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Abstract: The practical economic load dispatch problem is a nonconvex and non-smooth optimization problem. 

It is challenging for the available optimization solvers to find the global optimal solution to this problem. 

Therefore, new and superior optimization solvers are still desired. To introduce a novel and efficient 

optimization solver to the problem, a recently developed generic optimization solver, known as the Honey 

Badger Algorithm (HBA), is utilized in this paper. The performance of the HBA is enhanced by augmenting it 

with a random walk-based search mechanism, known as Levy flights, to improve the diversity of the population 

as the search progresses. The resultant proposed algorithm is denoted as Honey Badger Algorithm with Levy 

Flights (HBA-LF). Based on two benchmark problems, the proposed algorithm is compared with several state-

of-the-art algorithms. The results demonstrate the superiority of the proposed algorithm compared to the 

previously proposed algorithms. In particular, considering a real benchmark system, the proposed algorithm 

could achieve a monetary saving that ranges from 243.73 $/hr to 98,253 $/hr if the proposed algorithm has been 

adopted for solving the problem instead of previously proposed algorithms 

 
KEYWORDS: Economic Dispatch, Honey Badger Algorithm, Levy flights, Valve Point Effects. 

1. INTRODUCTION 

The economic dispatch problem (EDP) 

is an optimization problem with the main 

objective of minimizing the total generation 

cost. Achieving a balance between the total 

generation and demand as well as respecting 

the upper and lower generation limits of the 

generating units are essential constraints of the 

problem. The simplest formulation of the 

problem constitutes a convex optimization 

problem; however, this convex formulation 

neglects several practical aspects that affect the 

operation of the thermal generating units. 

When practical features of the generating units 

such as valve point effects, prohibited 

operating zones, and multiple fuel options are 

considered, nonconvexity and non-smoothness 

are introduced to the problem formulation.  

Therefore, the consideration of these features 

renders finding the optimal solution to the 

problem a challenging process. If no powerful 

optimization solver is used for solving the 

problem for each dispatching interval, then a 

repetitive failure of finding the global optimal 

solution could lead to the accumulation of 

significant monetary losses, in particular for 

large systems with many thermal units having 

non-convex cost functions [1], [2]. 

Due to the challenging nature of the 

nonconvex EDP, several optimization solvers 

have been proposed for finding the global 

optimal solution. These optimization solvers can 

be classified into deterministic and stochastic 

solvers. Deterministic solvers include a branch-

and-bound based technique [3] and a steepest 

decline-based method [4]. The deterministic 

solvers are characterized by low computational 

time. However, they suffer from being dependent 

on the problem instance [1]. A deterministic 

solver could successfully solve a specific variant 

.
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of the problem, and it may fail to solve another. 

Even changing the parameters of the problem 

may lead to a failure of the deterministic solver.    

On the other hand, stochastic solvers or 

metaheuristic techniques are more commonly 

proposed. Examples of these techniques are the 

improved random drift particle swarm 

optimization [5], social spider algorithm [6], 

Chaos firefly algorithm [7], improved social 

network search [8], enhanced  heap-based 

Optimization techniques [9], [10], improved 

marine predators algorithm [11], and teaching–

learning studying-based algorithm [12]. 

Metaheuristic techniques are flexible to the 

problem formulation and instance. These 

techniques do not impose any constraints on 

the specifications of the considered problem, 

and hence they can be applied for solving the 

nonconvex EDP with all the practical features 

considered. These techniques have achieved 

significant progress in solving the nonconvex 

EDP within the previous literature. However, 

there is no guarantee that the best-obtained 

solution of a metaheuristic technique is the 

global optimal solution. The performance of a 

metaheuristic technique is typically assessed 

using statistical analysis. In this analysis, the 

metaheuristic technique is executed a certain 

number of times to solve a specific instance of 

the problem, then the performance of the 

algorithm is assessed using statistical measures 

such as the minimum and average values of the 

objective function and the average 

computational time. The number of runs used 

to perform the statistical analysis is typically 

50 as in [13] or 100 as in [14]. Although 

several metaheuristic techniques have been 

previously proposed for solving the nonconvex 

EDP, these techniques may fail in finding the 

global optimal solution for some instances of 

the problem. This demands the development of 

superior solvers. Recently, a generic 

optimization solver known as Honey Badger 

Algorithm (HBA) has been proposed in [15]. 

