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Abstract : 

The Multiple Input Compact Signature Analysis (MICSA) has been proposed 
to reduce the hardware of compaction technique by 50 %. The general formula for 
the corresponding Aliasing Error Probability (AEP) has been found to lie between 0 
and 1, depending on the CUT, and the construction of the MICSA. The hardware 
conditions for the SS-AEP to be equal to 2-k  is obtained, leading to the Improved 
Multiple Input Compact Signature Analyzer ( IMICSA ). The theoretical analysis 
and simulation results indicated that for the MICSA, if its k stage is not 
connected to any of the CUT's inputs, then, The SS-AEP is equal to the reciprocal 
of 2k, where k is the number of the stages of the signature analyzer, regardless of 
the construction of CUT, or the initial state of SA. This result indicates that for 
the IMICSA the more stages are there in MISR the better is the SS-AEP. 
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1. Introduction : 

In digital circuits, testing is achieved by applying a sequence of input stimuli, known as test vectors, 
generated by Test Pattern Generator ( TPG ) and checking for possible faults in the circuit by producing 
observable faulty response at primary output called "Signature", generated by a Data Compressor ( DC). This 
signature is then compared against a known one ( REF ), where a judgment can be made about the correctness of 
the circuit [3], [4],[5], [9], [10],1121, [13], [14], [15], [17]. 

The signature algorithm should not lose information. Specifically it must not lose the evidence of a 
fault indicated by a wrong response from CUT. This is refers to Masking ( Aliasing Error Probability AFY ) 
effect which is the compression of an erroneous output sequence from a faulty circuit into the same signature as 
the fault free circuit[2], [7], [11], . 

Multiple Input Shift Registers ( MISR ) is a preferred technique used to realize efficient built-in self-test 
(BIST) of digital 'VLSI circuits, it is used extensively as a source for pseudo random binary test sequences and as a 
means to carry out response compression - known as signature analysis [8], . 

This leads to the idea of multiple input compact signature analyzer ( MICSA )[18],[19], in which one unit, 
constructed from MISR, connected in a closed loop form with the CUT, is used as a random test pattern generator 
and signature analyzer at the same time, as shown in Fig. 1, to reduce the hardware of signature analysis 
compaction technique by 50 %. 

Fig. 1 Multiple inputs compact signature analyzer block diagram ( MICSA ). 

The following sections introduce a deep analytical study of the SS-AEP of MICSA and how it depends on 
each of the following factors : 

1- The structure of the CUT. 
2- The probability of faulty & non-faulty CUT. 
3- The number of signature analyzer stages k. 
4- The type of the polynomial used in realizing the MISR ( primitive or non-primitive ). 
5- The particular way by which the MISR is implemented. 
6- The location of points of connection of the MISR outputs with the CUT inputs. 

2. SS-AEP For Multiple Input Compact Signature Analyzer 

To study the steady state performance of MICSA, we modeled the proposed system using Markov process [1], 
moreover the SS-AEP is calculated. 

To calculate the SS-AEP for the MICSA using Markov process, several mathematical manipulations are used : 

1- Modeling the MICSA circuit connected with CUT by generating the Markov State Diagram ( MSD ). 

2- Constructing the Transition Probability Matrix ( TPM ),then Multiplying it by itself 11 times, where n 

tends to infinity. 
3- Deducing and solving the local balance equations of the system [1]. 
4- Plotting the solved local balance equations, to analyze their behavior. 
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The general construction of multiple input compact signature analyzer is shown in Fig. 2, where G(x) represents a 

net of XORs used to implement of the MISR, and f( X1  ), f( X 2  )" 	,f( X ) represent the outputs of the CUT. 

Fig. 2 The general construction of multiple input compact signature analyzer . 

As shown in Fig. 2, the MICSA, has two XORed loops ( functions ). The first loop; denoted as the main 

loop; comprises the shift register stages and the feedback lines as inputs to G ( X ). 

G(1.) =-- 	a ma in  
(1) 

m=1 

where.: a1, 	, a t, have the values zero or one, and the summation is modulo-2 adder. 

