

Effect of harvest age and seed rate on yield and quality of

some sugarcane varieties

Ahmed M.K. Ali; Ahmed F.I. Gadallah*¹ and Omeima A. Kh. Hussien Address:

Sugar Crops Research Institute, Agricultural Research Center, Giza, Egypt *Corresponding author: Ahmed, F.I. Gadallah, e-mail: <u>ahmedfathy1279@yahoo.com</u> Received: 14-8-2022; Accepted: 17-8-2022; Published: 00-00-2022 DOI, <u>10.21608/EJAR.2022.139393.1234</u>

ABSTRACT

A field experiments were conducted at Agric. Res. St. (latitude of 26.33° N and longitude of 31.41° E), Sohag Governorate, Egypt during 2020/2021 and 2021/2022 seasons to find out the optimal of seeds rates (1.0, 1.5 and 2.0 drills) and harvest ages (10, 11 and 12 months) for yield and quality of three sugarcane varieties "Saccharum officinarum L." (G.T. 54-9, G. 2003-47 and G. 2004-27). A split-split plot arrangement with three replications was used. The main-plots devoted for harvest ages, seed rates in sub plots, while, sugarcane varieties distributed in the sub-sub plots, in both seasons. Findings revealed that delaying the harvest age from 10 to 12 resulted in a significant increase in millable stalk height, diameter, number of millable canes/fed, cane and sugar yields/fed, along with brix, sucrose, and sugar recovery%, in both seasons. The results revealed that, planting sugarcane using 2.0 drills improved height, number of millable canes/fed, cane and sugar yields/fed. While, planting by using 1.0 drill improvised millable stalk diameter and quality characteristics in both seasons. Sugarcane variety G.2004-27 superiority in cane yield and millable stalk height and diameter compared to the variety G.T.54-9. While, G.2003-47 variety was superior in quality characteristics and sugar yield/fed. However, G.2004-27 variety attained greater number of millable canes/fed, in both seasons. Under conditions of this work, it is recommended to cultivate these sugarcane varieties by rates of 2.0 drills and harvest age to 12 months to achieve a high cane and sugar yields/fed. Key words: sugarcane, harvest age, seeds rate, varieties.

INTERACTIONS RODUCTION

Harvesting age is the major important factor affecting sugarcane yield and quality traits. Sugarcane is harvested in the subtropical regions under conditions of low temperature (early harvesting) and high temperature (late harvest). Harvesting of sugarcane at a proper time by adopting the right age is necessary to realize the maximum weight of the millable canes produced with least possible field losses under the given growing environment (Muchow, et al. 1998). (Jadhav, et al. 2000) noted major differences among harvesting ages in reducing sugars percentage. Other factors such as varieties, weather conditions, and soil type may have a more direct bearing on the real maturity of canes than the crop age, however, the percentage of quality of cane juice mainly depends on various factors such as the sugarcane variety, the maturity of the sugarcane in the case of plant cane, weather, and harvesting conditions (Liu and Bull, 2001).Cane and sugar yields are determined by the age of harvesting at which the cane matures (Verma, 2004). On the other hand, harvesting either under-aged or over-aged cane with the improper time of harvest leads to a loss in cane yield, sugar recovery, poor juice quality, and problems in milling (Khandagave and Patil, 2007). El-Geddawy- Dalia, et al. (2011) revealed that, delaying harvest from 11 and/or 12.5 months after planting attained the highest significant values for sugar yield and quality parameters. El-Geddawy et. al. (2012) found that harvest age up to 13 months give the highest values of millable stalk height, diameter, number of millable canes/fed and (cane and sugar yields/fed), as well as brix, sucrose, and sugar recovery %. Terauchi et al. (2012) cleared that, an earlier harvest itself shortens first growing period and reduced yield in the spring planting crop and gave low sugar content. Hagos et al. (2014) reported that the harvest age had a very significant influence on the percentage of brix, sucrose, and purity. Endris et al., (2016) observed that the maximum sugar yield value (ton/ha) was reported at 14 months of harvesting age. Abu-Ellail et al., (2020) studied three harvest dates at ages of 11,12 and 13 months, they found that harvest age up to 13 months recorded the highest values of cane and sugar yields.

Many researchers in Egypt and most countries of the world showed that cane yield increase with increasing seeding rate, probably due to the maximum utilization of growth factors as solar radiation, water and nutrients by an optimal number of cane plants, which will reflected in more photosynthesis and dry matter accumulation in cane stalks. In this respect, Ismail et al., (2008) indicated that growing sugarcane using 50400 buds/fed gave the highest number of millable canes, millable stalk height, brix, sucrose, sugar recovery, cane and sugar yields/fed compared to 25200 and/or 37800 buds/fed. Shalaby et al., (2011) showed that planting sugarcane with 50400 buds/fed recorded higher values of millable stalk height, sucrose, sugar recovery, number of millable canes/fed, cane and sugar yields/fed, while using 37800 buds/fed resulted in higher stalk diameter and brix. El-Geddawy-Dalia et al. (2015) reported that drilling two rows of sugarcane setts attained the highest values of millable stalk length, diameter, number of millable canes/fed, brix, sucrose, cane and sugar yields/fed. Bekheet and Abd El-Aziz-Rania, (2016) indicated that increasing seeds rate from 1.5 to 2.0 drills produced significant increases inmillable stalk height, diameter, number of millable canes, brix, sucrose, cane and sugar yields/fed. Makhlouf et al. (2016) found that planting sugarcane by 37800 buds/fed produced higher millable stalk diameter and stalk fresh weight, while planting it by 50400 buds/fed attained the highest brix, sugar recovery, number of millable canes/fed, cane and sugar yields/fed. Gadallah et al. (2020) concluded that there is significant improvements in brix%, sucrose% and sugar recovery% were recorded in case of growing using 1.0 drill, while using 1.5 drill resulted in the highest millable weight, however, planting by 2.0 drills (50400 buds/fed) recorded the best value from number of millable canes/fed, cane and sugar yields/fed.

In Egypt, the commercial cane variety GT.54-9 "Saccharum officinarum L." occupies most of sugarcane cultivated area. Recently, Sugar Crops Research Institute developed several promising varieties of sugarcane, as G.2003-47 and G.2004-27 in addition to G.2005-47. The newly bred varieties showed variable response to different agronomic practices, basically, time of maturity. Some varieties of sugarcane have relatively high concentrations of sucrose in the early season and are defined as early maturation, while others are known as late maturation (Calderon et al., 1996). Makhlouf et al. (2016) found that sugarcane variety GT.54-9 over passed the two promising varieties (G.2003-47 and G.2003-49) in length, diameter and fresh weight/stalks, while, the two promising varieties over passed in brix, purity, sugar recovery% and number of millable canes/fed, however, G.2003-47 variety gave the highest sugar yield/fed. Fahmy et al. (2017) showed that sugarcane variety GT.54-9 and G.2003-47 surpassed the other two varieties (Phil 8013 and C. 57-14) in number of millable canes/fed, cane and sugar yields/fed. El-Bakry, (2018) revealed that the promising sugarcane variety G.2003-47 showed a superiority in juice quality traits. Sugarcane variety G.2003-47 had a significant superiority in the number of millable canes/ha and quality traits (Galal et al., 2018). The promising sugarcane G.2004-27 variety surpassed the other ones in stalk length, stalk weight as well as cane and sugar yields/ha in the plant cane and 1st ratoon. Ali *et al.* (2019) showed that sugarcane varieties G.T. 54-9 and C. 57-14 were superior over the other varieties in cane and sugar yields/fad. Gadallah and Abd-El-Aziz-Rania, (2019) showed that sugarcane variety GT.54-9 superior on the other varieties in millable stalk height and cane yield/fed, while, G.2003-47 variety was superior in millable stalk diameter, brix, sucrose, sugar recovery and sugar yields/fed in both seasons, however, G.2004-27 variety attained the highest values of number of millable canes/fed. Gadallah et. al. (2020) observed that the commercial variety GT.54-9 was superior in most of the studied traits. G.2003-47 variety was superior in brix%, sucrose% and sugar recovery %, meanwhile, G.2004-27 variety attained the highest number of millable cane/fed. Gadallah and Mehareb, (2020) found that sugarcane G.T.54-9 variety recorded the highest cane yield/fed, while G.2003-47 was superior in sucrose%, sugar recovery% and sugar yield/fed. The aim of the present work was to find out the appropriate harvesting age and the optimum seed rate for three sugarcane varieties to get the highest cane and sugar yields/fed.