This algorithm has been compared with many 

earlier metaheuristic techniques in [15] and the 

results show that the HBA is capable of 

providing superior performance compared to 

many other metaheuristic techniques. On the 

other hand, it has been observed that a random 

walk-based search mechanism known as the 

Levy flights is capable of enhancing the 

performance of many metaheuristic techniques 

when added to them [16]. This enhancement is 

due to the increased diversity in the population 

introduced by the Levy flights. Consequently, 

it is proposed in this paper to combine the 

Levy flights with the HBA to produce the 

HBA-LF algorithm to be applied for solving 

the nonconvex EDP. To conclude, the main 

contributions of this paper can be stated as 

follows 

• A recent powerful metaheuristic 

technique, known as the honey badger 

algorithm, is applied to solving the non-

convex economic dispatch problem. 

• The proposed algorithm has been 

enhanced by augmenting it with Levy 

flights mechanism to produce the 

proposed honey badger algorithm with 

Levy flights. 

• Both the aforementioned algorithms 

have been compared with several 

previously proposed metaheuristic 

techniques considering the same 

benchmark problems.  

The results demonstrated the superior 

performance of the honey badger algorithm 

with Levy flights compared to that of the 

honey badger algorithm and several previously 

proposed metaheuristic techniques. 

The paper is organized as follows. 

Section 2 presents the formulation of the non-

convex EDP. Section 3 elaborates on the 

proposed algorithm. The simulation results are 

displayed in section 4 followed by the 

conclusion in section 5. 

2.PROBLEM FORMULATION 

The nonconvex EDP is an optimization 

problem which can be formulated as follows: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒                   𝐶𝑇 = ∑ 𝐶𝑖(𝑃𝑖)                           

𝑛

𝑖=1

 

(1) 

Subject to 

∑ 𝑃𝑖

𝑛

𝑖=1

= 𝑃𝐿𝑜𝑠𝑠 + 𝑃𝐿 

(2) 

https://www.sciencedirect.com/science/article/pii/S1110016821004695
https://www.sciencedirect.com/science/article/pii/S1110016821004695
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𝑚𝑎𝑥 (𝑃𝑖
0 − 𝐷𝑅𝑖 , 𝑃𝑖

𝑚𝑖𝑛) ≤ 𝑃𝑖 ≤ 𝑚𝑖𝑛(𝑃𝑖
0 + 𝑈𝑅𝑖, 𝑃𝑖

𝑚𝑎𝑥) 

(3) 

 𝑃𝑖
𝑚𝑖𝑛 ≤ 𝑃𝑖 ≤ 𝑃𝑖,1

𝑙             (𝑖 = 1,2, ⋯ , 𝑛)

𝑃𝑖,𝑗−1
𝑢 ≤ 𝑃𝑖 ≤ 𝑃𝑖,𝑗

𝑙     (𝑖 = 1,2, ⋯ , 𝑛), (𝑗 = 2,3, ⋯ , 𝑛𝑝𝑖)

𝑃𝑖,𝑛𝑝𝑖

𝑢 ≤ 𝑃𝑖 ≤ 𝑃𝑖
𝑚𝑎𝑥           (𝑖 = 1,2, ⋯ , 𝑛)

} 

(4) 

where 𝐶𝑇  is the total generation cost, 𝑛 is the 

total number of generating units, and 𝐶𝑖(𝑃𝑖) 

represents the generation cost of unit 𝑖. The 

generation cost of unit 𝑖 is a function of the 

output power from unit 𝑖, which is denoted as  

𝑃𝑖 . Considering the valve point effects, the cost 

function 𝐶𝑖(𝑃𝑖) can be modelled as follows: 

