Genetic Polymorphism between Natural Populations of the Nile Tilapia (*Oreochromis niloticus* L.) Based on Randomly Amplified Polymorphie DNA Markers

Asmaa A. Khaled¹

ABSTRACT

Nine natural population of Nile Tilapia (Oreochromis niloticus L.,) were collected from different governorates in Egypt to calculate the genetic polymorphism with/within the different populations. Collected fish samples were subjected to DNA extraction using arbitrary short (10 nucleotides) primers randomly amplified polymorphie DNA -PCR. In a total of 726 amplification fragments; 430 were polymorphic and 296 were monomorphic with general genetic polymorphism percentage 59.23%. The recorded results indicated that there were high significant variations regarding the population from different location in Egypt. The genetic polymorphism in the different populations were (56.84%) in Marsa Matroh governorate: Siwa oasis (54.43%) and Al-Negelia (59.25%); (60.08%) in Alexandria governorate: Abis (59.34%), Alameryia (60.82%); (59.26%) in El-Beheria governorate: Nobariva (59.21%), Edko (58.02%), Rosetta (60.56%); Kafer Elshikh governorate: Desuq (59.64%) and 59.74% in Aswan governorate. The highest amplification fragments were recorded to OPN-10 (98), OPQ-14 (90) and OPM-5 (86) primers, in respect.

Key words: Genetic polymorphism, populations, Nile tilapia, RAPD.

INTRODUCTION

Nile tilapia (Oreochromis niloticus L.,) is the common name for 70 species of perch-like fishes, which belong to the Cichlidae family and are native to the freshwaters of tropical Africa. They include the breeding genera of Sarotherodon mouth and Oreochromis as well as substrate spawning tilapia (Trewavas, 1983). Nile tilapia has been the fish species with the greatest production expansion in aquaculture in recent years. Worldwide production of Nile tilapia has increased roughly to 1.1 million metric tons, and is thereby only fractionally lower than the production of e.g. salmon was 1.2 million metric tons (FAO, 2001). Some tilapia species are cultured as important fish food in a number of tropical and subtropical countries. At the same time the genetic resources of tilapia have not always been managed well and some species have even become endangered (Agnese et al., 1999). Knowledge of the population structure of Nile tilapia is economically important for several issues pertaining the future development of aquaculture strains and management of fishery. Identification of subpopulation (stock) often biologically meaningful geographic boundaries for evaluating a number of criteria, including genetic diversity. The latter is important because subpopulations (stocks) may possess novel genetic, physiological, behavioral and/or other characters that promote noticeable variations in lifehistory charaters such as growth rates, fecundity, abundance and disease resistance. Various methods of genetic markers for stock identification and assessment in Nile tilapia have historically been used, including: allozymes (Avtalion et al., 1976; McAndrew and Majumdar, 1983; Basiao and Taniguchi, 1984; Macaranas et al., 1986; Macaranas, et al., 1995; Pouyaud and Agnese, 1995; Rognon, et al., 1996); mitochondrial DNA restriction fragment length polymorphisms (Agnese et al., 1997; Rognon and Guyomard, 1997) and random amplified polymorphic DNA (RAPD) (Bardakci and Skibinski 1994; Naish et al., 1995; Dinesh, et al., 1996; Hassanien et al., 2004).

Genetic markers represent genetic variation between individual organisms or species. Generally, they do not demonstrate the target genes themselves but act as 'signs'or 'flags'. Genetic markers that are located in close proximity to genes (i.e. tightly linked) may be referred to as gene 'tags'. Such markers themselves do not affect the phenotype of the trait of interest because they are located only near or 'linked' to genes controlling the trait. All genetic markers occupy specific genomic positions within chromosomes (like genes) called 'loci'[singular 'locus'] (Hammer et al. 2000). Also, DNA markers, reveal sites of variation at the DNA level. These markers have the advantage of being numerous in the nature and not affected by the environment as in the case of morphological markers. The expression of most genes is quantitative in segregating populations and is confounded by the environment (Marshall et al. 2001). There are three major types of genetic markers: (1) morphological markers which themselves are phenotypic traits or characters, (2) biochemical markers, which include allelic variants of enzymes called isozymes, and (3) DNA (or molecular) markers, which reveal sites of variation in DNA (Jones et al., 1997)

Animal and Fish Production Department, Faculty of Agriculture Saba Basha, Alexandria University (Dr.asmaa_khaled@alexu.edu.eg) Received December 12, 2016, Accepted December 26, 2016

MATERIALS AND METHODS

The present experiment was carried out at the Faculty of Agriculture, Saba Basha, Alexandria University, Agriculture Biotechnology laboratory, Alexandria, Egypt, during the year of 2016 to detect genetic polymorphism based on ten RAPD-PCR markers of natural population of Nile tilapia (*Oreochromis niloticus* L.) which collected from different locations in Egypt.