MATERIALS AND METHODS

Field experiment was conducted at Shandaweel Agricultural Research Station (latitude of 26.33° N, longitude of 31.41° E and altitude of 69m), Sohag Governorate, Egypt in 2020/2021 and 2021/2022 seasons to evaluate the performance of two new sugarcane varieties viz. G.2003-47 (Giza 3) and G.2004-27 (Giza 4), compared to the commercial variety G.T.54-9 (C 9). The three varieties planted with three rates of seeds [1.0, 1.5 and 2.0 drills of 3-budded cane cuttings (25200, 37800 and 50400 buds/fed obtained by planting 8400, 12600 and 16800 of three- budded seed setts/fed, respectively) to three harvest age 10, 11 and 12 months. Sugarcane was planted

in the 2nd week of March in both seasons. A split-split plot design with three replications was used. Harvest age was allocated in the main plots, while seed rates were randomly distributed in the sub plots, while, sugarcane varieties were randomly distributed in the sub-sub plots. Each plot area was 35 m² 1/120 from feddan including 5 rows of 7 m in length and 1.0 m apart. Nitrogen fertilizer was applied as urea (46% N) at the rate of 210 kg N/fed, which was split interactions o two equal doses; after the1st and 2nd hoeing, *i.e.* (60 and 90 days from planting). Phosphorus fertilizer was added once during seed-bed preparation as calcium super phosphate (15% P₂O₅) at the rate 30 kg P₂O₅/fed. Potassium fertilizer was added once as potassium sulfate (48% K₂O) at the rate of 48 kg K₂O/fed with the 2nd dose of N fertilizer. The other agricultural practices were done as recommended by Sugar Crops Research Institute.

Chemical and physical properties of the experimental soil are presented in Table (1).

Sea	ison	2020/2021	2021/2022
	Sand%	56.34	59.20
Nechanical analysis Soil t	Silt	28.44	24.30
	Clay	15.22	16.50
	CaCO₃%	1.20	1.47
Soil to	exture	Sandy loam	Sandy loam
	N Available (ppm)	0.20	0.24
	CO _{3 Meq/100g}	0	0
	H CO _{3 Meq/100g}	0.30	0.33
-	CL ⁻ Meq/100g	0.89	0.89
-	SO ₄ ⁼ Meq/100g	1.02	1.13
Chemical analysis	Ca ⁺⁺ Meq/100g	0.53	0.54
	Mg ⁺⁺ Meq/100g	0.27	0.35
	Na ⁺ Meq/100g	1.25	1.31
-	K ⁺ _{Meq/100g}	0.16	0.15
	EC(ds/m) (1:5)	0.24	0.26
	рН	7.5	7.3

	-	
Table 1 Chemical and mechan	nical properties of the upper	r 40-cm of the experimental soil
	incar properties of the upper	+0-cill of the experimental soli

Recorded data:

The following data were recorded at harvest:

1. Millable stalk highest (cm). 2. Millable stalk diameter (cm).

3. Number of millable canes in (thousand/fad) was counted in one square meter base then converted interactions o a number per fed (4200 m²).

Juice quality parameters:

A sample of 20 millable canes from each treatment was taken at random, cleaned and crushed to extract the juice, which was analyzed to determine the following quality traits:

1. Brix% (total soluble solids of juice) was determined using "brix Hydrometer" according to the method described by "The Chemicalical Control Lab" of Sugar and Interactions egrated Industries Company (Anonymous, 1981).

2. Sucrose% was determined using "Sacharemeter" according to (A.O.A.C., 2005).

3. Sugar recovery% was calculated according to Yadav and Sharma, 1980) as follows:

Sugar recovery% = [sucrose% - 0.4 (brix% - sucrose %) × 0.73] Where 0.4 and 0.73 constants.

Yields

The harvested sugarcanes of the middle three rows of each experimental unit were cut, topped, cleaned up from trash and weighed and counted to estimate the following traits:

1. Cane yield/fed (ton).

2. Sugar yield/fed (ton), which was estimated according to the following equation: Sugar yield/fed (ton) = cane yield/fed (ton) x sugar recovery%/100.

Statistical analysis

The collected data were statistically analyzed according to (Gomez and Gomez, 1984) using the computer "MSTAT-C" statistical analysis package described by (Freed *et al.*, 1989). The least significant differences (LSD) at 0.05 level of probability were calculated to compare the differences among means of treatments.

RESULTS

1. Millable stalk height:

Results in Tables (2) pointed out that late harvest date up to 12 months increased significantly values of millable stalk height, in the 1st and 2nd seasons. Harvest age (12 months) recorded the highest mean values of millable stalk height by 26.3 and 12.5 cm, compared to that harvest age (10 and 11 months) respectively, in the 1st one, corresponding to 29.9 and 11.6 cm, in the 2nd one. Data in Table (2) showed that the used seed rates significantly affected millable stalk height, in both seasons. Planting sugarcane using 2.0 rows of cane cuttings (50400 buds/fed) increased millable stalk height by 17.2 and 8.2 cm, compared to that planted with 1.0 and 1.5 drills of 3-budded setts (25200 and 37800 buds/fed, respectively), in the 1st one, corresponding to 14.3 and 4.6 cm, in the 2nd season.

(-	m) m 2020/2021 ar				/2021				2021	L/2022	
Harvest			Sugar	rcane vai	ieties		S	ugaro	ane var	ieties	
age	Seed rate		G.T.	G.	G.	Mean	G.1		G.	G.	Mean
uge			54/9	2003/	2004,		54/	9	2003/	2004/	Ivicali
				47	27				47	27	
10	1.0 drill (25200 bud	ls)	273.0	267.7	270.0	270.2	264	.0	259.7	269.3	264.3
Months	1.5 drills (37800 bu	ds)	276.9	273.9	283.9	278.2	274	.3	270.7	276.3	273.8
WORLIS	2.0 drills (50400 bu	ds)	289.5	284.2	296.8	290.2	281	.7	274.0	282.7	279.4
Mean			279.8	275.2	283.6	279.6	273	.3	268.1	276.1	272.5
11	1.0 drill (25200 bud	ls)	286.5	282.5	286.5	285.2	284	.7	280.7	283.3	282.9
II Months	1.5 drills (37800 bu	ds)	297.9	290.3	295.3	294.5	295	.7	291.0	296.0	294.2
WOILIIS	2.0 drills (50400 bu	ds)	303.1	294.0	304.0	300.4	299	.3	288.3	298.7	295.4
Mean			295.9	288.9	295.3	293.4	293	.2	286.7	.92.7	290.9
12	1.0 drill (25200 bud	ls)	298.6	296.0	297.3	297.3	296	.0	288.7	298.7	294.4
Months	1.5 drills (37800 bu	ds)	308.1	303.0	309.2	306.7	303	.7	299.0	306.3	303.0
Wonting	2.0 drills (50400 bu	ds)	319.5	304.0	317.4	313.6	313	.3	305.0	311.3	309.9
Mean			308.7	301.0	308.0	305.9	304	.3	297.6	305.4	302.4
Average	1.0 drill (25200 bud	ls)	286.1	282.1	284.6	284.2	281	.6	276.3	283.8	280.6
of Seed	1.5 drills (37800 bu	ds)	294.3	289.1	296.1	293.2	291	.2	286.9	292.9	290.3
rate	2.0 drills (50400 bu	ds)	304.1	294.1	306.1	301.4	298	.1	289.1	297.6	294.9
Mean of h	arvest age		294.8	288.4	295.6	i l	290	.2	284.1	291.4	
LSD 0.05:											
Harvest age A		Α	1.42	Α	х В	1.98	Α	2	.36	АхВ	NS
Seed rates	;	В	1.14	Α	хC	NS	В	1	.55	AxC	1.45
Varieties	Varieties C		1.46	В	хC	2.53	С	2	.84	ВхС	1.45
				Ах	BxC	1.51				AxBxC	2.52