𝐶𝑖(𝑃𝑖) = 𝑎𝑖 + 𝑏𝑖 𝑃𝑖 + 𝑐𝑖  𝑃𝑖
2 + | 𝑒𝑖  𝑠𝑖𝑛(𝑓𝑖 × (𝑃𝑖

𝑚𝑖𝑛 − 𝑃𝑖))| 

(5) 

where 𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 , 𝑒𝑖 , and 𝑓𝑖  are fuel cost 

coefficients of unit 𝑖. Moreover, if there are 

generating units having multiple fuel options 

in addition to the valve point effects, the 

generation cost function is expressed as [17]:   

𝐶𝑖(𝑃𝑖) = 𝑎𝑖,𝑘 + 𝑏𝑖,𝑘  𝑃𝑖 + 𝑐𝑖 ,𝑘  𝑃𝑖
2 + | 𝑒𝑖,𝑘  𝑠𝑖𝑛(𝑓𝑖,𝑘 × (𝑃𝑖 ,𝑘

𝑚𝑖𝑛 − 𝑃𝑖))| 

  if         𝑃𝑖,𝑘
𝑚𝑖𝑛 ≤ 𝑃𝑖 ≤ 𝑃𝑖,𝑘

𝑚𝑎𝑥 . 

(6) 

In (6), 𝑎𝑖,𝑘 , 𝑏𝑖,𝑘 , 𝑐𝑖,𝑘 , 𝑒𝑖,𝑘 , and 𝑓𝑖,𝑘 are fuel cost 

coefficients of unit 𝑖 while using fuel type 𝑘. 

𝑃𝑖,𝑘
𝑚𝑖𝑛  and 𝑃𝑖,𝑘

𝑚𝑎𝑥 are the minimum and maximum 

output power from unit 𝑖 while using fuel type 

𝑘, respectively.  

Constraint (2) is the power balance constraint 

which states that the total output power from all 

the units equal to the total system load 𝑃𝐿  plus 

the transmission losses 𝑃𝐿𝑜𝑠𝑠 . 𝑃𝐿𝑜𝑠𝑠 can be 

approximated using Kron’s formula which is 

expressed as follows: 

𝑃𝐿𝑜𝑠𝑠 = ∑ ∑ 𝑃𝑚𝐵𝑚,𝑖𝑃𝑖 + ∑ 𝐵0𝑖𝑃𝑖

𝑛

𝑖=1
+ 𝐵00 .

𝑛

𝑚=1

𝑛

𝑖=1

 

(7) 

𝐵𝑚,𝑗 , 𝐵0𝑗, and 𝐵00  represent loss coefficients 

determined using power flow before solving the 

EDP. Constraint (3) specifies the upper and 

lower limits for the output power of unit i while 

considering the ramp rate limits, where 𝑃𝑖
0 is 

the output power from unit i during the previous 

dispatching interval, 𝑃𝑖
𝑚𝑖𝑛  and 𝑃𝑖

𝑚𝑎𝑥 are the 

minimum and maximum generation limits, and 

𝑈𝑅𝑖 and 𝐷𝑅𝑖 denote the upper-ramp and down-

ramp rate limits of unit 𝑖, respectively. The set 

of constraints expressed in (4) model the 

prohibited operating zones, where 𝑃𝑖,𝑗
𝑙  stands for 

the lower bound of the jth prohibited zone, and 

𝑃𝑖,𝑗
𝑢  denotes the upper bound of the jth 

prohibited zone. Finally, 𝑛𝑝𝑖 is the total number 

of prohibited zones for unit 𝑖. Figs. 1 (a) – (c) 

presents schematic diagrams for different 

nonconvex cost functions due to different 

considered practical features. 

 

 
 

 

 
Fig 1. Nonconvex cost functions due to, (a) 

valve point effects, (b) prohibited operating 

zones, and (c) multiple fuel options. 
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3. PROPOSED ALGORITHM 

This section elaborates on the proposed 

algorithm for solving the nonconvex EDP.  

3.1 Honey Badger Algorithm 

Honey Badger Algorithm (HBA) is 

inspired from the foraging behavior of a 

mammal with white and black fur, as indicated 

in Fig. 2, known as the honey badger (HB) [15]. 