G(x.)= g(x„ x2, 	) 	
(2) then : 

The second loop; denoted as the CUT-loop, contains the shift register stages and the CUT, having the 

function f(avaz , 	 x„ ). 
The XORing of these two functions is C(X), where : 

C ( X ) = g(x.„ x2 , 	)1J3 f(a„a2 , 	,xr.) 	(3) 

where m = 1, 	 k 	& n = 1.. 	, k 

Since we use MISR, where all states are reachable from each other, the system can be modeled by irreducible 
Markov chain 111. If a Markov chain is irreducible, recurrent nonnull, and aperiodic ( i.e., it is ergodic), there 
exists a unique limiting distribution for the probability of being in a state Si  denoted as xs  independent of the 

initial state. These probabilities are called steady-state or equilibrium probabilities. 

If the system can be represented by a doubly stochastic matrix, then the probability of existing at any state is equal 

to the reciprocal value for the number of these states. Therefore, the AEP is equal to the probability of existing at 

any state. 

Theorem : 

For the CSA which is constructed from MISR, if its k" 
 stage is not connected to any of the CUT's inputs, 

then, The SS-AEP is equal to the reciprocal of 2k  , where k is the number of the stages of the signature analyzer, 

regardless of the construction of CUT, or the initial state of SA. 

Proaf • 
This proof is divided into two sections : 
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1) Proving that if the k th  stage of MISR is connected to any of the CUT's inputs, then the behavior of the CSA 
using MISR depends on the structure of CUT and it will lose its linearity. Otherwise, it will keep the MISR 
characteristic. 
2) Proving the validity of the theorem. 

1- The different cases of the XOR of the two functions generated from the main loop and the CUT-loop 

C(X)= g(x„x2 , 	,x.)(9f(x1 ,x2 , 	,xn ), can be discussed as follows : 
A) When connecting the last stage to the CUT-loop, for a NPP CSA with MISR : 

Fig. 3 Function diagram for MICSA with MISR, NPP, and connecting the last stage to CUT-loop. 

From Fig. 3 	G (X) = g( Xk  )-= X k  

F(X)=f( XI ,X2,....,Xk ) 

The XOR of these two functions is : 
C(X) = f(x„x„....,xk )(9 x,, = c(x„ x 2 , 	 ,Xk _1 ). 

The above result shows that C ( X ) is independent of the last stage X I, In other words, the MISR is 

independent of the feedback from Xk  , which means that the main loop for MISR is open and the system depends 
only on the CUT-loop. However, The CUT in general is nonlinear, therefore, the system will become nonlinear too, 
except for the special case when the CUT is linear. 

B) When connecting the last stage to the CUT-loop, for a PP CSA with IVIISR : 

CUT 

FIX) 

Fig. 4 Function diagram for MICSA with MISR, PP, and connecting the last stage to CUT. 

From Fig. 4 	G (X) = g(x, x2, .•-•, 	) 
F(X)= f(Xl ,x2,....,Xn ) 

- For the case when m n and the k" stage is connected in both of the main loop and CUT-loop : 

The XOR is reducing the outputs of the feedback shift register which agree with the CUT inputs Boolean 
function, and because that last stage is one of them ( in this case ), then its effect is reduced. That is to say, the 



FIX) 
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output of the XOR is independent of the feedback x i,, then some part of the circuit which include 

(x1 , x2 , 	, x n_i  ) is linear, and the other parts are open ( or not connected ) to the MISR, but connected to 

the CUT, which in general is nonlinear, therefore, the system will become nonlinear, except for the special case 
when the CUT is linear. 

- Forthe case when m = n = k and the k *  stage is connected in both the main loop and CUT-loop : 

If the number of feedback lines for G ( X ) ( including the last stage ) is equal to the number of inputs 
for the CUT, then the XOR of these two functions is : 

C(X) = f(X„X2,....,X3 g(x„ x„ 	= C(0) 
the output is equal to zero and does not depend on either MISR or CUT. 

C) When the last stage is not connected to the CUT-loop, for a NPP CSA with MISR : 

Fig. 5 Function diagram for MICSA with MISR, NPP, and not connecting the last stage to CUT. 

From Fig. 5 	G (X) = g(x,, ) = Rk  

F(X )=-4(Xil  X 21 	1 3c) 

then 	C(X)= 	 = C(X„X21 ....,X0Ik  
Then the main loop is always closed, in other words, the MISR keeps its characteristics as a LFSR, so the 

system will be linear. 

