
MA S A T-40 

440109  

AD-1 
	1 MILITARY TECHNICAL COLLEGE 

CAIRO — EGYPT 

NUMERICAL SOLUTION OF THE UNSTEADY INCOMPRESSIBLE NAVIER-
STOKES EQUATIONS IN GENERALIZED NON-ORTHOGONAL 

CURVILINEAR CO-ORDINATES 

M.M. ABDELRAHMAN* and A.M. AL-BAHI* 

ABSTRACT 

A method based on the vorticity stream function formulation is used for the 
solution of the unsteady incompressible two-dimensional laminar viscous flow 
problems. Vorticity transport and stream function equations are written in 

generalized curvilinear non-orthogonal coordinate system, and discretized using 

an implicit finite difference approximation. A second order accurate scheme 

with a stabilizing correction splitting method as an ADI technique is used. Both 
conservative and non-conservative forms of the vorticity transport equation are 
considered and the problems associated with different treatments of boundary 
conditions are addressed. Several test cases, including rectangular cavity flow 
problem, flow around circular cylinder and flow past an isolated airfoil at 

moderate angles of attack, are illustrated. 

INTRODUCTION 

Solutions of Navier-Stokes equations provide an excellent description of viscous 

Newtonian fluid motions. Due to the coupling problem and the non linearity, 

only 	numerical 	approximations 	to 	these 	solutions 	can 	be 
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obtained. Such numerical solutions, which require the full exploitation of the 

latest computer technology and integration procedures, can generally be 
grouped into three categories: 

- Methods based on artificial compressibility, 

- Methods using pressure iteration, and 

- Methods based on vorticity formulation. 

In the artificial compressibility methods [1], the elliptic-parabolic nature of the 

unsteady incompressible Navier Stokes equations is changed to a hyperbolic-
parabolic one, by adding an artificial time derivative of the pressure to the 

continuity equation. This allows utilising the highly developed algorithms of 
compressible flow to incompressible problems. Although these methods are 

normally limited to steady state flow problems; an extension to unsteady flows 
by dual time stepping has been successfully used by several authors [2-4]. In 

this dual time method, artificial compressibility technique is applied at each time 

step. Consequently, the drawback of this method is the large computational 
effort to establish a converged solution each time step . 

In the methods based on pressure iteration, the velocities are calculated from 
the momentum equations with an estimated pressure gradient, then the 

pressure is imposed by an iterative procedure for each time step. Another way 

to derive a pressure equation is to form a Poisson equation by taking the 

divergence of the momentum equations. The Marker and Cell method, (MAC), 

proposed by Harlow and Welsh [5] and the Projection method presented by 
Chorin [1] are prototypes of such a method. The main drawbacks associated 

with the solution of the Navier Stokes equations using pressure-velocity 
formulation are the lack of the boundary conditions for the pressure and the 

necessity of satisfying the zero velocity divergence at any time. 

In the vorticity formulation methods, the pressure is replaced by the vorticity 

vector, and the vorticity transport equation is solved instead of the momentum 
equations. The continuity equation, on the other hand, can be satisfied in two 
different ways. The first is the vorticity-velocity approach proposed by Fasel 

[6] and used by several authors [7-8], in which care has to be taken for 
vorticity boundary conditions in order to satisfy the conservation of mass. The 

second way is to use a stream function formulation. This approach, which is 
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for two-dimensional cases, can be extended to three dimensions by defining a 
vector potential instead of the stream function. This vector potential has to be 

calculated from the three Poisson equations. An example of such three-

dimensional formulation is described in [9]. 

In this paper the Navier Stokes equations are studied in the vorticity stream 
function formulation which appears to be the optimal choice for two-

dimensional problems, mainly from storage point of view. 

GOVERNING EQUATIONS 

Navier Stokes equations for incompressible viscous flows can be written in the 

vector form as [10 

V2if =—(0 

	 -F(v -17)63 —1 172(,) 
at 	FL 

V =V Ai' 	 (1.c) 

where w is the vorticity vector, 4' is the stream function vector, V is the 

velocity vector and Re is the Reynolds number. The system of equations (1) is 
made dimensionless using a reference velocity and length. 

The system of equations (1) becomes most interesting for the two-dimensional 

case where the stream function vector and the vorticity vector have only one 

component normal to the plane of flow. The equations (1.a) and (1.b) become 

scalar equations and instead of solving a system of six equations in the general 

three-dimension case, a two- equation system is to be solved. 

