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ON THE CALCULATION OF LAMINAR BOUNDARY-LAYER FLOWS 
WITH MASS TRANSFER BY A SIMPLE INTEGRAL METHOD 

DR. GAMAL M.ABDEL-HOTY 

ABSTRACT 

A new simple integral method has been developed and applied 
to boundary layer flow involving mass transfer. The original 
Karman-Pohlhausen was refined by effecting a second integration of 
the momentum equation in order to arrive at a basic differential 
equation for the determination of 6Cx).A computer code (SIM code) 
has been developed and its application extended to a case of great 
interest; porous flat plate with similarity plowing using 
polynomial velocity profiles of constant-  and variable-

with ^th...r 
obtained . This method is sufficiently simple to be of practical 
use. 

NOMENCLATURE 

C 	blowing coefficient , v /U 
o 

C 	coefficients of the polynomial velocity profiles 

U2 
C 	 skin-friction coefficient 	T / - pU 

2 0 

f 	velocity profile, u/Uo 
i=1,2 , see equations Cgc) & ClOc) 

K. 	i=1,2 , see equations C9b) & Cl0b) 

R ,R 	Reynolds number based on x, Ux/v 
ex 

Re6,A 	Reynolds number based on x, U 6/1) 

u,v 	velocity components corresponding to Cx.y) 
blowing velocity at the wall 

x,y 	general orthogonal curvilinear coordinate 
U ,U 	free stream velocity 
i 0 
0 	blowing parameter 

dimensionless coordinate, y/w6 
6 	boundary-layer thickness 

kinematic viscosity 
density of the fluid 

T 	shear stress at the wall 
V 

blowing parameter for and & 4th order polynomial s • s 
profiles 
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INTRODUCTION 

The successful design of aerodynamic control surfaces relies 
heavily on knowledge of the attendant boundary-layer flows Cl]. 
The ability of predicting and understanding the separation of such 
boundary layers is of vital importance in the design process, as 

boundary-layer separation is known to alter rather drastically the 
aerodynamic characteristics of the control surfaces. From 
practical point of view, therefore, the ability to effectively 
control the boundary layer is perhaps even more important [4]. 

A well-known method of boundary-layer control is the use of 
surface mass transfer. This method has other important 
applications in the modern technology of high-speed flight. 

The primary purpose of this paper is to develop a new 
approximate method which can be used to study flows of this type. 
This method is sufficiently simple, accurate and reliable to be 
of practical use and warrant its development into a powerful and 
practical tool for tacking flows of complex nature. 

This method is a new idea for improving the usual Karman - 
Pohlhausen integral method by effecting a second integration of 
the momentum equation in order to arrive at a basic differential 
equation for the determination of the boundary-layer thickness. 

The new method is applied to boundary-layer flows with 
surface mass transfer. Some calculations were performed to obtain 
the friction on a porous plate with similarity using velocity 
profiles of polynomial form with either constant or variable 
coefficient. 

Qualitatively correct results have been obtained and some 
favorable comparisons with other exiting results have been found. 

GOVERNING EQUATIONS: 

The general differential equations and boundary conditions 
describing plane, incompressible, laminar boundary-layer flows 
are as follows : 
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Cu 	dv 
continuity : 	+ 	= 0 

ex ay 

0 	0 	02u 	0U
2  

momentum : 	u + 	uv = v 	+ U - 
ex 	dy 	dy2 	1  ex 

Cla) 

C1b) 

and uCx,O) = 0 

vCx,0) = v Cx) 
V 

uCx,c5) = U Cx) 

Here Cx,y) forms an orthogonal curvilinear coordinate system 
with x measuring the distance along the body surface, and Cu,v) is 
the corresponding velocity vector (fig. 1). 

Because of the parabolic nature of the partial differential 
equation, an "initiat" conditions on u is generally required to 
complete the formulation of the problem. However in the present 

method, this initial condition is not essential and is generally 

replaced by a condition on the initial boundary-Layer thickness, 

6C0). 

integrating equation Cib) once from the wall, y=0, to some 
distance y and using equation Cla) we have : 

T Cx) 	dU 	eu 	Y 0 	Y d 
w 	1 - yU 	+ v -- + u f -- u dy - uv - f 	u

2 
dy C2) 

P 	idx 	ey 	0 ex 	w 0 ex 

This equation, with the upper limit y replaced by 6(x) is the 
basic differential equation for determining &ND in Karaman method 
once a velocity profile u/Ut is assumed. 