Sample collection for DNA analysis

Nine Nile tilapia (*O. niloticus*) populations were collected from different governorates in Egypt as Marsa Matroh at Siwa oasis and Al-Negelia; Alexandria at Abis and Alameryia; El-Beheria at Nobariya, Edko, Rosetta; Kafer Elshikh at Desuq; and Aswan. Five fish samples were collected naturally and kept in ice box until DNA extraction and analysis.

DNA extraction and polymerase chain reaction (PCR) amplification

RAPD has been developed, in which DNA was amplified by the polymerase chain reaction (PCR) using arbitrary short (10 nucleotides) primers (Williams et al., 1990). A set of 10 random10-mer primers selected from the Operon Kit [Operon Technologies Inc., Alabameda, CA] (Table 1) was used in the identification of genetic polymorphism among the different locations from Egypt. Amplification reaction was performed in total volume of 25µl containing 25 ng of genomic DNA, 1X MgCl2 free Taq DNA-polymerase buffer, 2 mM MgCl₂, 250 mM each dNTP,10 pmol of a single10-base primer and 0.25U of Tag DNA-polymerase. PCR was performed on a 11000-thermocycler programmed for 94 (1cycle) 5 minutes, then 40 cycles of 40s at 94 (1cycle),1min at 35 (1cycle) and 2 min 72 (1cycle). PCR products were analysed using gel electrophoresis with 2.5% agarose gel and detected by staining with ethidium bromide. RAPD patterns of individuals were compared within and between different populations. Fragments were scored as (1) if present or (0) if absent. Clustering methods and similarity coefficients were tested using the procedures SIMQUAL, SAHN, and TREE from the program NTSYSpc version 2.10 (Applied Biostatistics, Setauket, New York, USA). The clustering methods UPGMA, WPGMA, Complete-link, and Single-link were applied in all possible combinations with the similarity coefficients Dice, Jaccard and simple matching. Rohlf (2000) describes clustering methods and similarity coefficients.

RESULTS AND DISCUSSION

Data in Table (2) demonstrate that the number of amplicons ranged from 55 to 98 fragments for the primer OPD-05 and OPN-10, respectively. In a total of 726; 430 bands were polymorphic and 296

monomorphic bands. Also, genetic polymorphism ranged from 19.04 to 70.00 with OPB-07 and OPQ-14, each inturn. General genetic polymorphism was 59.23% between the tested natural population of Nile tilapia. Data in Table (3) showed clearly the differential between the test tilapia populations. For population from Marsa Matroh governorate which includes Siwa oasis (54.43%) and Al-Negelia (59.25%), the total amplifications fragments ranged from 79 to 81 and the polymorphic bands was 43 to 48 bands with no significant observed variations. Also, the second governorate, Alexandria, expressed almost the same amplification fragments, 91 and 97 for Abis farm (59.34%) and Alameryia city (60.82%). For El-Beheria governorate, Nobariya city recorded 76 band with 59.21%; Edko city (81 bands) with 58.02% and 71 bands for Rosetta city by 60.56% genetic polymorphism. Finally, for Kafer Elshikh Governorate, 73 band detected for Dosoq city by 59.64% and 77 amplifications fragments with genetic polymorphism 59.74% in Aswan governorate. Cluster analysis in Figure (1) divided the nine-natural populations of Nile tilapia in to two main groups with 89% genetic similarity. The first group includes Abis and Alameryia city with 96% while the second group includes two sub group; Siwa and Al-Negelia (98%), in one group, Rashied, Edko and Dosoq (97%) and finally Nobaryia and Aswan in the last one (99%).