 

Fig 2. Honey badger 

The HB has good smelling skills. It uses 

theses skills to approximate its prey through 

walking slowly and digging. HB is also able to 

climb trees. It likes eating honey. However, it is 

unable to solely locate beehives effectively. To 

locate beehives, HB collaborate with a bird 

known as honeyguide. This bird locates the 

beehives while being followed by HB. Once the 

HB reaches to the beehive, it helps the bird to 

extract the honey with its strong claws and both 

enjoy the honey. To summarize, there are two 

main means used by the HB for finding food 

sources: the first by smelling and digging and 

the second by following the honeyguide bird. 

Inspired by this foraging behavior, the HBA is 

developed with two main equations for 

updating the search process. One equation 

expresses the digging phase and the second 

represents the honey phase. The equation 

expressing the digging phase is composed of 

three added terms as given next 

 

𝑥𝑛𝑒𝑤 = 𝑥𝑝𝑟𝑒𝑦 + 𝑥𝑐1 + 𝑥𝑐2 

                                                                       (8) 

where 𝑥𝑝𝑟𝑒𝑦 is the best position found so far, 

i.e., the global best position. 𝑥𝑐1 is given by (9) 

while 𝑥𝑐2 is presented in (12). 

𝑥𝑐1 = 𝐹 × 𝛽 × 𝐼𝑖 × 𝑥𝑝𝑟𝑒𝑦 

                                                                     (9) 

where 𝐹 is a flag that takes a value of either 1 or 

-1 according to (10), in which 𝑟1  is a random 

number between 0 and 1, 𝛽 is an algorithm 

parameter with a value typically larger than 1 

and a default value of 6, and 𝐼𝑖 is known as the 

intensity which expresses the concentration 

strength of the prey and the closeness of the 

prey from the 𝑖th HB. 𝐼𝑖 is computed using (11) 

𝐹 = {
1          𝑖𝑓 𝑟1 ≤ 0.5
−1           𝑒𝑙𝑠𝑒,       

 

                                                               (10) 

𝐼𝑖 =
𝑟2

4𝜋
×

(𝑥𝑖 − 𝑥𝑖+1)2

(𝑥𝑝𝑟𝑒𝑦 − 𝑥𝑖)
2 

                                                                  (11) 

where 𝑥𝑖+1 is the next individual in the 

population after 𝑥𝑖, and 𝑟2  is a random number 

between zero and 1. In (8), 𝑥𝑐2 is given by  

𝑥𝑐2 = 𝐹 × 𝑟3 × (𝑥𝑝𝑟𝑒𝑦 − 𝑥𝑖) × 𝛼

× |𝑐𝑜𝑠 (2𝜋𝑟4) × [1 − cos (2𝜋𝑟5)]| 

                                                                           (12) 

where 𝐹 has the same value as in (9), 𝑟3 , 𝑟4, and 

𝑟5 are three random numbers each takes a value 

between 0 and 1. 𝛼 is an update density factor 

used to achieve smooth transition from 

exploration to exploitation. 𝛼 is expressed as  

𝛼 = 𝐶 × 𝑒
(

−𝑡

𝑡𝑚𝑎𝑥
)
 

                                                                          (13) 

where 𝐶 is a constant with a value larger than 1 

and a default value of 2. 𝑡 is an iteration index 

and 𝑡𝑚𝑎𝑥 is the maximum number of iterations. 

Equation (8) represents the digging phase and 

models the ability of HB to find foods by 

smelling and digging. On the other hand, the 

honey phase, in which the HB follows the 

honey guide bird to find honey, is expressed 

using (14).  

𝑥𝑛𝑒𝑤 = 𝑥𝑝𝑟𝑒𝑦 + 𝐹 × 𝑟7 × (𝑥𝑝𝑟𝑒𝑦 − 𝑥𝑖) × 𝛼 

                                                                             (14) 

where 𝐹 is computed using (10) and 𝑟7  is a 

random number between 0 and 1. Before 

applying the digging and honey phases, the 

HBA algorithm starts by initializing a 

population of N individuals. These individuals 

are generated randomly between the upper and 

lower limits of the decision variables using 
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𝑥𝑖𝑗 = 𝐿𝐵𝑖𝑗 + 𝑟𝑖𝑗 × (𝑈𝐵𝑖𝑗 − 𝐿𝐵𝑖𝑗) 

                                                                     (15) 

where 𝑥𝑖𝑗 is the 𝑗th component of individual 𝑖, 

𝑟𝑖𝑗  is a random number between zero and 1. 

