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Abstract : 

In compact signature analysis ( CSA ) using Linear Feedback Shift 
Registers ( LFSR ), one unit connected in a closed loop form with the Circuit 
Under Test ( CUT ) is used as a random test pattern generator and signature 
analyzer in the same time; thus, reducing the hardware of signature analysis 
testing technique by 50 % [10]. However, it was found that the Steady State 
Aliasing Error Probability ( SS-AEP) of CSA has values between 0 and 1 
depending on the CUT and the structure of the CSA; which inhibits its use for 
digital circuits testing. In a previous work, the hardware condition for the SS-
AEP of CSA to be equal to /2k  is obtained, leading to what is called the 
Improved Compact Signature Analysis ( ICSA ) [11]. 

In this paper, the dynamic behavior of the CSA and the ICSA, which 
reflects the minimum required length of the test pattern necessary for the 
compression technique to reach SS-AEP condition is studied, using the absolute 
value of the Second Maximum Eigenvalues ( SME ) of transition probability 
matrix ( TPM ). The results are compared with those of Open Loop testing 
systems with PP-LFSR, and Cyclic Code Linear Feedback Shift Register ( CC-
LFSR). The comparison indicates that when the probability of the system to be 
fault-free is equally likely, the ICSA has similar dynamic performance as the 
conventional testing systems, but in the general case, the ICSA needs shorter 
pattern than CC-LFSR and slightly longer pattern than PP-LFSR in 
conventional testing to reach steady state, and as k increases the difference 
between the dynamic behavior of the ICSA and PP-LFSR decreases. 

Professor, Faculty of Computer Science & Information Systems, Ain Shams University. 
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1.0 Introduction : 
In digital circuits, testing is carried out by applying a sequence of input stimuli, 

known. as test vectors, generated by Test Pattern Generator ( TPG ), and checking for 
possible faults in the circuit by observing the circuit response at primary outputs. A 
general diagnosis system for digital-circuits comprises a TPG, that cycles through the 
whole or sufficiently large portion of input space, stimulating the CUT. The output of 
that circuit is then compressed using Data Compressor ( DC ) generating. the circuit. 
signature. This signature is then compared against a known one ( REF ), where a 
judgment can be made about the correctness of the circuit. The system is composed of 
our main blocks : TPG, DC, Comparator, and Storage for reference signature as shown 
in Fig. 1. 

Fault Detection & 
Location Algorithm 

Fig. 1 Digital circuits diagnosis system block diagram. 

The signature algorithm should not lose information. Specifically it must not 
lose that evidence of a fault indicated by a wrong response from CUT. This is referred 
to as Masking ( Aliasing Error Probability ) effect which is the compression of an 
erroneous output sequence from a faulty circuit into the same signature as the fault free 
circuit. Masking detracts from the quality of the test, in sense that the input pattern have 
detected a fault but the act of compression hides it. An important measure of good 
compression technique is how well it minimizes the masked errors. 

Linear Feedback Shift Registers ( LFSR ) are used extensively in Testing of 
digital circuits, and built-in Self Testing (BIST) design; as a source of pseudorandom 
binary test vector, and as a means to carry out response compression - known as 
signature analysis, to determine pass or fail status. This leads to the idea of compact 
signature analyzer ( CSA ), in which one unit, connected in a closed loop form with the 
CUT, is used as a random test pattern generator and signature analyzer in the same 
time, as shown in Fig. 2. This procedure reduces the hardware of signature analysis 
testing technique by 50 %. 

REF. 

Y/N 

CUT 	  TPG_SA  COMP. -----> 

Fig. 2 CSA block diagram. 

The general functional diagram of the CSA using LFSR is shown in 
Fig. 3. 
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Fig. 3 The general construction of the CSA using LFSR 

The steady state behavior of the Compact Signature Analysis ( CSA) with LFSR 
has been studied 1101,114 The preliminary results indicated that the aliasing error 
probability has values between 0 and 1 depending on the CUT, and the construction of the 
CSA, which prohibits its use for digital circuit testing. The hardware conditions for the 

SS-AEP to be equal to rk is obtained, leading to what is called the Improved Compact 
Signature Analysis ( ICSA ), shown in Fig. 4. The theoretical analysis and simulation 

results indicated that the rk error limit is attainable iff the kth  stage of the CSA is not 

connected to any of the inputs of the CUT. 
1, 

G( X) 

G ( X ) 

CUT 

f(x) 	F ( X) 

Fig. 4 The general construction of the ICSA using LFSR. 