Table 2. Effect of seed rates, sugarcane varieties, harvest age and their interactions on millable stalk height(cm) in 2020/2021 and 2021/2022 seasons

Promising G.2004-27 variety gave the highest stalk millable without insignificant difference with the commercial variety GT.54-9 in this trait, only in the 1stseason Table (2). Meanwhile, it was found that G.2003- 47 variety had the shortest millable canes, in the 1st and 2nd seasons.

Millable stalk height was significantly influenced by the interactions between the studied factors except for that among harvest age x sugarcane varieties in the 1st season, and that of interactions eraction between harvest ages x sugarcane varieties in the 2nd season. The highest stalk millable was obtained when G. 2004/27 and/or G.T. 54-9 cultivars was planted with 2.0 drills of seeds and harvested at 12 months of age, in both seasons.

2. Millable stalk diameter:

Data in Tables 3, pointed out that late harvest date up to 12 months increased significantly values of in millable stalk diameter, in the 1st and 2nd seasons. Harvest age (12 months) recorded the highest mean values of millable stalk diameter, in both seasons.

Reducing the used planting material to 1.0 drill of cane cuttings (25200 buds/fed) significantly resulted in producing the thickestmillable stalk diameter, compared to those obtained in case of planting with 1.5 and 2.0 drills of cane sets (37800 and 50400 buds/fed, successively), in both seasons Table (3).

Table 3. Effect of seed rates, sugarcane var	ieties, harvest age	and their	interactions	on millable stalk
diameter (cm) in2020/2021 and 2021	1/2022 seasons			

_				/2021			2021	/2022	
Harvest	Seed rate	Su	garcane var	ieties		Su	garcane va	rieties	
age	Seeurale	G.T.	G.	G.	Mean	G.T.	G.	G.	Mean
		54/9	2003/47	2004/27		54/9	2003/47	2004/27	
10	1.0 drill (25200 buds)	2.42	2.45	2.42	2.43	2.48	2.41	2.43	2.44
Months	1.5 drills (37800 buds)	2.39	2.39	2.39	2.39	2.38	2.37	2.38	2.38
WOITTIS	2.0 drills (50400 buds)	2.37	2.37	2.39	2.38	2.35	2.33	2.36	2.35
Mean		2.39	2.40	2.40	2.40	2.40	2.37	2.39	2.39
11	1.0 drill (25200 buds)	2.46	2.50	2.45	2.47	2.53	2.45	2.51	2.50
Months	1.5 drills (37800 buds)	2.44	2.44	2.44	2.44	2.51	2.42	2.43	2.45
WOITCHS	2.0 drills (50400 buds)	2.44	2.41	2.41	2.42	2.43	2.39	2.43	2.42
Mean		2.45	2.45	2.44	2.44	2.49	2.42	2.46	2.45
12	1.0 drill (25200 buds)	2.52	2.56	2.51	2.53	2.59	2.53	2.57	2.56
Months	1.5 drills (37800 buds)	2.47	2.47	2.46	2.64	2.47	2.48	2.45	2.47
WOITCHS	2.0 drills (50400 buds)	2.46	2.44	2.45	2.45	2.49	2.43	2.46	2.45
Mean		2.48.	2.48	2.47	2.48	2.52	2.48	2.50	2.50
Average	1.0 drill (25200 buds)	2.47	2.50	2.47	2.48	2.53	2.46	2.50	2.50
of Seed	1.5 drills (37800 buds)	2.43	2.43	2.43	2.43	2.45	2.42	2.42	2.43
rate	2.0 drills (50400 buds)	2.43	2.40	2.42	2.42	2.42	2.38	2.42	2.41
Mean of h	narvest age	2.44	2.45	2.44		2.47	2.42	2.45	
LSD 0.05:									
Harvest a	ge	Α	0.01	A x B	NS	Α	0.02	A x B	NS
Seed rate	S	В	0.01	AxC	0.01	В	0.02	AxC	NS
Varieties		С	0.01	ВхС	0.01	С	0.02	BxC	NS
				AxBxC	NS			AxBxC	NS

The tested sugarcane varieties varied significantly in millable stalk diameter in both seasons. The commercial variety G.T.54-9 had the thickest stalks, while G.2004-27 variety recorded the lowest value of this growth character.

Millable stalk diameter significantly influenced by the interactions between harvest age x sugarcane varieties and seed rate x sugarcane varieties only in the 1^{st} season, while, the other interactions had insignificant in the 1^{st} and 2^{nd} seasons.

3. Number of millable canes/fed:

The result in Table (4), showed that the dates of harvest differed significantly in number of millable canes, where the highest number of millable canes/fed was obtained at harvest age of 12 months in both seasons.

Data in Table (4), cleared that the used seed rates significantly affected number of millable canes/fed, in both seasons. Planting sugarcane using 2.0 rows of cane cuttings (50400 buds/fed) increased number of millable canes/fed by 5.186 and 1.483 thousand/fed, compared to that planted with 1.0 and 1.5 drills of setts (25200 and 37800 buds/fed, respectively), in the 1st season, being 5.682 and 1.692 thousand/fed in the 2nd one.

The tested sugarcane varieties differed significantly in number of millable canes in both seasons. The new sugarcane variety viz. G.2004-27 significantly surpassed the other variety G. 2003/47 in millable cane number/fed by 0.66 and 5.83% in the 1st season corresponding to 0.97 and 4.82% in the 2ndseason.