The new approach is based on the refinement of this equation 
by effecting a second integration of the momentum equation Clb) in 
order to arrive at a basic differential equation for the 
determination of 6(x). Equation (2) is used as an integral 
representation of the skin-friction term. There for, equation (2) 
is integrated from the wall to 6CND thus obtain 

T Cx) 	6
z 

dU 	0 y 	6 
—Id-- b = — U 1  + vU +f udy 	f u dy -v f udy - f dy ---1 u2dy (3) 

p 	2 
t
dx 0 	ex 0 	v0 	0 	ex 0 



= vU +f udy 	f u dy - v f udy - f dy —f u2dy 	C5) 
0 8x0 	0 0 8x0 

el y 	6 	
6 
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From Equation (2) , with the upper limits of the integration 
replaced by 6(x), the skin-friction in equation (3) could be 
represented,under the condition that the shear stress vanishes at 
the outer edge and using Leibnitz rule; 

Cy,,, 	dU 	d 6 
	

d 6 
	 - 6 U 	 + 	f u dy - U v - 	f u dy 	(4) 

p 	 dx dx 0 	1 	dx 0 

Combining equations (3) & (4) we have the basic equation for 
6( x) 

1 2 dU 	d 
6 	

d 6 
- 6 U 	1 + U 6— f u dy - U v 6- 6— f U

2 
dy 

:
dx 	

i 	i v 2 	 dx 0 	dx 0 

equation Cs), is a frist-order nonlinear ordinary differential 
equation for 6Cx) for any assumed velocity profile u/Ul. 

Equation C.4) & (5) form the basis of all our calculations in 
the selected cases to be investigated. 

POROUS PLATE : 

in a flow over flat plate, we have Ui = Uo = constant and 
zero pressure gradient, from which equation (4) and C..) become 

1 	T 

' 	 
d 	6 u 

_ 	- 	 f - C 1 - -) dy - C 

2 

	

	 b p U
z 

dx 0 U 
0 	0 

and 

d 	6 u 	d 6 u 2 	1 	1 	6 u 	a Yu 
-- f - dy - Cb  - --(-)dy = - + - f - dy ---,f - dy 
dx 0 U

0 	
dx Uo 	R

e6 
6 0 U 	ex 0 Uo 
 0 

C 6) 
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-b 	6 u 	1 	6 
-- f - dy - - f dy 

	

A 0 U 	6 0 

a y U 2 

- f C -) dy 
ax 

C 7) 

VELOCITY PROFILE: 

Assume the velocity profile to be 

uzU = E C.Cx) 7? 
0 	t 

4th order potynomtat : 

under the following boundary conditions : 

uCx.0) = 0 , uCx.6) = U . 	Cx, ,c) = 0 9- u Cx 6 = n 0 y 	YY 

the profile is ; 
1 

= - 

 

(2T) + 6{ n2  + 2(1+40773 	(1+3077
4 
] C9a) 

 

U 
0 
	 1+C 

(8) 

b
R

o6  Where C - 
6 

K = 6 /6 = 31-4C/10(1+{) 

F1  = 62/6 = C0.117+0.247C+0.114(2)/C1+() 

2nd order pcLynomtaL : 

under the following boundary conditions : 

uCx,0) = 0 , uCx,,c) = 
0 

the profile is 

tt 	 1 
= f 	[7.) 	t:77 

U 
0 	

1 +{ 

C 9b) 

C9c) 

(10a) 



?,4TTITARY TECHNICAL rill I Fe= 

CAIRO - EGYPT AD-4 46 

R 
Where 

2 

K = 6 /6 = 3+4(/6C1+() 
	 Cl0b) 

F
z 
= 6

z
/6 = C0.166+0.333(+0.133(2)/C1+()

z 	ClOc) 

For ( and ( equal zero, equations C9a) & C10a) are reduced 
to the constant coefficient 4th degree and linear profiles. 