D) When the last stage is not connected to the CUT-loop, for a PP CSA with MISR : 

Fig. 6 Function diagram for MICSA with MISR, PP, and not connecting the last stage to CUT. 
From Fig. 6 G (X) = g(XI,X2,••••9/Ck  

F(X)= f(X0 X 21 	T X.)wherek> n 

then C(X)= f(xi,x„....,x„)E19g(x„x„....,xk _oxk ) = c(x„x.„...,x,„„xk) 
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- For the case when k # II and the k "' stage is not connected in CUT-loop: 

The XOR is reducing the outputs of the feedback shift register which agree with the CUT inputs Boolean 
function, and because the last k-stage is not one of them ( in this case ), then its effect is not reduced, then the XOR 
is a function of the outputs of the feedback shift register that does not agree with the CUT inputs Boolean 

function and the last stage X k  . 

- For the case if all the CUT inputs Boolean function agree with n-1 outputs of the feedback shift register , and 

the k".  stage is not connected in CUT-loop: 
then 	C(C) = f(x„x2,...,x.)®g(xi,x2,....,x.,xk)= c(xk) 
Then the main loop is always closed , but the PP-LFSR in this case will depend only on X k  which makes it as 

NPP-LFSIL 

2- The test process transition matrix ( TPM ) P can be written as : 

P,I  = prob[S(n +1):= SjIS(n) = S, 	 (4) 

with S denoting the MISR state, and n the number of clock cycle. 

To prove that the process is double stochastic, let's denote the MISR and CUT state transition matrix by A, 
the error probabilities in shifting the sequence non-faulty and faulty - which are assumed to be independent- by X, 
Y, Z, and W respectively, and the MISR states with only two stages by sp  and spz  respectively, and with both set 

by spz  we get : 

prob[s(n +1) = si ls(n)= si 1= Y 	prob[s j  = sT A ED spi ] 

Z 	prob[si  = si A esp., ]+W prob[si  = s,A a spi  ]+ X prob[s j  = 

X being the probability of fault free operation. 
Now since the events 
S n) = S,, [• 0:2k  111 are disjoint at any instant (n) then. 

I--.0 
But for MISR we know that : 
i' -1 	2.-1, 	2.-1 	2.-1 	2k-1 

U[SIA ea spi  I = ULS1A la) s pi = U{Si A (1) S pi = UNA]  = U{SI i 

1=0 	 i=0 1=0 	 1=0 	 i=0 

Since each one of them covers the whole binary k tuple space, so 
r 	2 k — 1 	1 

probS j E U [ S , ] 1 = 1 
1=0 

as S j belongs to the same k- tuple binary space spanned by the union. Moreover, by definition 
the probability space of any error bit can be expressed as : 

2. -I 	 r 	2.-2 
E prob[S1  = S11 = probi Si  E LIS,' 
i...0 	 ,_ 	i=0 	- 

Hence 
zk-i 	 2` 1 	 2k_.1 

EPii =Y prob[si  E U[sI A 9 sp, ]] +Z prob[si  E 00 CB sp,11+ 

i_,0 	 1=0  
2k-1 	 2.-i 

W 	prob[si  e U[s I A Ssp,]]+ X prob[sj E  U[SiA]  
1--4 

(5)  

(6)  

(7)  
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X+Y+Z+VV --= 1 
since they cover the probability space of any error bit, then from (7), and (10) : 

EPI, = 1 

1=0 
Hence, the process is a double stochastic Markov process ill ( the TPM of a doubly stochastic Markov process has 
the property that each column and each row sum to one ). Hence each state has an equal opportunity of 
appearing in the steady state, consequently; 

1 
Tcss2' ( 41, x 	 ,1) 

Where itss  denotes the steady-state probability vector. 
That is to say each state has an equal probability of occurrence at steady state regardless of the initial 

state. In particular 
prob[S =So ].  =rk  

where SO = (0,0„0) 

The AEP of the system is, in general, given by the probability of returning to the zero state, when starting from 
zero state, given that the system was not stuck-at this zero state. Note that the formulas derived above are valid for 
the zero initial state, and did not presume that the system was stacking-at zero. Consequently , 