				/2021			2021,	/2022	
Harvest	Seed rate	Su	garcane var	ieties		Sug	garcane var	ieties	
age	Securate	G.T.	G.	G.	Mean	G.T.	G.	G.	Mean
		54/9	2003/47	2004/27		54/9	2003/47	2004/27	
	1.0 drill (25200 buds)	42.692	40.182	43.370	42.081	41.977	39.567	42.547	41.36
									3
10	1.5 drills (37800 buds)	46.540	44.332	46.933	45.935	45.723	44.270	45.883	45.29
months									2
	2.0 drills (50400 buds)	48.127	45.960	48.277	47.454	47.350	45.930	47.923	47.06
									8
Mean		45.786	43.491	46.193	45.157	45.017	43.256	45.451	44.57
									4
	1.0 drill (25200 buds)	43.328	40.360	43.580	42.423	42.443	39.698	42.737	41.62
11	4 E duille (27000 hurde)		44.404	47.042	46.010	45.020	44 522	46.222	6
	1.5 drills (37800 buds)	46.567	44.484	47.043	46.019	45.920	44.533	46.333	45.59
months	2.0 drills (50400 buds)	48.203	46.027	48.330	47.520	47.478	46.403	48.100	6 47.32
	2.0 amis (50400 buas)	40.205	40.027	40.550	47.520	47.470	40.405	46.100	47.52
		46.033	43.612	46.318	45.321	45.281	43.545	45.723	44.85
Mean		40.000	43.012	40.510	45.521	45.201	43.345	45.725	0
	1.0 drill (25200 buds)	43.433	40.453	430703	42.530	42.633	39.793	42.887	41.77
									1
12	1.5 drills (37800 buds)	46.817	44.510	47.080	46.136	46.193	44.713	46.620	45.84
months	. ,								2
	2.0 drills (50400 buds)	48.233	46.090	48.373	47.566	47.513	46.495	48.227	47.41
									2
Mean		46.161	43.684	46.386	45.410	45.447	43.667	45.919	45.00
Iviedii									8
Averag	1.0 drill (25200 buds)	43.151	40.332	43.551	42.345	42.351	39.686	42.723	41.58
e of									7
Seed	1.5 drills (37800 buds)	46.641	44.430	47.019	46.030	45.946	44.506	46.279	45.57
rate									7
	2.0 drills (50400 buds)	48.188	46.026	48.327	47.513	47.447	46.276	48.083	47.26
									9
	harvest age	45.993	43.596	46.299		45.248	43.489	45.695	
LSD 0.05:									
Harvest a	ge	Α	0.090	AxB	0.160	Α	0.073	AxB	0.301
Seed rate	s	В	0.092	AxC	0.154	В	0.173	AxC	0.227
Varieties		С	0.089	ВхС	0.154	С	0.131	BxC	0.227
				AxBxC	0.267			AxBxC	0.393
				2					

Table 4. Effect of seed rates, sugarcane varieties, harvest age and their interactions on number of millable
cane (thousand/fed) in 2020/2021 and 2021/2022 seasons

Number of millable canes/fed significantly responded to the interactions among all studied in both seasons, Planting sugarcane variety G.2004-27 by using 2.0 rows and harvest sugarcane at 12 months, had the highest number of millable canes/fed.

4. Brix %:

Data in Table (5), showed that delaying harvest age from 10 up to 12 months significantly increased brix% in both seasons. According to the significant effect of harvest ages, it was noted that harvest age (12 months) registered the highest mean values of brix compared to harvest ages (10 and 11 months) in both

seasons. The increase in brix% was 3.16 and 1.31% in the 1st season corresponding to 2.51 and 1.19% in the 2nd season respectively. Data in Table (5), revealed that decreasing seed rate to 1.0 drill of cane cuttings (25200 buds/fed) significantly increased brix% by 0.21 and 0.42% in the 1stseason as well as 0.35 and 0.65% in the 2nd one, compared to that planted with 1.5 or 2.0 drills of setts (37800 and 50400 buds/fed, respectively.

The results in Table 5 manifested that G.2003-47 sugarcane variety had the highest values of brix% which amounted to 21.84 and 20.72% in the 1st and 2nd seasons respectively of brix%. On the contrary, variety G.2004-27 recorded the lowest values of 18.18 and 17.65% for this trait in the 1st and 2nd seasons respectively.

_			2020	/2021			2021	/2022	
Harvest	Seed rate	Su	garcane var	ieties		Sugarcane varieties			
age	Jeeu Tale	G.T.	G.	G.	Mean	G.T.	G.	G.	Mean
		54/9	2003/47	2004/27		54/9	2003/47	2004/27	
10	1.0 drill (25200 buds)	17.90	20.33	16.92	18.38	17.85	20.38	16.65	18.29
10 Months	1.5 drills (37800 buds)	17.64	20.13	16.77	18.18	17.65	19.51	16.28	17.81
IVIOIILIIS	2.0 drills (50400 buds)	17.56	19.67	16.72	17.98	17.49	16.07	16.11	17.56
Mean		17.70	20.04	16.80	18.18	17.66	19.65	16.35	17.89
11	1.0 drill (25200 buds)	20.20	22.40	18.14	20.25	19.63	21.26	17.23	19.37
II Months	1.5 drills (37800 buds)	19.89	22.40	17.87	20.05	19.31	20.81	17.79	19.30
IVIOIILIIS	2.0 drills (50400 buds)	19.71	22.00	17.63	19.78	19.00	20.61	17.21	18.94
Mean		19.93	22.27	17.88	20.03	19.31	20.90	17.41	19.21
12	1.0 drill (25200 buds)	21.10	23.37	20.15	21.54	20.87	22.16	19.45	20.83
12 Months	1.5 drills (37800 buds)	20.95	23.19	19.80	21.32	20.34	21.46	19.19	20.33
WOITIN	2.0 drills (50400 buds)	20.85	23.05	19.59	21.16	19.92	21.24	18.96	20.04
Mean		20.97	23.20	19.85	21.34	20.38	21.62	19.20	20.40
Average	1.0 drill (25200 buds)	19.73	22.03	18.40	20.06	19.45	21.27	17.78	19.50
of Seed	1.5 drills (37800 buds)	19.50	21.91	18.15	19.85	19.10	20.59	17.75	19.15
rate	2.0 drills (50400 buds)	19.37	21.57	17.98	19.64	18.80	20.31	17.43	18.85
Mean of h	narvest age	19.53	21.84	18.18		19.12	20.72	17.65	
LSD 0.05:									
Harvest a	ge	Α	0.11	A x B	0.14	Α	0.10	A x B	0.20
Seed rate	S	В	0.08	AxC	0.16	В	0.12	AxC	0.17
Varieties		С	0.09	ВхС	NS	С	0.10	ВхС	0.17
				AxBxC	NS			AxBxC	0.30

 Table 5. Effect of seed rates, sugarcane varieties, harvest age and their interactions on brix (%) in 2020/2021

 and 2021/2022 seasons

Brix was significantly affected by all the interactions in the 1st and 2nd order in both seasons, except for the interactions between seeds rate x sugarcane varieties and among three factors which were not significant in the 1st one only. The highest values of brix% were obtained withG.2003-47 variety as 1.0 drill planted of seeds and harvest sugarcane at 12 months Table (5).

5. Sucrose%:

The result in Table (6), showed that dates of sugarcane harvest differed significantly in both seasons, where the delay of harvest for 12 months led to an increase in sucrose%, compared to the harvest at 10 and/or 11 months in both seasons. Decreasing seed rate to 1.0 drill of cane cuttings (25200 buds/fed) for sugarcane planting seed rates significantly increased sucrose% compared to that planted with 1.5 or 2.0 drills of setts (37800 and 50400 buds/fed, respectively), in the 1st and 2nd seasons.

The results in Table (6), indicated that G.2003-47 new variety gave the highest sucrose% as compared with the other varieties. However, G.2004-27 variety recorded the lowest values of sucrose% in the 1st and 2nd season.

Sucrose% was significantly affected by all the interactions between the study factors in the 2nd season and interactions among harvest age x sugarcane varieties only in the 1stseason Table (6). The highest sucrose% was recorded by planted of sugarcane variety G.2003-47 by using 1.0 drill of 3-budded cane setts for plant and harvest sugarcane at 12 months in both seasons.