In the same contrast Hassenien et al. (2004) studied the genetic diversity of the Nile tilapa collected from the river nile and delta lakes in Egypt, by the analysis of randomly amplified polymorphic DNA (RAPD). Their results showed that of 25 primers examined, 21 primers produced 230 RAPD bands and the percentage of polymorphic bands in Manzalla lake was (29.4%) and Burullus was (24%) populations was low compared with Assuit (30.54%), Cairo (33.5%) and Qena (44.84%) populations. The highest percentage of polymorphic bands was observed in the Qena population, suggesting a greater potential for application in breeding programs. RAPD analysis was applied to three species of the tilapia genus Oreochromis and four subspecies of O. niloticus by Bardakci and Skibinski (1994). Thirteen random10-mer primers were used to assay polymorphisms within and between populations. Different RAPD fragment patterns were observed for different species, although not always for different subspecies. Evidence was presented that RAPD markers may be useful for systematic investigations at the level of species and subspecies. Dinesh et al. (1996) used RAPD fingerprinting for estimating genetic variation and species differentiation in three species of tilapia. A total of 13 RAPD markers differentiating the three species of tilapia were detected.

primer number	primer Code	Sequence				
1	OPN-04	5'- GACCGACCCA -3'				
2	OPD-05	5`- TGAGCGGACA -3`				
3	OPC-05	5'-GATGACCGCC -3'				
4	OPM-05	5`- GGGAACGTGT -3`				
5	OPB-07	5`-GAAACGGGTG -3`				
6	OPN-10	5`-ACAACTGGGG -3`				
7	OPG-12	5`-CAGCTCACGA -3`				
8	OPQ-12	5'- AGTAGGGCAC -3'				
9	OPN-13	5'-AGCGTCACTC - 3'				
10	OPQ-14	5'-GGACGCTTCA -3				

 Table 1. Primers name and their oligonucleotide sequences used in the current study

Table 2. Numbers of both amplicons and the number	of polymorphic bands produced by
each RAPD primer for ten populations of Nile tilapia	

Primers	Number of amplicons	Polymorphic amplicons	Monomorphic amplicons	Polymorphism %		
OPN-04	64	33	31	51.56		
OPD-05	55	37	18	76.27		
OPC-05	76	40	36	52.63		
OPM-5	86	54	32	46.44		
OPB-07	56	34	22	19.04		
OPN-10	98	56	42	57.14		
OPG-12	77	44	33	57.14		
OPQ-12	65	35	30	53.84		
OPN-13	59	34	25	57.62		
OPQ-14	90	63	27	70.00		
Total	726	430	296	59.23		

Table 3. Total amplifications, number of polymorphic bands generated per ten primers within nine populations of Nile tilapia

Populations							_			
- Primers	Siwa	Al-	Abis	Alameryia	Nobariya	Edko	Rosatta	Desuq	Aswan	Total
		Negelia								
Number of Polymorphic Fragments										
OPN-04	3/7	3/7	6/9	6/9	3/7	3/7	3/7	3/6	3/5	33
OPD-05	2/5	3/5	6/7	6/9	5/7	4/6	3/6	4/5	4/5	37
OPC-05	5/9	5/10	5/9	6/11	4/6	5/9	3/5	4/9	3/8	40
OPM-5	5/11	7/10	7/12	7/11	5/8	8/11	3/5	6/8	6/10	54
OPB-07	3/5	3/5	3/7	5/8	4/6	2/4	6/8	5/7	3/6	34
OPN-10	7/10	7/12	8/15	8/16	6/10	6/10	4/8	4/8	6/9	56
OPG-12	4/7	4/7	3/7	4/8	3/6	7/12	7/12	7/10	5/8	44
OPQ-12	4/8	4/7	6/10	6/10	5/11	4/8	3/5	1/3	2/3	35
OPN-13	2/4	1/4	2/5	3/5	5/7	3/6	5/7	6/10	7/11	34
OPQ-14	8/13	11/14	8/10	8/10	5/8	5/8	6/8	5/7	7/12	63
Total	43/79	48/81	54/91	59/97	45/76	47/81	43/71	45/73	46/77	726
Polym. %	54.43	59.25	59.34	60.82	59.21	58.02	60.56	61.64	59.74	59.22

Figure 1. Cluster analysis and genetic similarity of nine natural populations of Nile tilapia in Egypt