DERIVATION OF BASIC EQUATIONS: 

Substituting the profile, equation (8). into equation C7) and 
introduce Reynolds number R Cor R) we obtain after some algebra 

ex 

1/z 	1/2 c16 	1/2 
C.' R = R 	—2 -c R 

2 f 	dx 
C11) 

i 	" , 	i  
fdri 

a -F-fAfzch?-ffdl)  a 
F-x fAfd77 = 1K--, 

d 
 CAFt+Cb  Kt) (12) 

0 	0 	0 	0 

SIMILARITY BLOWING: 

-1/2 	-1/2 
In this case we know that C = OR 	and A a R [47 

vb 
( or ( 	constant. 	 fixedconstant takes on a fixed 

value only for a fixed value of 0 ,i.e. , it not a universal 
constant. 

t, 4th degree poLynomica : 

Subtitling equation C9a) into equation C1E) we obtain 

dA
z  

1 1 	 3+4( 
= C- 	[.058+.1387( +.0e7e3 {z }/ [1 + .6( --- 7 

dR 	2 C1+()
z 

1+( 

Assuming Red  0) = ACO) =0 , hence the solution is 

A
z 

3+4( 
- = 2 C1+()

z 
[1 +.6 ( —] / [.058+.1387( +.0676 (2 	C13) 

R 	 1+( 
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Assuming Rah 0) = ACO) =0 , hence the solution is 

A2 
 

3+4( 
-= 2 C1+C) 2  [1 +.5 C — ] / [.058+.1387C +.0676 C2  ] 	C13)  
R 	 1+C 

fr^m ,,h4  ^h 6 = x(0)1/2/ 
E, 1/2 

The conventional blowing parametter 	is then found 

A
z 

0 = 6CC- )-1/2 	 C14) 

Finally, the skin friction is obtained by combining equations 
CO3-.), C11) and (1 3) 

1/2 	A2  
1 

L
f 
R 	= F C- )

1/2 
- 	 C15) 

Results of the calculation are given in figure (2). 

t) 2nd degree poLynomial : 

Exactly the same procedure can be followed to give the 
results of this case 

A
z 

-= 2C1+() [1 +2C +.75( ] i  [.125+.266 ( +.116 C2  i 	C16) 

A2  A 
0 = 6CC- )-1/2  

1/2 	A2  1 
5 Cf R 	=F 

1 R 
C- )1/2 

C14) 

-13 	 C15) 

Results of the calculation are given in figure (3). 

DISCUSSION AND CONCLUSIONS 

It is clear in figure (6) , that the results from the new 
method using variable-coefficient polynomial profiles agree very 
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closely with those using constant-coefficient polynomials up to 

fairly strong blowing, f3 = 0.4. .This is applies to both the 4th 
and the 2nd degree (linear profile in the case of 

constant-coefficient polynomial ) polynomial. The most important 
advantage of the new method is that the results are insensitive to 
the choice of the profiles vise versa to the results obtained by 
the Karman-Pohlhausen method , Figure (5). which are highly 
sensitive to the choice of the velocity profile. This sensitivity 
suggests the lake cf reliability of the Karaman method, and the 
large error in the prediction of skin friction obviously reflects 
the inadequacy of the method compared with the new method as 
shown in figures (2) and (4), 

At a higher blowing rates, results from the variable 
-coefficient 	profile and those from the constant-coefficient 
profiles begin to show noticeable difference ,Fig. (6). The 
variable coefficient profiles seem to offer better prediction for 
blow-off (0c = 0.625 fcr the 2nd degree polynomial and pc = 0.532 
for the 4th degree polynomial). The results are compared to the 
exact results [2] (of OC = 0.619) 	and it show distinctly the 
agreement with it as illustrated in fig. (3). The results obtained 
are believed to be sufficiently accurate for engineering purposes, 
in light of its insensitivity to the choice of the velocity 
profile. 

The new method and its application to cases involving both 
pressure gradient and mass transfer is now carried out 
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FIG.1 COORDINATE SYSTEM 
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