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ABSTRACT 

A problem of continuing interest in control is the specification 

of sampling period that results in a system response with 

specified time domain characterestics such as minimum phase 

behaviour, overshoot and settling time. This paper presents a 

closed form solution for the numerator polynomial of sampled data 

systems. The coefficients of the numerator polynomial are given in 

terms of the residues and poles of the continuous time system, and 

the sampling period. A'so, numerical algorithm is proposed for 

determining reasonable sampling period for minimum phase 

behaviour. 
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1. INTRODUCTION 

Poles and zeros are fundamental properties of linear time 

invariant systems. The poles reflect the internal couplings in the 

system and thus its autonomous behavior. The zeros reflect the way 

the internal variables are coupled to the inputs and outputs. It 

is well known that unstable zeros limit the performance that can 

be achieved when controlling a system. Feedforward compensation 

would require an unstable inverse model of the system. Many 

techniques are based on the cancellation of process zeros. Such 

methods will not work when the process has unstable zeros. Several 

of the adaptive algorithms that are currently investigated belong 

to this category. When a continuous time system is sampled the 

poles si 
are transformed as 

zi = e 
si
T 	

C13 

where T is the sampling period. The transformation C1) maps the 
left half plane onto the unit circle. This means that the 

preserved. There is unfortunately no simple 

which shows how the zeros of a continuous time 

sformed by sampling. The type of hold circuit used 

infl uences the position of the zeros. It can be 

that the zeros of an Nth-order strictly proper 

placed arbitrarily, if the control signal has a 

over each Nth part of the sampling interval. Most 

systems, however, use a zero-order hold, and we 

stability is 

transformation 

system are tran 

critically 

actually shown 

system can be 

constant value 

digital control 

limit ourselves to that. It is then not true that a continuous 

time system with zeros in the left half plane will transform to a 

sampled system with zeros inside the unit circle or vice versa. 

Design methods for sampled systems which are based on cancellation 

of process zeros can thus work well for certain sampling periods 

and fail for others. 

Many research efforts have been spent in the area of choice of 

sampling period for minimum phase behaviour. It was shown that a 
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continuous time system with pole excess larger than 2 will always 

give a pulse transfer function with zeros outside the unit circle 

provided that the sampling period is sufficiently short. Also, 

there are continuous time transfer functions which have unstable 

zeros which give sampled systems with stable zeros Ell A 

relationship between real poles and real zeros of SISO sampled 

data systems, which is independent of the sampling period is given 

in [2]. The relation is stated in terms of a parity properity 

involving the number of real zeros between any two real poles. 

This properity allows to investigate conditions for the 

preservation of stable or unstable zeros under sampling. 

The purpose of this paper is to introduce a numerical approach for 

choice of sampling period to achieve minimum phase system. The 

paper is organized as follows :section 2 derives the pulse 

transfer function of linear continuous time system. A closed form 

expression for the numerator polynomial of the pulse transfer 

function is given in section 3. In section 4, the algorithm of 

choice of sampling period is introduced. Numerical examples are 

found in section 5. Final conclusions are presented in section 6. 

2. PULSE TRANSFER FUNCTION 

Consider a discrete time system composed of a zero-order hold, a 

plant, and a sampler in series as shown in Fig.C1). 

ZOH GC s) 
T 

Fig. C1) Discrete Time System. 

GCs) denotes the transfer function of a linear continuous time 

controlled plant. This configuration is used in almost all digital 

control systems. The controlled plant is an Nth-order strictly 

proper linear continuous time whose transfer function is given by 

GCs) = EiCs)/ACs) 	 C 23 



0(z) = C1 - z
-1) 

1 
2nj 

a+jm 
X 
a -jm 

e5T  GCs) ds 
z - e 

sT s 
CS) 
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where ACs) and SCs) are coprime polynomials. and ACs) is an 

Nth-degree monic polynomial. For simplicity, we suppose that all 

the poles of GCs) are simple, but the discussion is valied even if 

GCs) has multiple poles. Using partial fraction expansion GCs) can 

be written as 

	

Nr 	Nc 
GCs) = Z 0r,1

Cs) + E Gc,1Cs) 

	

1=1 	1=1 
C 3) 

where Nr is the number of distincit real poles, Nc is the number 

of complex pole pairs, and 

ai. 

and 

The 

bi  

Cs + 

b1, ci, di, pi
. 