AEI". = prob[S = So ] =2"k  (11) 
Equation (11) reveals that the SS-AEP is a function of ( k ), and that the more stages in MISR the better the SS-
AEP. Moreover, SS-AEP is shown to be independent of the type of the polynomial used in realizing the MISR, 
primitive or not, and independent of the particular choice of the Galois field polynomial used ( within the same k ). 
Furthermore, it is independent of the particular way by which MISR is implemented- It is also independent of the 
location of the input stage, independent of the initial state, and finally it is independent of the probabilities X, Y, Z, 
and W. Moreover, this proof can be extended to cover MISR with k inputs, and the value of SS-AEP rather than 
the previous proof for two input MISR. Q.E.D. 

3. Cases Studied for Multiple Input CSA ( MICSA) : 

For discussing the SS-AEP of the MICSA, the following cases are considered : 

1- Structures for MICSA with the k outputs of the signature analyzer equal to the m inputs of CUT. 
2- Structure for MICSA with k > m, and with Connecting Last Stage ( CLS ) of signature analyzer output 

( the k th  stage ) to any of the inputs of CUT. 

Then the structures for IMICSA ( k > m, and with Not Connecting Last Stage ( NCLS ) of signature analyzer 

output ( the k th  stage ) to any of the inputs of CUT) for both PP-MISR and NPP-MISR will be studied. 

This part studies the cases in which the number of outputs from the CUT are two. The error probability in 
shifting the sequence non faulty and faulty for the first output( 01 ) - which are assumed to be independent - is 
given by p, 1-p. The error probability in shifting the sequence non faulty and faulty for second output ( 02) - 
which are assumed to be independent - is given by q, 1-q. 

The following Table 1 includes the different cases for 01, 02 being faulty or non faulty. 

Ou 9ut 	01) 	 Ou •ut ( 01) Error  probability  
p•q 

Symbol 

X Non faulty  Non faulty 
Faulty Non faulty 

Faulty 
(1-0•4.1  
p.(1-q) 

Y  
Z 

Non faulty  
Faulty Faulty (1-0•1-0) W 

Table 1 The different cases for 01, 02 being faulty or non faulty . 



Proceedings of the 71h  ASAT Conf. 13-15 May 1997 GC-10 I 716 

3.1 Structure of MICSA, k = m = 2, Outputs (0) = 2, CUT(1) : 

Fig. 7 is composed of 2-stages (k) PP-MISR, the CUT(1) has two inputs and two outputs. The outputs of 
the 2-stage MISR are connected to the 2 inputs of the CUT (1) , while the outputs of the CUT(1) are fedback to the 
first and second stages of MISR through XOR circuits. Fig. 8 represents the MSD for Fig. 7, and its TPM is 
shown in Fig. 9. 

X 

Y 

 

Fig. 7 Structure for MICSA, ith k = in =2, 
0 = 2, CUT(1). 

Fig. 8 MSD for MICSA, with k = m = 2, 
0 = 2, CUT(1). 

So  S1  32  S3  

S ZWXY 
M1= s1  Y X W Z 

s2 Y X WZ 
s3  WZ Y X 

Fig. 9 TPM for MICSA, with k = m = 2, 0 = 2, CUT(1). 
From Fig. 9 the local balance equations are calculated as : 

(1 Z )so  = Ys, + Ys2  + Ws3  
(1— X)si  = Wso  + Xs2  +Zs, 
(1— W)s2  = Xso  +Wsi  + Ys, 
so  +si  +s2  +s, = 1 

The equations (12) are solved using [16]; giving : 

(-YZ-Y2  -W+XW+W2 ) 
s°(-1+X-XZ-ZW-Y+Z2 +YW+XY-Y2 ) 

-(XY- 2XYZ +2 - -ZW +VW +WY' +W2 	+WX 2 ) 
(-1+X-XZ-ZW-Y+Z2 +YW+XY-Y2 ) 

(-Y + YZ +XY -2XYZ - ZW + Z2W + WY2 	-WX +WX2 ) 
S2  = (-1+X-XZ-ZW-Y+V+YW+XY-Y2 ) 

(-1+Z+W-ZW+X-XZ+YW+XY)  
(-1+X-XZ-ZW-Y+V+YW+XY-Y2 ) 