Eqn. (1.b), which represents the momentum equation, is in a non conservative 
form, and can be written in the following conservative form: 
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(2) 

where the convective term in Eqns (1.b) and (2) are equivalent for a zero 
divergence velocity field i.e. incompressible flow. 

An important feature of the stream-function vorticity formulation is that the 
pressure is no longer explicit in the equation. If however, the pressure is 
needed in the flow field, the following poisson equation must be solved 

au av av au) 	 (3) V 2p =2(—a  —ay  --ax ay   

where u and v are the velocity components in the Cartesian coordinate system 
(x , y ). 

Now let us introduce the generalized non-orthogonal curvilinear co-ordinates% 
and /2 , given by: 

=ni(x,y,t) 	, 	71 2  =7;2 (x,y,t) 	 (4) 

with the covariant base vectors a1 and a2, tangent to71and72, respectively, 
and defined by: 

=--x +y 
7/. 	71. a2 	.. =x. - (5) 

The governing equations, (1.a) and (2), are transformed in this generalized 
coordinate system to: 

a 
co — 	(g°-vg) 

aco 	a 	 a• 	 ao, — -1— (ViV'co ) 	(gu fg--) at an 	Re aq j  

where Einstein tensor notation is used with summation over repeated indices. 

(6)  

(7)  
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In Eqns. (6) and (7), the transformation metric, g, is given by. 

gd
gn gI2 
g12 g22 

=(x7/ y71 
—x y )2  . 	3 	V. (8) 

  

with the covariant metric components, gji (for i=1,2 and j =1,2): 

="•a =x  =X ni x n, 417077, 

The contravariant metric components a are calculated by. 

	

[g4]  4gd-1 	gli _g22 ,g12 =_ gI2 , g22

g  

And the contravariant velocity components are expressed by 

1 

	

—
aNI, 1 	a* , y2  =-  
ant. 	 an' 

The transformed partial differential equations are of the same form and type as 
the original equations, and are more complicated only in the sense of having 
variable coefficients, cross derivatives, and more terms. 

NUMERICAL ALGORITHM 

Finite Difference Discretization 

The computation of the stream function and the vorticity are carried out using 
a second order finite difference approximation. The discretized continuity and 
momentum equations can be written as: 

(9)  

(10)  

+T1  +T2  +T3  +Ts 	 (12) 
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Wij —w ij 

	

Are7,-.; 	At 

ij co 	 nil 	nil 

	

V 	i-11j -CO I 	 nil 	nil 
63 	i j —W 	i -I j  

±—{(1 —E1 ) 	 +(1 +E1 ) 
,6011  

ij-41 —(0 	ij 	W nAij —W n-liij-i 

	

V2 	 nil 	nil 
+—W. —E 2  ) 

(0 	
+0 +e2) 	 ) 

	

2 	 A7/2 	 Ant 

— 	 
Re [T

1  +T2  +T3  +11 

(13) 

where, 

T1, T2, T3 and T4 (in Eqn. 12) and T1, T2, T3  and 14  (in Eqn. 13) represent the 

discretized form, of the right hand side terms in Eqns. (6) and (7) respectively, 

using a central space difference. For example T1 and T1  are expressed by: 

(g"  fi)a-112 
	 Iii);41/2  

(On 
)2 
	1-14 	

(on, 	
ij 

(on .4)i4112,.  
J  

(And 
2 	141,j 

(gu  
— 	(0. 

(An 1 )2 	

_t . 
j  

I 
(g"1/i)i-f1/2 	

. 

(on 
)2 

ugn 

(on )2  

(14)  

(15)  

In these equations n is the iteration index and el and e2 are, respectively, the 

signs 	of the contravariant velocity components Viand V2  which are 

approximated by: 
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Vi — 1 Cir j-fi 	
—
A [ j  

2A71 2 	Vi 2Ami  

The metric derivatives are calculated by: 

ax _X  i 41/2,j —x  ii/2J 	 ay 	Yi-I1/2j 	-I/2j  
X 	 f.Y — 

an ,  An' 	Ali 

ax 	Xij-qa  —Xu-11 /2 	ay 	Yij-1112  —Yij-1/2 
X 

11  an 2 	An 2 712 
ant 
	Ant 

These metric derivatives should be evaluated directly from the difference 
between grid points. It is, therefore, necessary to have coordinate values 
available at inter-grid points. The Jacobian of the transformation and covariant 
and contravariant metric components are calculated using Eqns. (8), (9) and 
(10). 

