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COMPUTATION OF ROBOT MANIPULATORS JACOBIAN : 

A QUATERNION APPROACH 

* 
A.S. ABDEL-MOHSEN 

ABSTRACT 

This work deals with the Jacobian computation for robot 
manipulators using a unified quaternion parameterization of 
position and orientation of members. 
Proposed generalized relations expressing the elements of 
manipulators Jacobian are derived in terms of Boolean parameters. 
These parameters introduce the contribution of both revolute and 
prismatic joints. The proposed relations are applied on a case 
study of a PUMA 560 robot manipulator for which analytical 
expressions of the Jacobian are obtained and tested by 
simulation. 

I. INTRODUCTION 

The major task of an industrial robot manipulator is to position 
and orient an end effector (EEF) during an approach phase of 
motion over a predefined time-based trajectory. To perform this 
task, a robot manipulator should have a mechanical structure of 
variable configuration with several powered joints between its 
members. In order to position and orient the EEF arbitrarily 
w.r.t a base fixed frame, the number of joints n or the degree of 
freedom of the manipulator must be greater than or equal to six. 
The first step in the formulation of the control problem of 
manipulators is to establish a relationship between the vector of 
EEF spatial coordinates X and the vector q of the joint 
coordinates or the general ized coordinates in the Lagrangian 
sense. 
The trajectory control of manipulators consists of forcing the 
vector X(t) to track a vector 

Xd(t) representing the desired 

evolution of the position and orientation of the EEF. A 
differential Inverse Kinematics Algorithm calculates the error Aq 

of the joint variables corresponding to an error vector AX = 

Xd(t) - X(t) to be compensated for. This process passes by the 
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computation of the manipulator Jacobian Matrix J(q). The 

computation of the elements of X(t) and those of J(q) depends on 

the kinematical parameterization of the manipulator. The 
computation of 3(q) for manipulators using the Homogeneous 

Transformation Matrix parameterization is given in [1,2]. The use 
of Quaternions for the parameterization of manipulators has been 
recently investigated [4-9]. They provide a unified represent-
ation of both position and orientation of members. In this paper, 
the computation of manipulators Jacobian in terms of quaternion 
parameterization is investigated. 
The organization of the paper is as follows : In section 2, the 
fundamental relations defining the unified quaternion position 
and orientation parameterization are shortly described. These 
relations are judged as essential for the derivation of the 
Jacobian matrix presented in section 3. The rest of the paper is 
reserved to the presentation of an application where a Quaternion 
based Jacobian of the PUMA 560 manipulator is obtained. A 
solution of the differential kinematic equations based on the 
Jacobian inversion is used to verify the validity of the obtained 
Jacobian by numerical simulation. 

2. A UNIFIED QUATERNION PARAMETERIZATION OF 
POSITION & ORIENTATION 

Consider a frame bF in a general space motion w.r.t. a frame n
F.  

Based on Chasle's theorem [3], the motion of bF w.r.t. n
F is a 

superposition of a translation following any point (say 01 ), the 
origin of bF, and a rotation about that point. 
This rotation may be defined by a Quaternion of Finite Rotation 

e
n,b as [8,9], 

e
n,b = cos(e/2) + sin(e/2)ii 
	

(1) 

where 9 and u are respectively the principal angle and the 
principal axis associated with Euler's theorem of finite rotation 

[3]. The quaternion of finite rotation e
n,b is a unit quaternion 

having the same representation on both frames bF and nF, i.e., 

e
n,b 

* e
n,b 	1 	 (2) 

en  b = b 
	= [e 0 

n 	
n 	e

1 e
2 e

3]t 	 (3) 

The four elements of the quaternion representation n
fn,b are the 

Euler parameters of finite rotation : 

e
0 
 = cos(0/2) 	el  = ul  sine/2)) 

(4) 
e2  = u2  sin(O/2) 	; 	e

3 
= u

3 sin(e/2) 
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The angular velocity of 
bF w.r.t. 

nF may be expressed as [5]; 

. * nec n 	2
n -
241,b 	—n,b 

(5)  

The position of 
bF w.r.t. 

nF is defined by the vector quaternion 

Pn,b 
from the origin On 

of nF to the origin 0b 
of bF. Pn,b 

and 

its representation are expressed as : 

P
n,b 

- 0 +
n
0b 

- n[0 x y z]t n
En,b 

where x,y and z are the coordinates of 0b 
in 

nF. 

Vector Transformations - Successive Rotations : 

Consider a spatial quaternion vector V. It may be shown [9] that 

the representations of V w.r.t. 
bF and 

nF are related by 

* bV * nec nV ne 	
(7) 

—n,b 

Eq.(7) is the quaternion equivalent of Vector Transformations. 

Consider three frames 
1F, mF and 

nF in successive rotations; it 
may be shown [9] that when the quaternions of finite rotations 
are represented w.r.t. local frames, the representation of the 
overall rotation corresponds to the post multiplication of the 
quaternion for the fore rotation by that for the following 
rotation i.e., 

1
!1,n - 

1
1,m * 

mem,n 	 ( 8) — 

Manipulator Kinematics  

A robot manipulator is considered here as an open kinematic chain 
of rigid links. The first link is fixed to the base frame and the 
last link is attached to an end effector. The links are numbered 
starting from the base link which is given the number O. The last 
link is given the number n which is the degree of freedom of the 
manipulator, 
A right handed orthogonal frame 

iF is assigned to each link i 

according to Denavit & Hartenberg convention [2]. 
iF may be 

obtained starting from 
i-1F through four steps of successive 

rotations and translations as follows : a) Rotation around the 
zi_l atanangleei;b) Translation in the direction of x 	by 

the member length ai ; c) Translation in the direction of z1-1 by 

di; d) Rotation about xi  by the member twist ai. 