𝐿𝐵𝑖𝑗 and 𝑈𝐵𝑖𝑗 are the lower and upper bounds 

of component j of individual i. The pseudo code 

of the HBA algorithm is presented next 

 

 

Algorithm 1 HBA algorithm 

1: Initialize the parameters 𝑁, 𝑡𝑚𝑎𝑥 , 𝐶 and 𝛽. 

2: Develop an initial population randomly using (15).  

3: Evaluate the objective function value for each individual 𝑥𝑖 to get 𝑓𝑖 

4: Find the minimum value of 𝑓𝑖 to obtain 𝑥𝑝𝑟𝑒𝑦 and 𝑓𝑝𝑟𝑒𝑦 

5: While stopping criterion is not met  

6:    Calculate 𝛼 using (13) 

7: For 𝑖 = 1: 𝑁 

8: Calculate 𝐼𝑖 using (11) 

9: Generate a random value 𝑟 between 0 and 1 

10: If 𝑟 ≤ 0.5 

11: Calculate 𝑥𝑛𝑒𝑤 by (8) 

12: else  

13: Calculate 𝑥𝑛𝑒𝑤 by (14) 

14: end if 

15: Evaluate the objective function for 𝑥𝑛𝑒𝑤 to obtain 𝑓𝑛𝑒𝑤 

16: If 𝑓𝑛𝑒𝑤 < 𝑓𝑖  

17: Let 𝑥𝑖 = 𝑥𝑛𝑒𝑤 and 𝑓𝑖 = 𝑓𝑛𝑒𝑤 

18: End if 

19: If 𝑓𝑛𝑒𝑤 < 𝑓𝑝𝑟𝑒𝑦  

20: Let 𝑥𝑝𝑟𝑒𝑦 = 𝑥𝑛𝑒𝑤 and 𝑓𝑝𝑟𝑒𝑦 = 𝑓𝑛𝑒𝑤 

21: End if 

22: End for 

23: End while 

 

 

3.2  Levy Flights 

Levy Flights (LF) represents a flight 

behavior of many insects and birds. It is a 

random walk with varying step-lengths which 

follow the Levy probability distribution [18]. 

To generate steps from a Levy distribution, the 

Mantegna algorithm is typically used. With this 

algorithm, the step length  is determined by: 

ℎ =
𝑟𝑛𝑥

|𝑟𝑛𝑦|
1 𝛿⁄  

                                                                     (16) 

where 𝛿 is a constant, 𝑟𝑛𝑥 and 𝑟𝑛𝑦 are two 

normally distributed random numbers with zero 

mean and standard deviation values of 𝜎𝑥  and 

𝜎𝑦 , respectively, i.e.,  

𝑟𝑛𝑥~ 𝑁(0, σ𝑥
2)           𝑟𝑛𝑦~ 𝑁(0, σ𝑦

2 ).  

(17) 

𝜎𝑥 and 𝜎𝑦 are given by: 

𝜎𝑥 = [
𝛾(1 + 𝛿) × sin (

𝜋𝛿

2
)

𝛾 (
1+𝛿

2
) × 𝛿 × 2

(
𝛿−1

2
)
]

1 𝛿⁄

        𝜎𝑦 = 1 

(18) 

where 𝛾(∗) denotes the gamma distribution 

function. After determining the step length , 

the component 𝑗 of a newly proposed solution 𝑖 
by the LF is determined by: 

𝑥𝑖,𝑗
𝑛𝑒𝑤 = 𝑥𝑖,𝑗 + 𝜙 × 𝑟𝑛𝑖,𝑗 × ℎ ×

𝜎𝑥

𝜎𝑦
× (𝑥𝑖,𝑗 − 𝑥𝑝𝑟𝑒𝑦,𝑗).     