A very efficient implicit technique for solving the system, in multidimensional, is 
the stabilising correction splitting method. This method, which improves 
convergence, is now extensively used in both its original form proposed by 
Peaceman and Rachford [11] and in its generalized form [12]. Without imposing 
boundary conditions this splitting ADI scheme is unconditionally stable in the 
linearized case. 

Boundary Conditions 

The problem associated with the above system of governing equations is an 
initial boundary value problem. In terms of the stream function, the boundaries 
has to satisfy the total flux condition. Meanwhile the boundary condition for 
the vorticity must be evaluated using Eqn. 12. This coupling between the 
vorticity and the second derivatives of the stream function at the boundary 
represents the main difficulty in this vorticity-stream function approach. In this 
case, it is necessary to evaluate the second derivatives of w with a degree of 
accuracy sufficient to obtain an acceptable solution of the vorticity. 

(16),  

(17) 
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Using a body fitted coordinate system with T12= constant on the surface of the 
body,T1 will be zero. On the other hand T2, T3 and T4 can be calculated by a 
second order central difference approximation similar to the internal grid points, 
where the values of 	j_i  , 	ji  and ■Ifi4, j_f  are the values outside the 
computational domain (image points). 

In the present work two different methods are used to calculate the values of 
the stream function at the image points. 

- In the first method, the image points are calculated using a least square fourth 
order polynomial fitting with sufficient number of points near the boundary 

- In the second method, image points are calculated using the Taylor series 
expansion with second order approximations and only three points such that: 

—4%442  -1-6-4%41., —3-4%, 
for k = i-1, i and i+1 	 (18) 

At the inflow boundary both the stream function and the vorticity distributions 
are prescribed. At the outflow boundary the value of the stream function and 
the vorticity are determined such that the velocity component normal to the 
free stream and the down stream vorticity are conserved in the flow direction. 

Pressure and Shear Stress 

If only the pressure on the solid boundary is desired, it is not necessary to 
solve Eqn. 3 over the entire field. Instead, a simpler equation can be obtained 
by applying the tangential momentum equation to the fluid adjacent to the wall 
surface. This equation can be written in the vector form as: 

1 
Vp =- I[V Aco] (19) 

2 

In the general curvilinear non-orthogonal co-ordinates system this equation can 
be written after discretization as: 
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13;41 	 1 Vi 	A  +g  22  -3(A) +4411j41 —61  ij42  1} 

A'12 

(20)  

where'll  is the coordinate line adjacent to the solid boundary. In order to apply 

the previous equation to find the pressure at all points on the wall surface, the 

pressure must be known for at least one point on the solid boundary. 
Calculations were started from the stagnation point whose pressure is known. 

The shear stress at the solid boundary can be written in the generalized non-

orthogonal curvilinear co-ordinates as 

1 	(3 	1 	ask 	a*  [ 	 (g 22 	 ±g12 	)] 

Re lig 	22 an 2 lig  22 	an  2 	
an 

TEST CASES 

To illustrate the present numerical code, three test cases are considered. 

The first test case concerns the cavity flow problem. This popular example for 

comparing numerical methods is shown in Fig. (1). The fluid velocity is zero on 

the three sides of the square (BC,CD,DA). A velocity profile on the side AB 

proposed by Bourcier and Francois [101 is considered in the following form: 

	

u(x) =-16x2 (1 —x)2 
	

(22) 

Computations was performed 

for the case of (Re= 200). A 

rectangular computational grid 

of 	21x21 	points 	was 

generated using a stretching 

function to cluster more points 

near the side AB. Figs. (2) and 

(3) show the steady state 
streamlines and the iso-
vorticity lines. 

(21)  

Fig. (1) Cavity boundary conditions. 
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Fig. 2 Streamlines contours. 	Fig. 3 Iso-vorticity lines. 
(Cavity problem) 	 (Cavity problem) 