C 	Ccj, ci, di)  

pulse transfer  

C 4a) 

C4b) 
c1)2+ d2 

and q1  are real numbers that satisfy aim aj  

d
J 
 ), and d

i 	
o. 

function of the sampled data system with 

0r.1
Cs) - 

Gc,1Cs) - 

s + ai  
P s + q pi 	i 

sampling period T for GCs) is represented by 

where a is a real number such that all the poles 
GC s) 
s 

have real 

parts less than a. G(z) can be expressed as 

OCz) = OCzDzaCz3 
	 C6) 

where aCz) is an Nth-degree monic polynomial and OCz) is a 

polynomial. We now calculate the pulse transfer function for GC s) 

given by (3) for two cases : 

Ca) A simple real pole case 

where 

GCs) = 	
b 

r 
 s + a 

a = e
-aT 

0 = b C1 - a) /a 

* 	Gr
Cz) - 	 z - a 

C 7) 

C8a) 

Cab) 
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Cb) A complex pole pair case 

P s 
GCs7 -  	GCz7 - 

Cs + c72  +  d2 	 c 	2 	a Cz - 07 + w 

where 0. w. C. and -0 are determined by 

-cT 
e 

	cosCdT) 

w = e-cT sinCdTD 

C 	
-qdC0 - 17 + 	 c2  + d 	+ qc ] w 

dCc2  + d27 

-qdC0 - e-2cT - 	 c2  + d2)  + qc w 
= 

dCc2  + d 

Cl0a7 

ClObD 

ClOc7 

ClOd7 

Summarizing the above results, the transfer function of a sampled 

data system for GCs) given by C37 can be expressed as 

	

Nr 	Nc 
GCz) = E Gr,1Cz7  + E c,iCz7 	 C117 
• 	1=1 	1=1 

Oi  

	

where r,1Cz7 - 	 z ot 	 C12aD i   

Ciz + 0i  

	

c,1Cz) - 	2 	 C12b7 
Cz - 0i72 + wi  

Cai. p17 and C0i. wi. (i, 0i) are defined by CS7 and C107. 

3. NUMERATOR POLYNOMIAL 

The numerator polynomial OCzD of the pulse transfer function GCz) 

can be written as 

N ocz7 = E yi zN-i 

i=1 

N-1 = 	z 	+ 72 
zN-2  + 	+ 	+ 1 	 ?"Nir- 	rN 

C137 

z + 
C 

where ri, y2. 	and r1,4  are the coefficients of numerator 
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polynomial given by 

S * Ov  = ry  C14) 

where S is NxN matrix which is function of ai, 01, and w1. 	and 

Ov  are given by 

T 
ry = [ hl r2 
	rN 

T 
0, = 	01 02 
	

riNr Cl (a 	CNc 711 Y72 
	

Nc 

Examples of several transfer functions and their OCz) are given 

below, then the results are generalized. Low order systems are 

used for presentation, because high order requires large space.. 

Example 1 : Case of real poles 

4 
GCs) - E 

1 =1 

bi 	
4 	Oi 

4 	GC z) -E 
+ a1 	 i=1 

z 	 ai  

(3v = ( (31 02  03  04
T 

T 
ry = [ rl r2 Y3 14 

1 

-ca2+a3+°14)  
Ca2a3+a3a4+ 

a2a4D  

a2a3a4  

1 

-Ca1+a3
+a4

D 

Cala3+ala4+  
a3a4D  

-a1  a3a4  

1 

-ca1+a2"14)  
Cala2+ala4+ 

a2a4D  

ala2a4  

1 

-Cal+a2+a3) 