(19) 
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In (19), 𝑥𝑖,𝑗 and 𝑥𝑖,𝑗
𝑛𝑒𝑤   express the 𝑗 − 𝑡ℎ 

components of the old and new solutions 

corresponding to individual 𝑖 in the population, 

respectively, 𝜙 is a scaling parameter, 𝑟𝑛𝑖,𝑗 is a 

random variable that follows the normal 

distribution with a zero mean and a standard 

deviation of 1 evaluated in correspondence to 

element 𝑗 of solution 𝑖. 𝑥𝑝𝑟𝑒𝑦,𝑗 is the 𝑗 − 𝑡ℎ 

component of the best solution obtained so far.  

3.3  HBA-LF 

It has been demonstrated in [16] that 

adding the LF mechanism to several 

metaheuristics algorithms could significantly 

enhance the performance of these algorithms. 

The improvement in the performance is due to 

the increased diversity in the population and the 

increased ability to escape from local 

minimums. Consequently, it is proposed in this 

paper to combine the LF with HBA to produce 

the proposed HBA-LF algorithm. For each 

iteration in the HBA algorithm, 𝑁𝑐 cycles of the 

Levy flights are used. The pseudocode of the 

HBA-LF algorithm is introduced next 

 

Algorithm 2 HBA-LF algorithm 

1: Initialize the HBA parameters and the population randomly, steps 1 and 2 in algorithm 1. 

2: Initialize the parameters of the Levy flights 𝜙, 𝛽, and 𝑁𝑐. 

3: Apply steps 3 and 4 in algorithm 1. 

4: While stopping criterion is not met 

5: Apply steps 6 - 22 in algorithm 1 

6: For cycle=1: 𝑁𝑐 (Levy cycles) 

7: Apply (16), (17), (18), and (19) to generate new 𝑁 candidate solutions 

8: Apply steps 15 - 21 in algorithm 1 for each new candidate solution. 

9: End for 

10: End while 

To apply the HBA-LF for solving the nonconvex EDP, the constraint handling mechanism adopted in 

[1] is considered in this paper.  

4.RESULTS 

This section presents the results of 

simulating the HBA-LF for solving the 

nonconvex EDP. 

4.1 Parameters setting 

The parameters of the proposed algorithm 

have been assumed fixed for all the case 

studies. The selected values for the parameters 

are displayed in Table 1. These values have 

been selected based on extensive sensitivity 

analysis using several benchmark problems of 

the nonconvex EDP. A MATLAB platform on a 

computer with core i7 (3.4 GHz) processor and 

8 GB RAM is adopted to perform the 

simulation.  

TABLE 1. Parameters setting of the HBA-LF 

Parameters of HBA 

𝐶 = 5 𝛽 = 5 

Parameters of Levy flights 

𝑁𝑐 = 5 𝛿 = 1.5 𝜙 = 0.1 

The population size and the maximum 

number of iterations vary based on the 

considered problem. Therefore, the values of 

the population size and maximum number of 

iterations are mentioned in each case study.  

4.2 Case study 1 

Ramp rate limits, prohibited operating zones, 

and transmission losses are included in this 

case study. The considered benchmark system 

has six thermal units, and the total system 

demand is 1263 MW. The system data are 

available in [19]. 𝑡𝑚𝑎𝑥 and 𝑁 are fixed to 500 

and 15, respectively. A comparison between 

the results of the HBA-LF and the results of 

other algorithms from previous literature for 

solving the six-generator benchmark problem 

is shown in Table 2. The average 

computational time for a single run of the 

HBA-LF is 0.24 sec. The convergence of the 

HBA-LF is displayed in Fig. 3 
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TABLE 2. Comparison between the HBA-LF and previous literature (six-generator system) 

Method 
Minimum cost 

($/hr) 

Average cost 

($/hr) 

Average time 

(sec.) 

Standard 

deviation 

PSO [20] 15450.14 15465.83 6.82 10.1502 

GA [19] 15459 15469 41.58 0.057 

CTLBO [21] 15,441.697* 15441.763 NA* 0.0194 

CBA [22] 15,450.238 15,454.76 
0.704 2.965 

HBA 15449.893 15449.913 
0.172 0.0346 

HBA-LF 15449.893 15449.893 
0.24 0.00021 

*The results in [21] do not satisfy (7), and NA denotes Data are Not Available. 