(12) 

(13) 



These figures show that the state probability is depending 
value ( 1/4 ) which is the SS-AEP of MISR in the open 
corresponding CSA with MISR in dosed loop system, but th 
p = q = 0.5, which is the same as the one given by [61. 
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Substituting the values of K. Y, Z, and W in equation ( 13 ) by the corresponding values of p, q as described in 
Table ( 1 ), and simplifying the results, we get : 

(1 - p)(-q - p+ Zpq) 
so  = 

(-1 -1-Zpq - p-4p2q-2q2  +4q2 p+ Zp 2 ) 

st  = 
(-1 	- p -4p2q - 242  +4q2p + 2p2 ) 

- s.. 	
(I- p)(-1 -i-Zq --4pq + p -2q2  +4q2p) 

' (-1+ Zpq - p-4p2q- Zqz  +4q2p + 42 ) 

(-p+ pq + p2  - 1p2q + 2q2p-q2 ) 
s, = 

	

	  
(-1+2pq-p-4plq-2q 2 +4q2 p +42 ) 

Equations (14 - 17) are plotted in Figures ( 10 - 13 ), each figure is followed by a matrix giving the values of the 
state probability against the error probability p and q. 

(-q +4132 (12  +4pq - p - 4p2q  +q2  +-4q2p p2 ) 

( 14 ) 

( 15) 

(16)  

(17)  

( a ) 	 ( b ) 
Fig. 10 Dependence of the state probability s1, of MICSA, k = rn =1  2, 

and 0 = 2, upon the error probabilities of the CUT(1). 
(a) Graphic representation. (b) Matrix representation. 

(a ) 	 ( b ) 
Fig. 11 Dependence of the state probability s t  of MICSA, k = m = 2, 

and 0 = 2. upon the error probabilities of the CUT(1). 
(a) Graphic representation. (b) Matrix representation. 
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%2  0.575 0.5 	10.434 0.379 0.337 0.301 0.291 0.215 0217 
0.437 1 0.398 0.363 0.332 10309 0.292 0.211 0.277 0.271 

i..* 0.333 031710.302 0.29 azi 0.273 foam 0.266. 0.266 
•'••• k.,1 0.25 0.25 10.25 0.25. ,0.27. 0.25 1025. 0.23: 0.25 
; 0312 0.194. 0.204. 0.211 10.211 0.= 0.225 0.227 0.227 
* 0.125 0.141 0.161 0.172 0.181 0.181 0.197 0.195 0.196 

0.07f 0.102 0.118 0.129 0.1370.143 0.147 10.15 0.151  
0.036 0.06 ,0.071 	0.077 0.011 0.013 0.015 0.017 0.017 

0 0 	0 0 0 0 	0' 0 

{ a) (b) 

Fig.I2 Dependence of the state probability s3  of MICSA, k = m = 

and 0 = 2, upon the error probabilities of the CU 	1(1). 
(a) Graphic. representation. (b) Matrix representation.. 

,.. 
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r181 0301 10334. 0.349 	0.357 10.36 	4287 0349 	0334. 0.208 I 
4 0.321 10.377 	0.401 	0.41210.417 	0.417 	0..4-1. 	0.408 	0.377 1 
•i11 0 	! 0.5 	0.5 	. 	0.5 	103 	05 	0.5 	0.5 	,,a 	1 

(a) 	 (b ) 
Fig,. 13 Dependence of the state probability s3  of MICSA, k =  in = 2, 

and 0 = 2, upon the error probabilities of the CUI(1). 

(a) Graphic representation. (b) Matrix representation. 

3.2 Structure of MICSA, k = 2, m = 1, Outputs (0) = 2, Ci..7(2) : 

Fig. 14 is composed 

2-stage MISR are co 

and second stages of 

Fig. 16. 

of 2-stages (k), NPP-MISR, the CUT(2) has one input and two outputs. The last outputs of the 

nnecting to the input of the CUT (2), while the outputs of the CUT(2) are fedback to the first 

MISR through XOR circuits. Fig. IS represents the MSD for Fig. 14, and its TPM is shown in 

)1 ,5  t P52 

 

Y 

 

     

     

     

     

     

        

        

        

 

JO/ 

        

          

 