		, -		/2021			2021	/2022	
Harvest	Seed rate	Su	garcane var	ieties		Su	garcane vai	rieties	
age	Seeurale	G.T.	G.	G.	Mean	G.T.	G.	G.	Mean
		54/9	2003/47	2004/27		54/9	2003/47	2004/27	
10	1.0 drill (25200 buds)	14.90	17.06	13.83	15.26	14.77	17.04	13.52	15.11
months	1.5 drills (37800 buds)	14.61	16.76	13.69	15.02	14.63	16.25	13.24	14.71
montins	2.0 drills (50400 buds)	14.44	16.31	13.52	14.76	14.53	15.97	13.13	14.51
Mean		14.65	16.71	13.68	15.01	14.64	16.42	13.30	14.79
11	1.0 drill (25200 buds)	17.15	19.10	14.89	17.04	16.37	17.98	14.23	16.19
months	1.5 drills (37800 buds)	16.71	19.07	14.69	16.82	16.19	17.58	14.66	16.15
months	2.0 drills (50400 buds)	16.52	18.57	14.39	16.50	15.85	17.46	14.23	15.85
Mean		16.79	18.91	14.66	16.79	16.14	17.67	14.37	16.06
12	1.0 drill (25200 buds)	18.10	20.00	16.71	18.27	17.75	18.97	16.16	17.63
months	1.5 drills (37800 buds)	17.88	19.94	16.54	18.09	17.41	18.37	15.93	17.24
montins	2.0 drills (50400 buds)	17.88	19.70	16.16	17.92	17.02	18.17	15.75	16.98
Mean		17.95	19.88	16.44	18.09	17.40	18.50	15.95	17.28
Average	1.0 drill (25200 buds)	16.71	18.72	15.14	16.86	16.30	17.99	14.64	16.31
of Seed	1.5 drills (37800 buds)	16.40	18.59	14.94	16.64	16.08	17.40	14.61	16.03
rate	2.0 drills (50400 buds)	16.28	18.19	14.69	16.39	15.80	17.20	14.37	15.79
Mean of h	narvest age	16.47	18.50	14.93		16.06	17.53	14.54	
LSD 0.05:									
Harvest a	ge	Α	0.11	A x B	NS	Α	0.07	A x B	0.16
Seed rate	S	В	0.08	AxC	0.14	В	0.09	AxC	0.15
Varieties		С	0.08	ВхС	NS	С	0.09	ВхС	0.15
				AxBxC	NS			AxBxC	0.27

Table 6. Effect of seed rates, sugarcane varieties, harvest age and their interactions eractions on sucrose(%) in 2020/2021 and 2021/2022 seasons

6. Sugar recovery %:

The result in Table (7), indicated that the dates of sugarcane harvest differed significantly in sugar recovery% in both seasons, where sugarcane harvest at 12 months of age gave an increase in sugar recovery% by (2.39 and 1.03%) in the 1st one, and (1.96 and 0.98%) in the 2nd one, respectively. compared to the harvest at 10 and 11 months of age in both seasons. Data in Table (7), revealed that decreasing seed rate to 1.0 drill of cane cuttings (25200 buds/fed) used in sugarcane planting significantly increased sugar recovery% as compared to that planted with 1.5 or 2.0 drills of setts (37800 and 50400 buds/fed) in the 1st and 2nd seasons, respectively.

Sugar recovery% was significantly differed by the tested sugarcane varieties; G.2003-47 new variety recorded the highest sugar recovery% value, in both seasons. However, sugarcane variety G.2004-27 gave the lowest value of this trait in both seasons.

	1 2020/2021 and 2021/.			/2021			2021	/2022	
Harvest	Seed rate	Su	garcane var	ieties		Su	garcane vai	rieties	
age	Jeeu Tale	G.T.	G.	G.	Mean	G.T.	G.	G.	Mean
		54/9	2003/47	2004/27		54/9	2003/47	2004/27	
10	1.0 drill (25200 buds)	10.04	11.59	9.16	10.26	9.90	11.54	8.89	10.11
10 Months	1.5 drills (37800 buds)	9.80	11.30	9.06	10.06	9.83	10.96	8.73	9.84
wonths	2.0 drills (50400 buds)	9.62	10.95	8.86	9.81	9.77	10.84	8.66	9.76
Mean		9.82	11.28	9.03	10.04	9.83	11.11	8.76	9.90
11	1.0 drill (25200 buds)	11.78	13.19	9.90	11.62	11.05	12.32	9.53	10.97
II Months	1.5 drills (37800 buds)	11.37	13.15	9.78	11.44	11.00	12.03	9.79	10.94
wonths	2.0 drills (50400 buds)	11.22	12.70	9.52	11.15	10.71	11.98	9.52	10.74
Mean		11.46	13.01	9.73	11.40	10.92	12.11	9.61	10.88
12	1.0 drill (25200 buds)	12.58	13.87	11.23	12.56	12.23	13.15	10.87	12.08
Months	1.5 drills (37800 buds)	12.36	13.88	11.07	12.44	12.07	12.73	10.71	11.84
WORT	2.0 drills (50400 buds)	12.42	13.64	10.80	12.29	11.78	12.59	10.59	11.66
Mean		12.54	13.80	11.03	12.23	12.03	12.82	10.73	11.86
Average	1.0 drill (25200 buds)	11.47	12.88	10.10	11.48	11.06	12.33	9.76	11.05
of Seed	1.5 drills (37800 buds)	11.18	12.78	9.97	11.31	10.97	11.91	9.74	10.87
rate	2.0 drills (50400 buds)	11.09	12.43	9.73	11.08	10.75	11.80	9.59	10.72
Mean of h	narvest age	11.25	12.70	9.93		10.93	12.01	9.70	
LSD 0.05:			•	•			•		
Harvest a	ge	Α	0.81	A x B	NS	Α	0.05	AxB	0.11
Seed rate	S	В	0.06	AxC	0.10	В	0.06	AxC	0.11
Varieties		С	0.06	ВхС	0.10	С	0.07	ВхС	0.11
				AxBxC	NS			AxBxC	NS

 Table 7. Effect of seed rates, sugarcane varieties, harvest age and their interactions on sugar recovery (%) in 2020/2021 and 2021/2022 seasons

Sugar recovery% markedly affected by all binary interactions, except for the triple interactions in both seasons, and interactions among harvest age x seed rate in the 1st one, which were not significant. The highest sugar recovery% was recorded by planted sugarcane variety G.2003-47 by using 1.0 in drill and harvest sugarcane at 12 months age in both seasons.

7. Cane yield/fed:

Delaying harvesting age of sugarcane from 10 up to 11 and to 12 months after planting, positively and significantly increased cane yield ton/fed in both seasons Table (8). Cane yield increased by (5.050 and 2.297 ton/fed) in the 1stseason, corresponding to (5.429 and 1.947 ton/fed), in the 2nd one, by delaying harvest age at 12 months of age compared to the harvest at age 10 and 11 months, in the 1st and 2nd seasons, respectively Table (8).

Data in Table (8), showed that the used seed rates had a significant effect on cane yield/fed, in both seasons. Planted sugarcane using 2.0 drills of cane cuttings (50400 buds/fed) increased cane yield by 6.071 and 1.368 ton/fed as compared to that planted with 1.0 and 1.5 drills of setts (25200 and 37800 buds/fed, successively), in the 1st season, corresponding to 5.893 and 1.959 tons of canes/fed, in the 2nd one.

