0, tel

4.3)

(4.4)

and the inequality
in{rc’(t); (LK -K)A°(t) + iglr °(t)Di’ (tLK° )A°(t)ﬁi(t,K -K° )J dt>0, 4.5)
forall K eX.
Proof
Define

J(K®) = ff)tr(g GING)
J(K®)= Ew(é (HAC(D)E

o T ]_
To(K-K?) = lim ~(J(K®)-JK®),
where J,(K - K°) denotes the Gateaux differential of J at X° in the direction
(K -K°). In order that J attains its minimum at X°, it is necessary that
- T 4 =
T(K-K°)= gn{Q OAM)dt20,

where A satisfies (4.2). The inequality (4.7) can be further simplified by intro-
ducing the adjoint variable ['°(t); t 2 0, which satisfies the (backward) differe-
ntial equation (4.4). Using (4.2), (4.4) and (4.7) and noting that

T4 ~
& (A(t)n,F°(t)n) dt=0, forallneR",
one can easily verify that

(4.6)

4.7)
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T ,_ -~ T - N R
g)tr(Q (t)A(t))dt =2 g tr(\ ot (LK - KON () + _§IF°(t)Di’(t,K° YA° (t)Di(t)] dt.
(4.8)
The inequality (4.5) now follows from (4.7) and (4.8).This completes the proof. O

In the following section We propose a numerical algorithm, which is based on
Theorem 4.2, for determining the optimal parameter K along with some numeric-
al simulations to illustrate some of the results of the paper.
M@W&—wﬁ

In this section we utilize the necessary conditions of optimality obtained in the
previous section (see Theorem 4.2) o device an iterative scheme for determining
the (optimal) control parameters K, and K,. We also present a worked out example
to illustrate the effectiveness of the proposed control scheme.

Algorithm

1. set n=1 and guess the control parameter K(n) = {K{“),Kgn)} i

2. Solve the differential equation (4.3) and get A® 1) = A(t,K(n))', t>0.

3. Solve the adjoint equation (4.4) and get T® () = T(LK™); t20.

4. Using the inequality (4.5), obtain the gradicnt vector g™(t) = gt k™).

5.1 g™ (t) =0, then K™ is a local minimizing clement.

i g g(n) (t) # 0, update the parameter K® using the following reiation
KDy = K®(1) +e g™ (1); 120,
where € (> 0) is chosen so that K@D ¢y and that J(K("H)) < J(K(n)).

6. If lJ(K(n+l))- I(K(n) )I < 8, for some sufficiently small 5 (> 0), then stop;

otherwise set n=n+1, and K® K("H) andgotostep2.

Remark 5.1
In the above algorithm we have added another constraint to the control parameter X .

This constraint gauarantees that the chosen X is such that lu (t)| < B for some positive
constant {3 (see equauon (2.3)).The example given below shows this fact.

Example
Consider the following (bilinear) stochastic differential equation on the state

space R
dx(t) = a;x(t)dt + bd u(t) + ¢, x(t)dwy(t); t2 0, x(0) = x,,
dy (1) = (ayx(t) + b(D)dt +cy(dwy (D5 t20,(0)=0,
where x andy are the state and output (scalar) variables, W, and w, are indep- |
endent standard Wiener processes, 4, 3,, by, by, C;, and ¢., are given constants

‘ (3.1}

_
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r:ndxodenowstheirﬂﬁalstatcwhichisassumedmbccomtant. We wish to design a —1
controller having the following structure

du(t)= K (t)dt + Kydy(t), t20, (5.2)
where K and K arc unknown constants which are chosen so that |u(t)| <B for
some constant (3, and that

2
J(K)=AEf (/1) dt= min. (5.3)
with A being any arbitrary positive constant. Substituting (5.2) into (5.1) and

letting & = (x,¥) , equation (5.1) can then be written as

dE (1) = 4 (K) E(H)dt + CE(t)dw, (1) + D(K)dw, (1),

(5.4)
‘g(o)z‘:o;teL
where
+ba,K, b(K +b
ﬁ(K)E(a’l- K, bk 2K2)) (5.5)
a5 b,
Cy OJ (0 blcsz)
= = . 5
C(oo’ D(K)L0 : (5.6)
Now the problem is to find a control parameter K € so that the performance
index ] is minimized subject to the dynamic constraint (3.6), with 4, C, and D
arc as given above and that
CXK)= gu-(’Q'A(t))dt, (5.7
where
___(0 OJ
@=lo A

The solution of this (identification) problem is given by the necessary conditions
(4.3)«(4.5) (sec Theorem 4.2) with

;(K_KO)E(%(-%-K% KD KDY
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o ]

5(K~K°)=(O blcz(Kz-Kz)] |
0 0

Using the inequality (4. S)mccmuﬂyvufymnthcgradwmm ga(gugz)

is given by

g1(1) = by 1 (DA 5 (D + by Ay (DI5(D)
850 = I},(0 by Ay (D2, + A0 by + Ayy(0) b3 £ K (5.10)

+Tj5(1) by(Agp(0) 3 + Ay(t) by + Agy(t)c).

Note that the gradients g; and g, given above have been used in step 5 of the
algoritm for updating the control parameters K and K, .
Formmcﬁcalsi:mﬂaﬁons,wchavemkenal—b =c2=02 a_z-'b =05,
andc, =1. Umgﬂlcabovealgmnhm,wchavcdctctmedmeopumal(cmlml)
parameters K, a.ndK2 the control process % (t); t 2 0, and the corresponding state
and output processes. Table (I) shows the values of K and K, as a function of §,
whueastg.(S)shomﬂwconﬂoluforditfuentﬂ.Fromﬂxesemuhsh'mckar
that for each B, the choice of control parameters K| and K, satisfics the fact that
|u(t)| < B. Figs.(24) show the processes x, y, and A.ij', 1,j = L2, for different
B ’s. From these figs. one observes that the proposed controller is capable of regulating
the state and output processes about the origin. Further, it is also clear that as we relax
the control constraints (i.e. increasing ) regulation becomes faster and viceversa. It
should be noted also that there is a range for 3 beyond which the system may become

unstable or the controller fails to regulate the system. In this example, this range is found
tobe 15<B <50,

Table (I)
B K, K,
15 1.4 -1.93
22 -0.26x10° -0.19x10°
25 -0.50x10° -0.35x10°
30 -0.60x10° -0.27x10°
35 -0.65x10° -0.22x10°
45 -0.73x10° -0.15x10°
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| 6. CONCLUSIONS 1
In this paper we have considered the optimal control problem for a class of partially

observed bilinear stochastic systems with control constraints. Assuming linear control stru-
cture, driven by the output process, we have converted the original stochastic control prob-
lera into an equivalent deterministic identification problem in which the controller paramet-
«:r8 are the unknowns. Further, using variational arguments and the Gateaux differentiability
of the process A on the parameter set, we have obtained the corresponding necessary condit-
ions for optimal identification. Based on these necessary conditions, we have presented an
iterative scheme for computing the optimal parameters (and hence optimal control ) along
with some mumerical simulations to illustrate the effectivencss of the proposed control scheme.
The results showed that the proposed controller is capable of regulating the state and output
processes about the origin effectively. Further, as it has been indicated in figs. ( 1-4 ), regulat-
ion of the state and output process have improved as we relaxed control consiramts ( i.c.,
increasing 3).

Fig.1-(a) state process for different p
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