Fig. 14 Structure for MICSA, with k = 2, 

in = 1, 0 = 2, CUT('_). 
Fig. 15 MSD for MICSA, with k =2, 

m = 1. 0 = Z, CUT(2). 
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Fig. 16 TPM for MICSA, with k = 2, m 1, 0 = 2, CUT(2). 
From Fig. 16 the local balance equations are calculated as : 

(1- Y)s, = Ws, +Ws, + Ys, 
(1- X)s, = Zso  +Zs, + Xs, 

(18) 
(1 - Y)s, = Wso  +Ys, +Ws, 
s +s1 +s2 + s3 =1 

The equations (18) are solved using [16]; giving : 
-(ZW2  +XV/ +W2  -XW2  + Y 	-Y2  +XY1 _Y2)  

s, - 	 (-1+Y-W) 
s, =YZ - XY + X + ZW - XV/ 

(-W + XW - XY + + ZW2  - Y2Z - 	) 
S2 - 	 (-1+Y -W) 
s,=-Y-YZ+XY+1-X -W -ZW+XW 

Substituting the values of X, Y, Z, and W in equation ( 19 ) by the corresponding values of p, q as described in 
Table ( 1 ), and simplifying the results, we get : 

(-1  + p)(-1  - 2pq2  4p2q +4p2q2  + pq + q +132 ) 
- 	

(20) so   (2 - 2q + 2pq p) 

s1  = -pq + p -132  + 2p2q 	 (21) 

= 

	

-(-1  + p)(1 - 2pce p - 4p2q + 4p2q2  +3pq - q + p2  ) 	(22) , s  (2 - 2q + 2pq - p) 

33  = pq+ - 2132 44 
Equations ( 20 - 23 ) are plotted in Figures ( 17 - 20) each figure is followed by a matrix giving the values of the 
state probability against the error probability p and q. 

These figures show that the state probability is depending on the error probability of the CUT(2), the threshold 
value ( 1/4 ) which is the SS-AEP of MISR in the open loop is greater or less than the probability of the 
corresponding CSA with MISR in closed loop system, but they are equal for the equally likely error model when 

= 0.5, which is the same as the one ven by [6]. 

( a ) 	 ( b ) 
Fig. 17 Dependence of the state probability s, of MICSA, with NPP, 
k =2, m = 1, and 0 = 2 upon the error probabilities of the CUT(2). 

(a) Graphic representation. (b) Matrix representation.. 

(19) 

(23) 

M #§0  ''*:Uri: 
0.5 0.5 

1.4tal&W.1U.S.g 
0.5 0.5 0.5 0.5 0.5 0.5 0.5 

* 0.469 0.463 0.458 0.454 0.451 0.45 0.452 0.459 0.478 

0.427 0.419 0.412 0.406 0.402 0.4 0.402 0.411 0.433 

A.:0.375 0.367 0.361 0.355 0.351 0.35 0.352 0.359 0.376 

A 0.315 0.31 0.306 0.303 0.301 0.3 0.301 0.305 0.313 

.5*,  0.25 0.25 0.25 0.25 0.25 0.25 Gm 025 us 
1; 0.183 0.188 0.193 0.197 0.199 0.2 0.199 0.195 0.189 

%. 0.118 0.128 0.137 0.144 0.148 0.15 0.148 0.142 0.132 

0.06 0.074 0.085 0.093 0.098 0.1 0.098 0.092 0.08 

0.017 0.029 0.038 0.044 0.049 0.05 0.049 0.044 0.036 

t8K 0 0 0 0 0 0 0 0 0 

S 



0..4.QameagA14,‘,= 
.0.01 0.018 0.026 0.034 0.042 0.05 0.058 0.066 0.074 

e,  0.04 0.052 0.064 0.076 0.088 0.1 0.112 0.124 0.136 

:;:' 0.09 0.102 0.114 0.126 0.138 0.15 0.162 0.174 0.186 

0.16 0.168 0.176 0.184 0.192 0.2 0.208 0.216 0.224 

" 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 
0.36 0.348 0.336 0.324 0.312 0.3 0.288 0.276 0.264 

0.49 0.462 0.434 0.406 0.378 0.35 0.322 0.294 0.266 

0.64 0.592 0.544 0.496 0.448 0.4 0.352 0.304 0.256 

1 
:;.:. 