The results also pointed out that the tested varieties differed significantly with respect to cane yield/fed. Two sugarcane varieties, the promising G. 2004-27 exhibited the superiority in cane yield/fed greater than G. 2003-47 variety in both seasons. In the 1st one, G. 2004-27 variety produced 2.232 tons/fed over than from G. 2003-47, compared to the variety G.T.54-9 produced 2.901 tons/fed over than from G. 2003-47, without a significant variance between G.T.54-9 and G. 2004-27 in cane yield/fed in both seasons. Interactions between all factors were significant affected in the 1st and 2nd seasons.

			2020,	/2021			2021	/2022	
Harvest	Seed rate	Su	garcane vari	eties		Su	garcane var	ieties	
age	Seed fale	G.T.	G.	G.	Mean	G.T.	G.	G.	Mean
		54/9	2003/47	2004/27		54/9	2003/47	2004/27	
10	1.0 drill (25200 buds)	45.648	44.003	46.960	45.537	43.692	43.705	45.437	44.278
Months	1.5 drills (37800 buds)	50.803	49.023	50.913	50.247	50.347	49.123	50.194	49.888
wonths	2.0 drills (50400 buds)	52.404	50.887	52.277	51.856	51.917	50.980	51.030	51.309
Mean			47.971	50.050	49.123	48.652	47.936	48.887	48.492
11	1.0 drill (25200 buds)	48.582	46.722	48.940	48.081	48.054	45.051	49.082	47.396
11 Months	1.5 drills (37800 buds)	54.010	51.822	53.807	53.213	53.787	50.853	52.378	52.337
wonths	2.0 drills (50400 buds)	55.153	52.723	55.130	54.336	53.637	51.587	53.335	52.853
Mean		52.582	50.422	52.626	51.860	51.823	49.164	51.598	50.862
12	1.0 drill (25200 buds)	51.173	49.610	51.933	50.906	50.014	48.892	49.745	49.550
Months	1.5 drills (37800 buds)	55.992	53.502	55.872	55.122	55.553	52.695	54.157	54.135
WOITINS	2.0 drills (50400 buds)	57.570	54.682	57.223	56.492	55.490	53.488	55.252	54.743
Mean		54.912	52.598	55.010	54.228	53.686	51.692	53.051	52.809
Average	1.0 drill (25200 buds)	48.468	46.778	49.278	48.175	47.253	45.882	48.088	47.075
of Seed	1.5 drills (37800 buds)	35.602	51.449	53.531	52.860	53.226	50.891	52.243	52.120
rate	2.0 drills (50400 buds)	55.042	52.764	54.877	54.228	53.681	52.018	53.206	52.962
Mean of h	arvest age	52.371	50.330	52.562		51.387	49.597	51.179	
LSD 0.05:				•	•				•
Harvest ag	ge	Α	0.25	AxB	0.34	Α	0.19	A x B	0.58
Seed rates	5	В	0.20	AxC	0.24	В	0.33	AxC	0.42
Varieties		С	0.14	ВхС	0.24	С	0.24	ВхС	0.42
				AxBxC	0.42			AxBxC	0.73

 Table 8. Effect of seed rates, sugarcane varieties, harvest age and their interactions on cane yield (ton/fed)

 in 2020/2021 and 2021/2022 seasons

8. Sugar yield/fed:

Delaying harvesting age of sugarcane from 10 up to 11 and to 12 months after planting, positively and significantly increased sugar yield ton/fed in both seasons Table (9). Sugar yield increased by (1.110- and 0.480-ton sugar/fed) in the 1stseason, corresponding to (0.926- and 0.457-ton sugar/fed), in the 2nd one, when harvested sugarcane at 12 months compared to the harvest at age 10 and 11 months, in the 1st and 2nd seasons, respectively.

(1	:on/fed) in 2020/2021 a	nd 2021,	/2022 seas	sons					
			2020,	/2021			2021,	/2022	
Harvest	Seed rate	Su	garcane var	ieties		Su	garcane var	ieties	
age	Seeu Tale	G.T.	G.	G.	Mean	G.T.	G.	G.	Mean
		54/9	2003/47	2004/27		54/9	2003/47	2004/27	
10	1.0 drill (25200 buds)	4.286	4.656	3.973	4.305	4.155	4.565	3.781	4.167
months	1.5 drills (37800 buds)	4.650	5.010	4.252	4.607	4.491	4.851	4.002	4.448
months	2.0 drills (50400 buds)	4.629	5.033	4.276	4.645	4.629	4.978	4.150	4.586
Mean		4.492	4.900	4.166	4.519	4.425	4.798	3.978	4.400
11	1.0 drill (25200 buds)	5.107	5.324	4.318	4.914	4.691	4.890	4.070	4.550
months	1.5 drills (37800 buds)	5.297	5.847	4.600	5.248	5.053	5.359	4.537	4.983
monuis	2.0 drills (50400 buds)	5.410	5.844	4.599	5.285	5.084	5.560	4.579	5.074
Mean		5.271	5.672	4.504	5.149	4.943	5.270	4.395	4.869
12	1.0 drill (25200 buds)	5.462	5.610	4.908	5.326	5.213	5.231	4.662	5.035
months	1.5 drills (37800 buds)	5.786	6.180	5.212	5.726	5.577	5.693	4.996	5.422
months	2.0 drills (50400 buds)	5.991	6.282	5.225	5.838	5.597	5.854	5.109	5.520
Mean		5.746	6.026	5.115	5.629	5.463	5.593	4.922	5.326
Average	1.0 drill (25200 buds)	4.952	5.196	4.897	4.849	4.686	4.895	4.717	4.584
of Seed	1.5 drills (37800 buds)	5.214	5.679	4.688	5.194	5.040	5.301	4.511	4.951
rate	2.0 drills (50400 buds)	5.343	5.722	4.699	5.225	5.103	5.464	4.613	5.060
Mean of h	arvest age	5.170	5.532	4.595		4.943	5.220	4.432	
LSD 0.05:									
Harvest ag	ge	Α	0.04	A x B	0.04	Α	0.03	A x B	0.06
Seed rates	6	В	0.02	AxC	0.04	В	0.04	AxC	0.06
Varieties		С	0.03	ВхС	0.04	С	0.03	ВхС	0.06
				AxBxC	0.07			AxBxC	0.10

 Table 9. Effect of seed rates, sugarcane varieties, harvest age and their interactions eractions on sugar yield (ton/fed) in 2020/2021 and 2021/2022 seasons

Table (9), manifested that planted of sugarcane using 2.0 drills of cane cuttings (50400 buds/fed) significantly increased sugar yield/fed by 0.361 and 0.061 ton/fed as compared to that planted with1.0 or 1.5 drills of setts (25200 and 37800 buds/fed, successively), in the 1st season, corresponding to 0.476 and 0.109 ton of sugar/fed, in the 2nd one.

Cultivated sugarcane variety G.2003/47 exhibited the superiority in sugar yield/fed, recording significant increases amounted to 0.362 and 0.937 tons/fed higher than those produced by G.2004-27 varieties respectively, in the 1st season, corresponding to 0.788 tons/fed in 2nd one Table (9).

Sugar yield was significantly affected by the interactions between the studied factors in both seasons. The highest sugar productivity/fed (6.288 and 5.854 ton sugar/fed) was obtained by planting sugarcane variety *viz.* G.2003-47 by using 2.0 drills of 3-budded cane seeds and their harvesting at age of 12 months in the 1st and 2nd seasons, respectively.