This paper, deals with the dynamic behavior of CSA and ICSA with LFSR which 
reflects the minimum required length of the test pattern necessary for the compression 
technique to reach the SS-AEP condition. The absolute value of the maximum eigenvalues 
of transition probability matrix ( TPM) representing the simulated system is calculated 
[1]. Since the maximum eigenvalue for any Markov process of the TPM is equal to one 

[I ], 121, [3], therefore, the Second Maximum Eigenvalue ( SME ) of the TPM 
representing the CSA is considered. The obtained results are compared with those of open 
Loop compaction based on LFSR and CC-LFSR. 

2.0 Dynamic Properties of Markov Processes : 
The multi-step Transition Probability Matrix ( TPM ) 4)(n) is equal to then  th  

power of TPM (P) [11. 

4)(n)--= P" 
	 for n = 0,1,2,.... 	 (1) 

The Z- transform is used to study the dynamic properties of Markov process systems as 
follows[2] : 
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F(Z)=If(n) 
11=0 

Let us define 

4)(n +1) = 4)(n) P 

The corresponding Z - transform is expressed as follows : 

Z(4)(Z)—(1)(0))= 4)(Z) P 

then 

4)(Z)=4)(0) Z (Z 

thus 

4)(n) =4)(0) F-1(Z(Z I— P)-' ) 
(6) 

= 4)(0) P 

The locations of the zeros of the denominator of the inverse matrix controls the 
dynamic properties of the solution, The first maximum eigen value ( zeros of the 
characteristic equation) for TPM is equal to one [1], therefore, to compare between two 
systems modeled by Markov process, we should compare the Second Maximum Eigen 
value ( SME) of the TPM. The greatest SME in amplitude reflects the compaction need 
for longest pattern ( number of clocks ). 

To study the performance of the CSA or ICSA based on LFSR, the proposed 
system is modelled as a Markov process, and its SME is calculated through : 

- Modeling the CSA connected with the CUT by generating the 
Markov State Diagram ( 114.SD ). 

- Constructing the Transition Probability Matrix ( TPM ), then 
Multiplying it ii times, where n tends to infinity. 

- Deducing the equation of SME of the system using [8]. 
- Plotting the results, and analyzing the behavior. 

3.0 Modeling of the Dynamic Behavior (DB) for CSA and ICSA : 

Let Pi3  be the probability of transition from state i to state j in one step, and let it 
be constant. That is , it doesn't matter at what time one enters state i , the probability of 
going to state j is always P4. 

A Markov process can be described by the transition matrix P =[Ptil. This 

process is called stationary if Pt)  is not a function of when one arrives in state i. A 
transition from one of these. states to the actual state coincides with faulty or non faulty 
paths. The probabilities for these transitions are p and 1-p respectively. The following 
sections discuss the SME of TPM for different cases : 
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A) CSA with LFSR : 
1- CSA with LFSR where the k outputs of the signature analyzer are 

connected to the m inputs of CUT ( for both PP and NPP ). 
2- CSA with LFSR, k > m, and Last Stage of signature analyzer 

connected to one of the inputs of CUT 

B) ICSA with LFSR : Where k> m, and signature analyzer output 
Last Stage Not Connected (LSNC) to any of the inputs of CUT for 
both PP-LFSR and NPP-LFSR. 