0.81 
1 

0.738 
0.9 

0.666 0.594 0.522 0.45 0.378 0.306 0.234 
0.8 0.7 0.6 0.5 0.4 0.3 0.2 

S 
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ro 0 0 0 0 0 0 0 0 

.'t3 0.09 0.082 0.074 0.066 0.058 0.05 0.042 0.034 0.026 
0.16 0.148 0.136 0.124 0.112 0.1 0.088 0.076 0.064 
0.21 0.198 0.186 0.174 0.162 0.15 0.138 0.126 0.114 

L: 0.24 0.232 0.224 0.216 0.208 0.2 0.192 0.184 0.176 
'' 	0.25 0.25 0.25 0.25 0.25 0.25 0.23 0.25 0.25 
t 	0.24 0.252 0.276 0.288 0.3 0.312 0.324 0.336 

0.21 0.238 0.266 0.294 0.322 0.35 0.378 0.406 0.434 
0.16 0.208 0.256 0.304 0.352 0.4 0.448 0.496 0.544 
0.09 0.162 0.234 0.306 0.378 0.45 0.322 0.594 0.666 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

 

S 

S 

  

( a ) 	 ( b ) 
Fig. 18 Dependence of the state probability s1  of MICSA, k = 2, in = 1, 

and 0 = 2 upon the error probabilities of the CUT (2). 
(a) Graphic representation. 	(b) Matrix representation. 

S 

S 

"..i:WN IP'T>;,.,'" sM< 	. '"'  ,-;,, ''.:-'3‘ 	' 
r 0.5 0.5 	0.5 0.5 0.5 0.5 	0.5 0.5 0.5 

0.431 0.437 0.442 0.446 0.449 0.45 0.448 0.441 0.422 
0.373 0.381 0.388 0.394 0.398 0.4 0.398 0.389 0.367 
0.325 0.333 0.339 0.345 0.349 0.35 0.348 0.341 0.324 

424. 0.285 0.29 0.294 0.297 0.299 0.3 0.299 0.295 0.287 
r... 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 
".•: 0.217 0.212 0.207 0.203 0.201 0.2 0.201 0.205 0.211 

0.182 0.172 0.163 0.156 - - 

 
0.152 0.15 0.152 0.158 0.168 

0.14 0.126 0.115 0.107 0.102 0.1 0.102 0.108 0.12 
'2°'' 0.083 0.071 0.062 0.056 0.051 0.05 0.051 0.056 0.064 

0 0 0 0 0 0 0 0 0 

( a ) 	 ( b ) 
Fig. 19 Dependence of the state probability S2  of MICSA, k = 2, in = 1, 

and 0 = 2 upon the error probabilities of the CUT(2). 
(a) Graphic representation. 	(b) Matrix representation. 

S 

(a ) 
	 ( b ) 

Fig. 20 Dependence of the state probability S3  of MICSA, 
k = 2, in = 1, and 0 = 2 upon the error probabilities of the CUT(2). 

(a) Graphic representation. 	(b) Matrix representation. 
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Fig. 21 IMICSA, PP, k = 4, in = 3, 0 = 2, CUT( 3 ). 
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4. The Improved Multiple Inputs Compact Signature Analysis ( IMICSA) : 

In the following sections different cases studies of the Improved Multiple Inputs Compact Signature Analysis ( 
IMICSA ), in which the k th  stage of the MISR ( PP and NPP ) is not connected to any of the CUT's inputs are 
introduce. This group of cases is used to validate the derived theorem. 

4.1 Structure of IMICSA, PP, k = 4, m = 3, CUT(3) : 
Fig. 21 is composed of 4-stages PP-LFSR, three outputs - not any of them is the last stage output - are connected to 
the CUT(3) inputs, and the outputs of the CUT(3) is fedback to the inputs of the of MISR through XOR circuits.. 
Fig. 22 represents the MSD for Fig. 21, and its TPM is shown in Fig. 23. 

Fig. 22 MSD for IMICSA , PP, k = 4, m = 3, 0 = 2, CUT (3). 
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Fig. 23 TPM for IMICSA with k > m (k = 4, m = 3), 0 = 2, CUT (3). 