DISCUSSION

Effects of different harvest ages on yield and quality in sugarcane:

Harvest age (12 months) recorded the highest mean values of millable stalk length, millable stalk diameter and number of millable canes/fed Tables (2, 3, and 4). These results are in conformity with those of (Jadhav *et al.*, 2000; Hagos *et al.*, 2014; Abo-Ellail *et al.*, 2020), watch they found that stalk height and it's diameter were increased gradually as harvesting time was delayed. As well as brix%, sucrose% and sugar recovery% increased as harvesting time was delayed in both seasons Tables (5, 6 and 7). These results are in agreement with those obtained by (Jadhav *et al.*, 2000; El-Geddawy *et al.*, 2012; Hagos *et al.*, 2014; Abo-Ellail *et al.*, 2020). The increase could be due to positive impact of harvest age on the quality juice which allows accumulation of additional brix% and/or sucrose by delaying the harvest age (Rostron, 1972).

Delaying harvesting age of sugarcane to 12 months after planting, increased cane and sugar yields ton/fed in both seasons Table (8 and 9). The increase in cane yield/fed accompanied the delay in plant age of harvesting may be due increasing millable length, diameter and number of millable canes/fed Tables (2,

3 and 4). The increase in sugar yield/fed may be referred to the increase in brix, sucrose and sugar recovery percentages Tables (5, 6 and 7) as well as the increase in cane yield Table (8). These results are in conformity with those of (Muchowb *et al.*, 1998; El-Geddawy- Dalia *et al.*, 2011; El-Geddawy *et al.*, 2012; Terauchi *et al.*, 2012; Endris *et al.*, 2016; Abu-Ellail *et al.*, 2020).

Effects of different seeds rate on yield and quality in sugarcane:

The components of cane yield include stalk length, stalk diameter, and number of millable canes/fed in sugarcane. The millable cane/fed is mainly determined by the plant population at the early stage, while the growth of individuals depends on the competitiveness of plants to obtain utilized the available growth factors as space, sun light, water and nutrients. Therefore, seeds rate mainly affects numbers of millable cane/fed by affecting the tillering rate and then jointly determines the cane yield by affecting the stalk length, stalk diameter, and stalk weight of sugarcane at the later stage. In this study, with the increase of seeds rate, the stalk length, number of millable canes/fed increased. The increase in cane yield/fed associated with the increase stalk length and number of millable canes/fed, while, increase in sugar yields/fed was associated with the increase in cane yield/fed as well as sucrose and sugar recovery percentages, which is considered the main components of sugar yield. These results are consistent with those of previous studies (Ismail et al., 2008; Shalaby et al., 2011; El-Geddawy-Dalia et al., 2015; Bekheet and Abd-El-Aziz- Rania, 2016; Makhlouf et al., 2016; Gadallah et al., 2020).. These results may be due to that increasing seed rate resulted in an increase in plants population density, causing mutual shading among plants, and hence directed plants to search for solar radiation, also, Solar radiation has an effect on brix% and sucrose% (Chang, 1974), which is consistent with the results of this study. On the other hand, reducing the used seeds rate to 1.0 drill of cane cuttings resulted in producing the thickestmillable stalk, and quality juice characters (brix, sucrose and sugar recovery%), compared to planting with 1.5 and 2.0 drills of cane sets Table (3). These results may be attributed to the lower interactions er-plant competition among plants for light and nutrients, as well as little mutual shading in case of planting with the lowest seeding rate. These results are in harmony with those reported by (Shalaby et al., 2011; Makhlouf et al., 2016; Gadallah et al., 2020).

Effects of some sugarcane varieties on yield and quality in sugarcane:

Promising G.2004-27 variety gave the length, diameter/stalk, No. of millable cane/fed and cane yield/fed, compared with the commercial variety G.T.54-9 in the 1st and 2nd season Tables (2, 3, 4 and 8). These results are in conformity with those of (El-Geddawy *et al.*, 2012; Abo-Ellail *et al.* 2020), they pointeractions ed out that the significant variance between the sugarcane varieties in stalk height diameter/stalk and No. of millable cane/fed as well as cane yield/fed in both seasons. The variance among cane varieties in these traits may be due to their gene make-up. These results are similar with those obtained by (Makhlouf *et al.*, 2016; Fahmy *et al.*, 2017; El-Bakry, 2019; Gadallah and Abd-El-Aziz- Rania, 2019; Gadallah and El-Mehareb, 2020). While, Promising G.2003-47 variety gave the best value of brix, sucrose and sugar recovery percentages as well as sugar yield/fed Tables (5, 6, 7 and 9) compared with the commercial variety G.T.54-9 in both seasons. These results are in conformity with those of (El-Bakry, 2018; Galal *et al.*, 2018; Gadallah and Abd-El-Aziz- Rania, 2019; Gadallah and Abd-El-Aziz- Rania, 2019; Gadallah and Abd-El-Aziz- Rania, 2019; Gadallah and El-Mehareb, 2020). The increase in cane yield/fed accompanied the delay in plant age of harvesting may be due increasing millable length, diameter and number of millable canes/fed Tables (2, 3 and 4). While, increase in sugar yield/fed may be referred to the increase in brix, sucrose and sugar recovery percentages Tables (5, 6 and 7) as well as the increase in cane yield Table (8).

CONCLUSION

Under conditions of this work, it is recommended to cultivate these sugarcane varieties studied at rates of 2.0 drills of cane setts (50400 buds/fed) and harvest age to 12 months to achieve a high cane and sugar yields/fed.

REFERENCES

- A.O.A.C. (2005). Association of Official Analytical Chemicalists. Official methods of analysis, 26th Ed. A.O.A.C., *Interactions Washington, D.C; USA*.
- Abu-Ellail, F.F.B.; A.F.I. Gadallah & I.S.H. El-Gamal (2020). Genetic variance & performance of five sugarcane varieties for physiological, yield & quality traits influenced by various harvest *Agricultural Journal Plant Production, Mansoura University*, 11 (5), 429-438.
- Ali, A.M.K.; Y.M. Abd El-Azez & Nahed- Zohdy O.M. (2019). Yield & quality of some sugarcane varieties as affected by harvesting ages. *Journal Biology Chemical Environment Science*, 14 (2),299-314.

Anonymous, (1981). Chemical control in the Egyptian sugar production factories. Jan., pp. 232.