3.1 DB for CSA Structure with k = m : 

The cases in which all the outputs of the LFSR stages are connected to the inputs 
of the CUT have been studied as follows : 

3.3.1 DB for CSA Structure with LFSR, PP, k = m = 2, CUT(1) : 

Fig. 5 presents the CSA composed of a 2-stage PP-LFSR, a 2-input AND gate as 
the CUT(1). The outputs of the 2-stage LFSR are connected to the inputs of the CUT(1), 
and the output of the CUT(1) is fedback to the first stage of LFSR through an XOR 
circuit. Fig. 6 represents the MSD of the system in Fig. 5. The TPM for the system is 
shown in Fig. 7 

Fig. 5. Structure for CSA, LFSR, PP, with k = m =2, CUT(1). 

 

1-p 
p 

 

Fig. 6. MSD for CSA, LFSR, PP, with k = m = 2, CUT(1). 
so  Si  S2  S3  

So  p 1 - p 0 0 

mi=si  0 0 1-p p 
s2 1 - p p 0 0 

s3  0 0 1-p p 

Fig. 7. TPM for LFSR, PP, with k = m =2, CUT(1). 
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The SME for the TPM M1 is calculated with [ 8 ]; giving ; 

1 	 
SME1= p 	 +8p - 3 	 (7) 

2 
The absolute value SME1 is plotted against p as shown in Fig. 8. It equals zero 

for the case of equally likely error model when p = q = 0.5, and equals one for p = 0 or 
p = 1 . 

1 
0.9 
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0.7 
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0.2 
0.1 

0 
0 	0. 0. 0. O. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 

06 1 15 2 25 3 35 4 45 5 56 6 65 7 76 8 85 9 95 

P 

Fig. 8. Dependence of the absolute values of SME1 upon error probability 
of CUT (1) for TPM M1 of CSA with PP-LFSR, k = m = 2. 

3.3.2 Structure of CSA with LFSR, NPP, k = m = 3, CUT(2) : 

Fig. 9. presents the CSA composed of a 3-stage NPP-LFSR. the outputs are 
connected to the inputs of the CUT(2), and the output of the CUT(2) is fedback to the first 
stage of LFSR through an XOR circuit. Fig. 10 represents the MSD of the system in 
Fig. 9. The TPM for the system is shown in Fig.11. 

FF1 	)1  FF2  	)i  FF3  

LQC 	 
CUT (2) 

Fig. 9. CSA with LFSR, NPP, k = m = 3, CUT(2). 
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Fig.10. MSD for CSA with LFSR, NPP, k = m = 3, CUT (2). 

SO 31  32  Sy 84  Sy S6 S. 

Se p 1-p 0 0 0 0 0 0 

32 0 0 1-p p 0 0 0 0 

S2 0 0 0 0 1-p p 0 0 

M2= 33 0 0 0 0 0 0 1 - p p 

54  p 1-p 0 0 0 0 0 0 

Ss  0 0 p 1-p 0 0 0 0 

Ss  0 0 0 0 p 1 - p 0 0 

Sy 0 0 0 0 1-p p 

Fig. 11. TPM for CSA with LFSR, NPP, k = m = 3, CUT (2). 

The SME for the TPM M2 is calculated with [ 8 j, giving : 

1 (1) a 
SME2 --36  .2 3  .3 

where 

(18p' — 27p +9 — 148 p — 4p' — 27p' + 54p — 27..5 + 2i. 	— 4p' — 27p' + 54p — 27..,5.p)(1)  . 2(1)  .3(2)  — 6p + 

(1)  
12p — 3i.P1  418p' — 27p + 9 — 	— 4p' — 27p + 54p — 27..5 + 2i..18p z  — 4p s  — 27p' +54p — 	p)z." . 

(11 
20)  — 6i. 5.p + 12i. 	p 

)(I) 
b = (18p1  - 27p +9 - j8p4  - 4p3  - 271)2  + 54p - 27.4i + 2i. V8p4  - 4p3  - 27131  +54p - 27.N 3/- .pi 

The absolute value of SME2 is plotted against p as shown in Fig. 12. It equals to 
zero for the case of equally likely error model when p = q = 0.5, and equals one for p = 0 
or p = 1 . 

( 8  ) 

a = 

and 
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Fig. 12. Dependence of the absolute values of SME2 upon error probability 
of CUT (2) for TPM M2 of CSA with NPP-LFSR, k = m = 3. 