Matrix M3 is a double stochastic matrix, which means that : 

So  — SI  S2 	 S,,  16 
This shows that the threshold for 1/16 which is the SS-AEP of the open loop is equal to the probability of existing of 

all statesof CSA with MISR when last stage is not connected to any of the CUT's inputs. 

4.2 Structure of IMICSA, NPP, k = 4, m = 3, CUT(4) : 

Fig. 24 is composed of 4-stages NPP-MISR, three outputs - not any of them is the last stage output - are 
connected to the CUT(4) inputs, and the outputs of the CUT (4) is fedback to the inputs of the of MISR through 
XOR circuits. Fig. 25 represents the MSD for Fig. 24, and its TPM is shown in Fig. 26. 

FF2 FF4 FF3 

CUT ( 4 ) 

Fig. 24 IMICSA, NPP, k = 4, as = 2, 0 = 2, 0 = 2, CUT(4). 
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x 

Fig. 25 MSD for IMICSA, NPP, k = 4, m = 3, 0 = 2, CUT(4). 
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s,,0 0 0 000 00 Z W X Y 0 0 0 0 
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s,,0 0 0 0 0 0 00 0 0 0 OYXWZ 

Fig. 26 TPM for IMICSA with k > m ( k = 4, m = 3 ), 0 = 2, CUT ( 4 ). 

Matrix M4 is a double stochastic matrix, which means that : 

So  —Si  —S2  — 	
15 
 16 

This shows that the threshold for 1/16 which is the SS-AEP of the open loop is equal to the probability of existing of 
all states of CSA with MISR when last stage is not connected to any of the CUT's inputs. 

5. Conclusions : 
1- The SS-AEP of MICSA for k = m, and for k > m with the k th  stage connected to one of the CUT inputs 

is not necessarily the conventional 2.-k 
limit k being the number of stages of the signature analyzer ). Instead, it 

is shown that any value from 0 to 1 is attainable as a final value of SS-AEP, depending on : the structure of the 
CUT, and the construction of the MICSA. These factors, on which SS-AEP of MICSA depends, make its use 

as a digital circuit test system impractical . 
2- The hardware condition for SS-AEP of MICSA, to be equal /21  is deduced. This has led to what we 

called the Improved Multiple Input Compact Signature Analysis ( IIVIICSA ). The results are mathematically 
proved and formulated to the theorem which dictates that : " For the CSA which is constructed from MISR, if 

5, 	5, 	5, 	s, 	5, 	3, 	3, 	s, 	5, 	5, 

s, X Y Z W 0 0 0 0 0 0 000 
s,W Z Y X 0 0 00 0 0 0 00 0 
5,0 0 0 OYXWZ 00 0 0 0 

5,0 0 0 0 Z W X Y 0 0 000 
s,  0 0 0 000 0 0 X Y Z W 0 0 

0 00 0 0 0W1 Y X 0 0 s, 0 0 

00 	0 
00 

00 	0 

00 	0 
00 
0 	0 
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its kth  stage is not connected to any of the CUT's inputs, then, The SS-AEP is equal to the reciprocal of 2k  , 
where k is the number of the stages of the signature analyzer, regardless of the construction of CUT, or the initial 
state of signature analyzer. " 
For the IMICSA it is found that : 

A) The steady state AEP is a function of k , and the more stages you use in MISR the better is the steady 
state AEP, ( SS-AEP equal 2--k 

B) SS-AEP is shown to be independent of : 
- The type of the polynomial used in realizing the MISR ( primitive or non primitive ). 
- The particular way by which the MISR is implemented. 
- The location of points for connecting the CUT with MICSA circuit. 
- The structure of the CUT and The initial state of the MISR. 

C) In addition, the IMICSA still leads to a reduction of hardware by 50%. 
3-These results introduce 

the Improved Multiple Input Compact Signature Analysis ( IMICSA ) system, which is a new discipline in digital 
system testing, it provides functional testing of digital systems, where all of the interactions of timing, loading, 
temperature, and noise come to play. The use of feedback in CSA closed loop system makes the system response 
insensitive to external disturbances. It overcomes the problem of synchronization between test pattern 
generator and test response compression technique. The MISR have an advantage over the single input signature 
analyzer that it can test several test points or several units simultaneously. 
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