 

Fig 3. Convergence curve of the HBA-LF (6-units system). 

 

From Fig. 3, it can be observed that the 

HBA-LF converged in less than 50 iterations. 

From the comparison in Table 2 and excluding 

the results of CTLBO [21], it can be observed 

that the HBA-LF has provided the lowest 

minimum cost, average cost, and standard 

deviation values. Since the reported optimal 

solution in [21] does not satisfy (7) as 

highlighted in [17], the HBA-LF algorithm is 

considered to present the best performance 

followed by the HBA algorithm.  

4.3  Case study 2 

A real large-scale system is adopted for 

this case study. It is the power system of Korea 

[23]. There are 140 units in this system and the 

total system load is 49342 MW. The system has 

12 units having valve point effects and 4 units 

with prohibited operating zones. The data of the 

system is given in [23]. 𝑡𝑚𝑎𝑥 and 𝑁 are fixed to 

2000 and 50 in this case study. Table 3 presents 

a comparison between the performance of the 

HBA-LF, HBA, and five other algorithms from 

the previous literature, and Fig. 4 presents the 

convergence curve of the proposed algorithm. 

From fig. 4, it can be noted that the HBA-LF 

converged in less than 1000 iterations. The best 

solution of the considered literature in Table 3 

has a total cost of 1,559,953.18 $/hr [24], yet 

the optimal solution found by the HBA-LF has 

a cost of 1,559,709.45 $/hr. This means that a 

saving of 243.73 $/hr can be achieved if the 

HBA-LF algorithm has been used for solving 

the EDP instead of the GWO algorithm. On the 

other hand, if the proposed algorithm has been 

used instead of the CTPSO [23], a saving of 

98,253 $/hr can be attained. Furthermore, the 

lowest average cost value is obtained by the 

HBA-LF. So, the HBA-LF offers superior 

performance compared to that of the other 

algorithms in Table 3. The lowest value for the 

standard deviation is given by GWO [24], 

however, the minimum and average cost values 

of the HBA-LF are lower than those of the 

GWO [24]. Table 3 shows that the average cost 

and standard deviation values of the HBA-LF 

are significantly lower than those of the HBA, 

which confirms the improvement added to the 

algorithm by augmenting it with the Levy 

flights mechanism.  
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TABLE 3. Comparison between the statistical results of the HBA-LF and previous literature                                 

(140-generator benchmark system) 

Method 
Minimum cost 

($/hr) 
Average cost ($/hr) 

Average time 

(sec.) 

Standard 

deviation 

GWO [24] 1,559,953.1 1,560,132.9 8.93 1.024 

CTPSO [23] 1,657,962.7 1,657,964.0 100 7.315 

MPSO [25] 1,560,436 1,560,445 18.43 NA 

DEL [26] 1,657,962.7 1,658,001.7 57.98 57.983 

KGMO [27] 1,583,944.6 1,583,952.1 28.14 NA 

HBA 1,559,709.51 1,559,962.98 4.77 1200.1 

HBA-LF 1,559,709.45 1,559,808.19 6.75 97.49 

NA: - Data are Not Available. 

 
Fig 4. Convergence curve of the HBA-LF (140-units system). 

5.CONCULSION 

This paper proposes a novel algorithm 

for solving the nonconvex economic dispatch 

problem. The proposed algorithm, denoted as 

HBA-LF, is an enhanced version of the newly 

developed honey Badger algorithm. The 

enhancement is achieved by adding Levy flight 

cycles. The Levy flight cycles improved the 

diversity of the population and the ability to 

escape from local minimums. To assess the 

performance of the proposed algorithm, two 

benchmark test systems have been adopted. 

Each benchmark system is characterized by a 

different feature and/or size. The last 

benchmark system is a real large-scale system. 

For both the considered benchmark systems, the 

best minimum and average cost values have 

been obtained by the HBA-LF. Moreover, the 

results showed that a saving up to 98,253 $/hr 

can be attained if the HBA-LF has been adopted 

for solving the problem instead of other 

previously proposed algorithms in the literature. 

The results also clearly demonstrated the 

improvement added to the HBA algorithm due 

to augmenting it with Levy flight cycles. 
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