- Bekheet, M.A. & Rania M. Abd El-Aziz (2016). Effect of row spacing, seed rate & nitrogen fertilization on yield & quality of sugarcane. *Journal Biology Chemical Environment Science*, 11 (3), 605-619.
- Calderon, H.; R. Besosa; R. Amaya & A. Luna (1996). Evaluation of sugarcane varieties suitable for early harvesting under tropical conditions. *Procedures Interactions Soc. Sugar Cane technology* 22, 239-297.
- Chang, J.H. (1974). Reparation balance. Climate & Agricultural Aldine Published Co., Chicago, Illinois, 4-22.
- Dalia, El-Geddawy I.H.; B.S.I. Makhloufand M.A. Bekheet (2015). Performance of some sugarcane promising varieties under different seed sett rates & potassium fertilization. *Interactions Journal Current Microbiology Applied Science.*, 4 (11), 92-110.
- Dalia, El-Geddawy, I.H.; M.A. Bekeet & S.A.M. Enan (2011). Sugarcane yield & quality as affected by different varieties & harvest age. *Journal Biology Chemical Environment Science*, 6 (2),177 -194.
- El-Bakry, A. (2018). Effectof row spacing on some sugarcane varieties yield & juice quality. *Journal Biology Chemical Environment Science*, 13 (2), 105-120.
- El-Geddawy, I.H.; K.A.O. El-Aref; M.M. Ibrahim & A.M.K. Ali (2012). Performance of some sugarcane varieties under nitrogen fertilization of sugarcane *Saccharum officinarum* L. to the plant levels & harvesting dates. *Egyptian Journal of Applied Science*, 27 (12), 520 539.
- Endris, Y.; Z. Wolde; A. Getaneh & T. Negi (2016). Determination of optimum harvesting age for the existing sugarcane varieties at ambary/middle awash agricultural development enterprise, *Ethiopia. Research Develop, & Management Journal,* 25, 24-30.
- Fahmy, A.M.; M.A.M. Osman & M.O.A. Galal (2017). Yield, quality & natural infestation with insect & disease of four sugarcane varieties as affected by different levels of potassium fertilization. *Journal Plant Production* & Pathology, Mansoura University, 8 (12), 687-693.
- Freed, R.S.P.; S.P. Eisensmith; S. Goetez; D. Recosky; V.W. Smail & P. Wolberg (1989). User's Guide MSTAT-C Software program for the design management & analysis of agronomic research experiments. Michigan State *University*, USA.
- Gadallah A.F.I. & E.M. Mehareb (2020). Yield & quality of some sugarcane varieties as affected by irrigation number. *SVU- Interactions Ernational Journal of Agricultural Science*, 2 (2), 144-165.
- Gadallah, A.F.I. & Rania M. Abd-El-Aziz (2019). Effect of row spacing & nitrogen fertilization on yield & quality of some sugarcane varieties. *Journal Biology Chemical Environment Science*, 14 (1), 215-233.
- Gadallah, A.F.I.; M.H.M. Ebid & B.S.I. Makhlouf (2020). Crop assessment & phenotypic correlation & stability of new sugarcane genotypes under different seed rates. *Journal Plant Production, Mansoura University*, 11 (6), 531-539.
- Galal, M.O.A.; M.A.M. Osman & A.M.K. Ali (2018). Evaluation of some promising sugarcane varieties for yield, quality & natural infection with Pokka Bong disease under different row spacing. *Egyptian Journal of Agricultural Research*, 3 (9), 1-13.
- Gomez, K.A. & A.A. Gomez (1984). Statistical proc for agricultural research. John Willey & Sons. Inc., New York.
- Hagos, H.; L. Mengistu & Y. Mequani (2014). Determining optimum harvest age of sugarcane varieties on the newly establishing sugar project in the tropical areas of Tenaha, Ethiopia. Adv. *Crop Science Technology* 2 (5), 156-159.
- Ismail, A.M.A.; M.A. Bekheet & A.S. Abo El-Hamd (2008). Yield & quality of four sugarcane varieties as influenced by seed rate & nitrogen fertilization. *Egyptian Journal of Applied Science*, 23 (1), 107-123.
- Jadhav, H.D.; T.S. Mungara; J.P. Patil; R. R. Hasure; B.S. Jadhav & S. Jaswant (2000). Effect of harvesting age on juice & Jiggery quality & yield of different sugar cane varieties under pre seasonal planting. *Coop Sugar*, 32 (2),113-117.

- Khandagave, R. & B. Patil (2007). Manipulation of cutting age, varieties & planting time to improve sugar & cane yield. *Interactions Sugarcane Technlogy*, 26, 212-220.
- Liu, D.L., & T.A. Bull (2001). Simulation of biomass & sugar accumulation in sugarcane using a proceduresbased model. Ecological Modelling. *Field Crop Research* 78, 181-211.
- Makhlouf, B.S.I.; Dalia I.H. El-Geddawy & A.E. Mohamed (2016). Performance evaluation of three sugarcane varieties under different levels of nitrogen fertilization & two seeding rates. *Assiut Journal of Agricultural Science*, 47 (5),12-36.
- Muchow, R.C., A.J. Higgins, A.V. Rudd & A.W. Ford (1998). Optimizing harvest age in sugar production, a case study for the Mossman mill region in Australia, II Sensitivity to crop age & crop class distribution. *Field Crops Research*, 57, 243-251.
- Rostron, H. (1972). Effects of age & time of harvest on productivity of irrigated sugarcane. South African Sugar Association experiment station, South Africa, 142-150.
- Shalaby, N.M.E.; A.M.H. Osman & Ranya M. Abdel Aziz (2011). Effect of seed rates & nitrogen fertilization levels on yield & quality of sugarcane. *Journal Plant Production, Mansoura University*, 2 (2), 279-287.
- Terauchi, T.; S. Irel, Y. Terajima; T. Sakaigaichi; M. Matsuoka & A. Sugimoto (2012). Sugarcane breeding of early maturing clone with high sucrose content for earlier harvest in Japan JARG. 46 (3), 227-235.
- Verma, R.S. (2004). Sugarcane projection technology in India. Interactions er. Book Distributing Co. Luck now. India. Watson, D.J. (1952). The physiological basis of variation in yield. *Adv. Agronomic*, 4, 101-145.
- Yadav, R.L. & R.K. Sharma (1980). Effect of nitrogen level & harvesting date on quality characteristics & yield of four sugarcane genotypes. *Indian Journal of Agricultural Science*, 50, 581-589.

BY NC SA

Copyright: © 2022 by the authors. Licensee EJAR, EKB, Egypt. EJAR offers immediate open access to its material on the grounds that making research accessible freely to the public facilitates a more global knowledge exchange. Users can read, download, copy, distribute, print or share a link to the complete text of the application under <u>Creative Commons BY-NC-SA International License</u>.

تأثير مواعيد الحصاد ومعدلات التقاوى على محصول وجودة بعض أصناف قصب السكر

أحمد مخيمر كامل على و أحمد فتحى إبراهيم جاد الله و أميمة على خليل قسم بحوث المعاملات الزراعية - معهد بحوث المحاصيل السُكَّرية ، مركز البحوث الزراعية ، مصر

أقيمت تجربة حقلية خلال موسمي 2020/2020م و 2022/2021م في محطة البحوث الزراعية بشندويل -محافظة سوهاج (دائرة عرض 26.33° شمالاً وخط طول 31.41°شرقاً) لدراسة تأثير ثلاث معدلات من التقاوي (صف واحد ، صف ونصف و صفين من عقل التقاوي) والحصاد بمواعيد حصاد (10 و 11 و 12 شهر من الزراعة)، على صفات المحصول والجودة لصنفين جديدين من قصب السكر هما (ج 2003-47 "جيزة 3") و (ج 2004-27 "جيزة 4") مقارنة مع الصنف التجاري (جيزة تايوان 54-9 "س 9"). تم استخدام تصميم قطع منشقة مرتين في ثلاث مكررات وقد أظهرت النتائج الأتى: سجل عمرالحصاد 21شهرًا أعلى القيم لصفات المحصول ومكوناته وصفات جودة العصير خلال الموسمين. حقق معدل التقاوي صفين زيادة ملحوظة في طول العود وعدد العيدان القابلة للعصر وحاصلى العيدان والسكر/فدان، بينما حقق معدل التقاوي صف واحد زيادة معنوية في سمك العود والبركس% والسكروز% وناتج السكر%. تفوق الصنف المبشر (جيزة 3) في صفات جودة العصير وحاصل السكر/فدان في الموسمين، بينمت تفوق الصنف الواعد (جيزة4) في طول العود والمرك القابلة الموسمين، بينمت تفوق الصنف الواعد (جيزة4) في طول العود والمركس%

من نتائج هذه الدراسة يوصى بزراعة أصناف قصب السكر قيد الدراسة بمعدل تقاوي صفين والحصاد عند عمر 12 شهرًا للحصول على أعلى حاصل للعيدان والسكر/فدان.

الكلمات المفتاحية: قصب السكر، مواعيد الحصاد، معدلات التقاوى، الأصناف