3.2 DB for CSA Structure with k > m, with Connecting Last Stage (CLS) : 

3.2.1 DB for CSA Structure with LFSR, PP, k = 3, m = 2, CUT(3) : 

Fig. 13. presents the CSA composed of a 3-stage PP-LFSR, two of the outputs, 
including the last stage output, are connected to the CUT (3) inputs, and the output of 
the CUT(3) is fedback to the first stage of LFSR through an XOR circuit. Fig. 14. 
represents the MSD of the system in Fig. 13. The TPM for the system is shown in Fig. 15. 

CUT (3) 

Fig. 13 CSA with LFSR, PP, k = 3, m = 2, CLS, CUT(3). 

Fig. 14. MSD for CSA with LFSR, PP, k = 3, m = 2, CLS, CUT(3). 
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s7 
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m3 = S3 0 0 0 0 0 0 1 -p p 
s, 
ss  
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1-p 
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0 
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0, 
0 

0 
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so  0 0 0 0 0 0 1-p p 

Fig. 15. TPM for CSA with LFSR, PP, k = 3, m = 2, CLS, CUT(3). 

The SME for the TPM M3 is calculated with 181; giving : 

1 1 	  

	

SME3 = p-+-2.11-4p2 + 8p-3 	 (9) 
The absolute value SME3 is plotted against p as shown in Fig.16. It equals zero 

for the case of equally likely error model when p = q = 0.5, and equals one for p = 0 or 
p = 

1 
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P 

05 OS OS 07 07 08 08 09 09 
5 5 

Fig. 16. Dependence of the absolute values of SME3 upon error probability 
of CUT (3) for TPM M3 of CSA with PP-LFSR, k = 3, in = 2. 

3.3 DB for ICSA Structure ( with k > m, with Last Stage Not Connected 
( LSNC )) : 

The cases in which last stage output of the LFSR is not connected to any of the 
CUT inputs, have been studied as follows : 
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3.3.1 DB for CSA Structure with LFSR, PP, It= 3, m = 2, LSNC, CUT(4) : 

Fig. 17. presents the CSA composed of a 3-stage PP-LFSR, two outputs - not 
including the last stage one - are connected to the CUT (4) inputs, and the output of the 
CUT(4) is fedback to the first stage of LFSR through an XOR circuit. Fig. 18 represents 
the MSD of the system in Fig..1T. The TPM for the system is shown in Fig. 19. 

Fig. 17. CSA with LFSR, PP, k = 3, m = 2, LSNC, CUT(4). 

Fig. 18. MSD for CSA with LFSR, PP, k = 3, m = 2, LSNC, CUT(4). 

Fig. 19. TPM for CSA with LFSR, PP, k = 3, m = 2, LSNC, CUT(4). 



I GC-9 I 701 I Proceedings of the 7th  ASAT Conf. 13-15 May 1997 

The SME for the TPM M4 is calculated with [ 8 1; giving : 

SME4 = 	2p 
	 (10) 

The absolute value of SME4 is plotted against p as shown in Fig. 20. It equals 
zero for the case of equally likely error model when p = q = 0.5, and equals one for p = 0 
or p = 1 . 
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5 	5 	5 	5 	5 	5 	5 	5 	5 	5 

P 

Fig. 20. Dependence of the absolute values of SME4 upon error probability of 
CUT (4) for TPM M4 of CSA with PP-LFSR, k = 3, m = 2, LSNC. 

3.3.2 DB for CSA Structure with LFSR, NPP, k = 3, m = 2, LSNC,CUT(5) : 

Fig. 21. presents the CSA composed of a 3-stage NPP-LFSR, two outputs - not 
including the last stage one - are connected to the CUT (5) inputs, and the output of the 
CUT(5) is fedback to the first stage of LFSR through XOR circuit. Fig. 22 represents the 
MSD of the system in Fig. 21. The TPM for the system is shown in Fig. 23. 
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Fig. 21. CSA with LFSR, NPP, k = 3, m = 2, LSNC, CUT(5). 
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Fig. 22. MSD for CSA with LFSR, NPP, k = 3, m = 2, LSNC, CUT(5). 
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Fig. 23. TPM for CSA with LFSR, NPP, k = 3, m = 2, LSNC, CUT(5). 
The SME for the TPM M5 is calculated with [ 8 ]; giving : 