REFERENCES

- Agnese J., Adepo Gourene B., Abban E.K. & Fermon Y. 1997. Genetic differentiation among natural populations of the Nile tilapia *Oreochromis niloticus (Teleostei Cichlidae*). Heredity79,88-96
- Agnese J., Adepo Gourene B., Owino J., Pouyaud L. & Aman R. 1999 Genetic characterization of Apure relict population of Oreochromis esculents, an endangered tilapia. Journal of fish biology 54,1119-1123.
- Avtalion R.R., Duczyminer M., Wodjani A. & Pruginin Y. 1976. Determination of allogeneic and xenogeneic markers in the genus of Tilapia: II. Identification of *T. aurea*, *T. vulcani*, and *T. nilotica* by electrophoretic analysis of their serum proteins. Aquaculture7,255^265
- Bardakci F. & Skibinski D.O.F. 1994. Application of the RAPD technique in tilapia fish: species and subspecies identification. Heredity73,117-123.
- Basiao Z.U. and Taniguchi N. 1984. An investigation of enzyme and other protein polymorphisms in Japanese stocks of the tilapias (*Oreochromis niloticus* and *Tilapia zillii*). Aquaculture38, 335-345
- Dinesh K.R., Chan W.K., LimT .M. & Phang V.P. 1996. Genetic variation inferred from RAPD fingerprinting in three species of tilapia. Aquaculture International 4, 19-30.
- FAO .2001 Aquaculture production statistics. FAO fisheries Internet Database
- Hammer, K. 2000. Microsatellite markers as new tool for distinguishing diploid wheat species. Genet. Resour. Crop Evol., 47:497–505.

- Hassanien H.A., Elnady M., Obeida A. & Itriby H. 2004 Genetic diversity of Nile tilapia populations revealed by randomly amplified polymorphic DNA (RAPD). Aquaculture Research35,587^593.
- Jones, N., H. Ougham & H. Thomas, 1997. Markers and mapping: We are all geneticists now. New Phytol 137: 165–177.
- Macaranas J.M., Agustin L.Q., Ablan M.C.A., Pante M.J.R., Eknath A.E. & Pullin R.S.V. 1995 Genetic improvement of farmed tilapias: biochemical characterization of strain differences in Nile tilapia. Aquaculture International 3, 43-54.
- Macaranas J.M., Taniguchi N., Pante M.J.R., Capili J.B. & Pullin R.S.V. 1986 Electrophoretic evidence for extensive hybrid gene introgression into commercial *Oreochromis niloticus* L. stocks in the Philippines. Aquaculture Fish Management17,249-258.
- Marshall, D. Langridge, P. and Appels, R. 2001. Wheat breeding in the new century - Preface. Australian Journal of Agricultural Research 52, I-IV
- McAndrew B.J. & Majumdar K.C. 1983 Tilapia stock identification using electrophoretic markers. Aquaculture 30, 249-261.
- NaishK. A., Warren M., Bardakci F., Skibinski D.O., Carvalho G.R. & Mair G.C. 1995 Multilocus DNA fingerprinting and RAPD reveal similar genetic relationships between strains of *Oreochromis niloticus* (Pisces: Cichlidae). Molecular Ecology 4,271-274.
- Pouyaud L. and Agnese J.F. 1995 Phylogenetic relationships between 21 species of three tilapiine genera Tilapia, Sarotherodon and Oreochromis using allozyme data. JournalofFishBiology47,26-38

.

- Rognon X. & Guyomard R. 1997 Mitochondrial DNA differentiation among East and West African Nile tilapia populations. Journal of Fish Biology 50, 204-207.
- Rognon X., Andriamanga M., McAndrew B. and Guyomard R. 1996 Allozyme variation in natural and cultured populations in two tilapia species: *Oreochromis niloticus* and *Tilapia zillii*. Heredity76,640-650.
- Rohlf, F.J. 2000. On the use of shape spaces to compare morphometric method. Hystrix, Italian J. Mammology (n.s.),11(1): 8-24.
- Trewavas E 1983 Tilapiine Fishes of the Genera Sarotherodon, Oreochromis and Danakilia. British Natural History Museum, London.
- Williames, J.K., Kubelik, A., Livak, K.J., Rafalski, J. A. and Tingey, S.V. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18:6531-6535.