In the second test case flow around a circular cylinder is considered. 
Computations have been performed using 41X41 grid points for five values of 
Reynolds number; namely Re = 60, 100, 200, 400, and 600. The streamlines 
for two values of Reynolds number (Re = 60 and 600) are illustrated in Figs. 
(4.a) and (4.b). It is noticed that, as the Reynolds number increases, the 
distance of the wake behind the cylinder becomes longer and the separation 
point moves further upstream as shown in Fig. (5) where a comparison with 
other Numerical and experimental results (13-151 is illustrated. The distribution 
of the pressure coefficient, Cp on the surface of the cylinder for various 
Reynolds numbers is shown in Fig. (6) . The calculated pressure, friction and 
total drag coefficients are shown in Fig. (7) together with the experimental data 
of Ref. [15]. Acceptable agreement between calculated and experimental values 
is observed for Re < 400. However, for Re > 400 , a finer grid seems to be 
necessary in order to obtain better results . In all cases the conservative form 
of the momentum equation is used. Meanwhile a comparison between this 
conservative formulation and the non-conservative one has been performed for 
Re = 400. It is noticed that the steady state solutions are practically identical. 
Nevertheless, a better convergence history is observed for the conservative 
formulation as shown in Fig. (8). 
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Fig. 8 Convergence history. 
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Fig. 4 Streamline pattern - flow around circular cylinder 

2.0 	 

1.0 

0.0 - 

***** Experimental Ref[15] 
Numerical Solutions 

Ref [14] 
Ref 13 
Present Code 

c..>" —1.0 

-2.0 

- 3.0 
0 

- - - Potential x.e.“..I.K Re-60 
***** Re-100 
we-woe Re-200 

Re=400 
•-•-•-•-• Re-600 

0 	511 	100 	150 	200 
II era lion Number 

Fig. 6 Pressure coefficient 
distribution. 
(circular cylinder) 

26 46 i 2 e ' 	 2 	2 	6 	6 2 i et 
100 	 1000 
Reynolds Number 

— rousvrvulive 
	 Non uoiniervative 

... 

- 6 

• .............. ***-** Exp. Refil 5] 
••wim• Num. Crl [total 
swam Num. Ca  pres. 
"rAninn Num. Ca  fric.) 



FIFTH ASAT CONFERENCE 

4 — 6 May 1993, CAIRO 

AD-1 12 

In the third test case the flow around an airfoil is considered to illustrate the 
numerical solution obtained by the present code in the general curvilinear co-
ordinates system. Computations have been performed for NACA 0012 airfoil at 
different angles of attack and Reynolds numbers. The computational grid, 
shown in Fig. (9), was generated using the authors' optimal grid generation 
code [16] with a grid of 41x25 points. To assist the effect of the previously 
mentioned methods of boundary condition treatment, Fig. (10) elucidates the 
convergence histories obtained using the first and second methods for image 
points calculations. Fig. (11) compares the calculated pressure coefficient with 
the numerical results of Ref. [17] for the case of Re =400 and zero angle of 
attack. For convenience, pressure coefficient data measured at Re =1x105  (18) 
are plotted on the same figure. The streamlines for different angles of attack 
are illustrated in Fig. (12) for Re= 1000. The figure shows the enlargement of 
the wake and the upstream displacement of the separation point over the airfoil 
upper surface as the angle of attack increases. The computer code was written 
using MS Quick Basic and the CPU time was 0.1519 sec./iteration/point on 
IBM386/33Mhz PC. 

Fig. 9 Computational grid. (NACA 0012) 



Fig. 10 Convergence history. 
(NACA 0012) 
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Fig. 11 Pressure distribution. 	Fig. 12 Streamline pattern for 
(NACA-0012, zero angle of 	angles of attack = 5; 10; 15' 
attack ► 	 and 20'. 
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CONCLUSIONS 

Solution of unsteady, incompressible, two-dimensional Navier-Stokes Equations 
using if —co formulation is presented in a general non-orthogonal curvilinear 
coordinate system. Three test cases are presented to assist the performance of 
the computer code including cavity flow, flow around a circular cylinder, and 
flow over an airfoil. 	From these applications , It was 	found that: 
1- The solutions obtained illustrate the ability of computational method to 
describe the details of complex flow problems. 
2- Using the same grid, as the Reynolds number increases the convergence of 
the solution starts to oscillate. It is concluded that a finer grid size and/or a 
smaller time step are required for numerical accuracy. 
3- The accuracy of the solution is highly dependent on the quality of the 
computational grid, specially for complex geometry problems. Nevertheless, 
the proposed generalized non-orthogonal curvilinear formulation with 
appropriate conservative finite difference approximations can lead to acceptable 
solutions regardless grid deviations from orhogonality and smoothness. 
4- Solutions are limited to small Reynolds numbers (Re-103). For higher Re 
values, turbulence closures and very fine near-boundary mesh are necessary. 
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