SME5 = - 2p 	 (11) 
The absolute value of SME5 is plotted against p as shown in Fig. 24. It equals 

zero for the case of equally likely error model when p = q = 0.5, and equal one for p = 0 
or p = 1 . 
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Fig. 24. Dependence of the absolute values of SME upon error probability of 
CUT (5) for TPM MS of CSA with NPP-LFSR, k = 3, m = 2, LSNC. 
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The SME values of the CSA structure with LFSR, k = m are equal only 
for the case of equally likely error model when p = q = 0.5 and have the value 
zero, otherwise, they have different values according to the CUT and LFSR 
structure. On the other hand, For ICSA the general formula for SME is deduced 
which is independent on the CUT and LFSR structure. 

4.0 Comparison Between DB of Open and Closed Loop Compaction Using 
LFSR : 

From cases studied for the ICSA at sections ( 3.3 ), the SME for ICSA 
can be deduced by induction as : 

IZics,„1=11-2pri2 	 (12) 
The general formula for SME for PP-LFSR used in open loop system was deduced as [4], 

1Zpl, I =11 - 2p12112  -k-1 	 (13) 
and the general formula for SME for CC-LFSR used in open loop system was deduced as 

4 1, 

IZNPfd = 
	

(14) 
Table 1 and Table 2 show the absolute values of SME for the open loop 

NPP-LFSR, PP-LFSR and the dosed loop ICSA systems, with k = 3, and k = 5 
respectively. The dependence of SME on p for k = 3, and k = 5 is plotted in Fig. 25 
and Fig. 26 respectively. 

P 
SME of NPP- 

LFSR 
, 

Il - 20/ 3 

SME of 
ICSA 

11- 2pr2 

SME of 
PP-LFSR 

,4 
11 -2131//7  

0.00 1.000 1.000 1.000 
0.05 0.965 0.949 0.942 
0.10 0.928 0.894 0.880 
0.15 0.888 0.837 0.816 
0.20 0.843 0.775 0.747 •---- 
0.25 0.794 0.707 0.673 
0.30 - 	0.737 0.632 0.592 
0.35 0.669 0.548 0.503 
0.40 0.585 0.447 0.399 
0.45 0.464 0.316 0.268 
0.50 	 0.000 	 0.000 	 0.000 
0.55 0.464 0.316 0.268 
0.60 0.585 0.447 0.399 
0.65 0.669 0.548 0.503 
0.70 0.737 0.632 0.592 
0.75 0.794 0.707 0.673 
0.80 0.843 0.775 0.747 
0.85 0.888 0.837 0.816 
0.90 0.928 0.894 0.880 
0.95 0.965 0.949 0.942 
1.00 1.000 1.000 1.000 

Table 1. A comparison between the absolute values of SME of open loop 
NPP-LFSR, PP-LFSR, and ICSA for k = 3. 
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Fig.25 The SME for ICSA, PP-LFSR, and NPP-LFSR for k = 3. 

p 
SME of NPP- 

LFSR 

11 - 2prs  

SME of 
ICSA 

1- 2prz 

SME of 
PP-LFSR v  
il - 20 i31  

0.00 1.000 1.000 1.000 
0.05 0.979 0.949 0.947 
0.10 0.956 0.894 0.891 
0.15 0.931 0.837 0.832 
0.20 0.903 0.775 0.768 
0.25 0.871 0.707 0.699 
0.30 0.833 0.632 0.623 
0.35 0.786 0.548 0.537 
0.40 0.725 0.447 0.436 
0.45 0.631 0.316 0.305 
0.50 	 0.000 	 0.000 	 0.000 
0.55 0.631 0.316 0.305 
0.60 0.725 0.447 0.436 
0.65 0.786 0.548 0.537 
0.70 0.833 0.632 0.623 
0.75 0.871 0.707 0.699 
0.80 0.903 0.775 0.768 
0.85 0.931 0.837 0.823 
0.90 0.956 0.894 0.891 
0.95 0.979 0.949 0.947 

1.00 1.000: 1.000 1.000  

Table 2. A comparison between the absolute values of SME of open loop NPP-LFSR, 
PP-LFSR , and ICSA for k = 5. 
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Fig. 26 The SME for ICSA, PP-LFSR, and NPP-LFSR for k = 5. 