Cala2+ala3+ 

a2a3D  

-ala2a3  

S 

It is noticed that the elements of the ith column of S matrix, are 

the coefficients of a polynomial of order Nr-1 whose roots are 01), 
k = 1, 	, Nr, and k * i. 



of Complex poles 

2 pis + qi 4 GCzD 

2 

2 
- E 
i=1 
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Example 2 : Case 

GCs) = 

= C 	Cl 

rv = C 

Cz - 0i)2 + w2 i=1 Cs + c D
a + di 

Ca 	n1 	n2 7T 

r1 	r2 	'3 	r4 ]
T 

S = 

1 
-2 4) 2 a 

0a + 

O 
wa 

1 
-26151 a 

(Pi. 	+ 
	2  

W1 
o 

o 
1 

-2 0 
2 22 a 

02  + wa 

-2 
2 1 

o 
1 

4)1 2 
+w11  

It is noticed that the elements of the ith column of S matrix, i = 

1, 	, Nc, are the coefficents of a polynomial of order 2CNc-1), 

whose roots are -0k  ± J wk, k = 1, ... 	Nc, k 	i. The last 

element of the column is zero. The next Nc columns are the same, 

except that the first element is zero. 

Example 3 : Case of real and complex pole pair 

P s q 
GCs) - 	 s + a 	Cs + c)2  + d2 

GCz) - 	0 
a Cz - OD2  + w

2 

	

1 	0 

S = 	-20 	-a 	1 
2 

	

02 +IP 	0 	-a 
- 

Ov  = 0 C
T 

T 
rv = C r1 r2 r3 

It is noticed that the first Nr columns of S matrix are similar to 

the case of real poles. The Next 2*Nc columns are similar to the 

case of complex poles. 

z + 



SIXTH ASAT CONFERENCE 

2 - 4 MAY 1995, CAIRO I

GC-4 	54 

4. REASONABLE SAMPLING PERIOD 

Since the numerator polynomial (3Cz) can be expressed as function 

of sampling peiod as shown in the previous section. One can choose 

sampling time to gurantee a minimum phase system. The following 

algorithm describes the details of finding reasonable sampling 

period 

Ca) Given the continuous time transfer function GCs), use partial 

fraction expansion to rewrite it in the form given in C3), i.e. 

determine ai , bi  and/or pi, qi , ci, di. 

CbD For T = 0 to Tmax C a predefined maximum value) step AT C a 

predefined incremental value). 

CcD Calculate ai , (3i  and/or (i. ni. 0i, wi  using equations C8.10). 

Cd) Find coefficents of numerator polynomial, equation C143 

Ce) Solve for the roots of the numerator polynomial Otz). 

Cf) Let T = T + AT until T > Tmax, and goto step Cc). 

5. NUMERICAL EXAMPLES 

The following examples are applications of the algorithm given in 

the previous section. 

Example 4 : The transfer function 

GCs) - 6C1 - s) 
Cs + 2DCs + 33 

has an unstable zero at s = 1, the pulse transfer function, has a 

zero at -1 for T = 1.2485 sec., and for larger T, the zero is 

always in the unit circle. 

Example 5 : The transfer function 

GCs) - 9 
s2  + 3s + 9 

The zero of the pulse transfer function is always in the unit 

circle for T > 0.0012 sec. 
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Example 6 : The transfer function 

GCs) - sa + 2 s + 0.75 

s5  + 27.5 s4 + 261.5 s3 + 1039 s2 + 1668 s + 864 

For minimum phase behaviour T must be greater than 0.2209 sec. 

6. CONCLUSIONS 

Closed form solution for the coefficients of the numerator 

polynomial of sampled systems is given as function of sampling 

period. Numerical algorithm for evaluating reasonable sampling 

period for minimum phase behaviour have been proposed. The basic 

theme behind this new algorithm is to find the intersection points 

of the numerator polynomial and the unit circle on the z-plane. 

This algorithm can be used to study the effects of sampling period 

on the transient behaviour of sampled systems. Several examples 

are illustrated. 
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