It is clear that, for p equals ( 1/2 ), the open and closed loop systems have 
identical SME values, equal to zero. The PP-LFSR has the minimum values of SME, 
which means that it needs the shortest pattern to reach the steady state values of AEP. 
On the other hand, ICSA needs shorter pattern than open loop NPP-LFSR, and slightly 
longer pattern than open loop PP-LFSR Furthermore, as k increases the difference 
between the DB of the ICSA and PP-LFSR decreases. 

5. Conclusions : 
The dynamic behavior of CSA implemented using LFSR, with k = m and k > m 

have been studied, by calculating the SME value for the TPM. It was found that the SME 
values when p = q = 0.5 have the value zero, otherwise, they have any value between 0 
and 1 , according to the CUT and LFSR structure . 

The dynamic behavior of ICSA has been studied by calculating the SME values 
for the TPM representing the system. The general formula for SME of ICSA is deduced 
and compared with the general formulas for open loop systems. The comparison indicates 
that when the probability of the system to be fault-free is equally likely, the ICSA has 
similar dynamic performance like the open loop systems. But in general, the ICSA needs 
shorter pattern than CC-LFSR and slightly longer pattern than PP-LFSR open loop 
system to reach steady state, and as k increases the difference between the DB of the 
ICSA and PP-LFSR decreases. 

These results show that the dynamic behavior of ICSA ( constructed from PP-
LFSR or NPP-LFSR ) is nearly similar to that of the open loop PP-LFSR system for 

k> 5. 

References : 

[1] R. Howard, Dynamic Probabilistic System, Markov Models" J. Wiley & 

Sons, Inc., 1971. 
[2] Stanley, W. D., Dougherty, G. R., " Digital Signal Processing " Prentice- Hall 

Company, 1984. 
[3] 

W. Williams, W. Daehn, and M. Gruetzner " Comparison of Aliasing Errors For 

Primative f.uul 
Non-Primative Polynomials" IEEE Inter. Test Conf., pp. 282 - 288, 1986 

0.3 0.4 0.5 0.8 0.7 0.8 

  

 

p 

 

0.9 I 



GC-9 I 706 Proceethngs of the 7th  ASAT Conf. 13-15 May 1997 

14] R.H. Seireg "Characterization of Sequential Logic Circuits In Real Time " Ph. D. , 
Chicago, Illiniois , November, 1990. 
[5] Francis C. Wang, " Digital Circuit Testing "Academic Press, Inc. San Diego, 
California 92101. 1991. 
[6] France C. Wang ," Digital Circuit Testing : A Guide to DFT and Other Techniques", 
1991 by Academic Press, INC. 
[7] A. Seddik ," Microcomputer Based Automatic Testing System Through Signature 
Analysis", M. Sc Degree. M.T.e , Cairo, 1992. 
[8] Mathsoft " MATHCAD 5.0 " C 1994 Mathsoft Inc. Version5.0 International Correct 
Spell C 1993 by Houghton Company. 
[9] M. S. Ghpniemy, A. seddik," Automatic Testing of Digital Circuits Through Signature 
Analysis," LASTED Inter. Conf. on Modeling and Simulation, Pittsburgh, Penns-ylvnia , 
USA. May 2-4 , 1994. 
[10] R. H. Seireg, M . S. Ghoniemy, S. F. Bahgat, A. Seddik, "Compact Signature 
Analysis " National Conf. for Radio, Feb. 1995. 
[11] M . S. Ghoniemy, R. H. Seireg, S. F. Bahgat, A. Seddik," Improving the 
Performance of Compact Signature Analysis Using LFSR." 13'th National Radio 
Science Conf. , Cairo, Egypt. 19-21 March 1996. 


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16