Based on Eq.(8), the orientation of iF w.r.t. I-1F is given by, 

(6)  
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1-1 	=1-1
(0 ) * 

a 
 

where 

1-1 
ni-1,a(01)  = [cose1  /2 0 0 sine /2] 	; 

a
e a .(a.) = [cosa

1  /2 	sinai/2 	0 	0] 	; -, 11  

i-1
e. 
-1-1,i 

= 

cos 

cos 

sin 

sin 

6 1/2 
61/2 

6 1/2 

91/2 

cos 

sin 

sin 

cos 

ai/2 

ai/2 

ai/2 

ai/2 

The position of 1F w.r.t. 1-1F may be specified by 
1-1

E1-11 = [0 	a1 cos e i 	1 d ]t (11) a1 sin ei 
	d1 

 
]t 

 a revolute joint, the joint variable qi  - ei  while for a 
prismatic joint qi  = di. 

Based on Eq.(8) the orientation of link 1 w.r.t. link j(j<i) is, 

The position of linkA w.r.t. link j may, however, be defined by 
the position vector P 

Ji 
from .0.

3 
 to 0

1 represented in 
3F as 

(9)  

(10)  

je 	- Je 	* j+1 
-.Li 	-3,3+1 	S-j+1,j+2 

*....* 1-le  
(12) 

j k-j+1 	,k-1  

* k-1p 
-k-1,k 

* jec 
-j,k -1 (13) 

For a manipulator having n links, the position and orientation of 

the EEF w.r.t, the base frame are given respectively by  
PO,n and  e 

	

	. Their representations in the base frame are expressed using 0,n 
Eqs.(12) and (13) as : 

n Op 	v  0 	±-1
Ei-1,i * 

0 c 	t * 	 X Y Z] 	(14) =0 n = 4" f-O i-1 	f-0,1-1 = [0 ' 	1=1 	' 

e
0,n = 0 0 1 	 1 2 *...* e 	* 1e 	n-1 c 

2n-1,n = [E0 E
1 E

2 E
3]

t 	
(15) -, ,  

The elements of 0 P 	0 
0,n 	- and e0 n are grouped in a vector X : - -,  

X 	
[X1 X 2]

t 	
(16) 



n -1 
q i  

3(2 X2 1 

n 
q 	E 

1=1 
= E aqa  

i°1 	i 
(20-b) 

FIFTH ASAT CONFERENCE DD -1 193 

4 - 6 May 1993, CAIRO 

where X1 - M 
o
P0,n = [X 	Y 	Z]t 	 (17) 

X 0e-0 	E 2 	0 	E1  ,n = [E0 	E 	3]
t 	

(18) 

I3' ]- and I3 is a 3x3 unit matrix 

The vector X(7x1) hence defines uniquely the position and 
orientation of the EEF w.r.t. the base frame. It should however 
be noted that the last four elements of X are not independent. 
They are inter-related by the normality condition (Eq.(2)). The 
right hand side of Eqs.(17) and (18) are function of the 
manip lator configuration defined by the vector q. 

manipulator using quaternion parameterization and may be 
rewritten as ; 

X - X(q) 	 (19) 

3. QUATERNION-BASED JACOBIAN COMPUTATION 

The differentiation of Eq.(19) w.r.t. time yields 
n  

k = E 	 (x) 
1=1 

o

0 

ci 	i 

Or : 

(20-a) 

Eq.(20-b) may be rewritten in the following matrix form 

  

1 22 	2n 
• 

 

k2 

  

(,20-c) 

  

    

    

where J
e is a 7xn jacobian matrix which relates the motion rate 

of the EEF X to the joint speeds CI: 
The upper 3x1 portion of the ith column of J

e is associated with 

position of the EEF and is given by : 

P = 	P + 0P 1 0: ( L0P —0,n] 4 (0 -0,1-1 -1-1,n) 
- 

1 	1 
(21-a) 

The analysis of Eqs.(10-13) shows that 
Oq 
0 (OP  -0,1-1)-0. Eq.(21-a), 

hence, reduces to, 

a (0 	0 
) 	

0 	1-1 	Oc   (21-b) i -, 	qi(-, 	* E1-1,n 	
e
0,1-1)  

The analysis of Eqs.(10-13) shows also that 
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ij 
_ 	0 (0 

!0,1-1) 
0  roe  . 

t. 	0,1 Oq 

However; 
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	CP 	= 0 Oq 	 i,n 
(22)  

(23)  

(24)  

0. 
0 ri-1

Ei-lin) 0(4 
0 (i-1 P. Oqi 	-1-1,i + 

qri-1e 	*p 	e i-1c 
O i 	-1-1,i 	-i,n 	-i-1,i) 

For a prismatic joint and based on Eq.(11), 

	(i.-1P-1,i) = [0 	0 	0 	lit  = i-1k-1 Oqi  

Using Eq.(22) it may be shown that 

*p 	* i-1 C 0  (i-1 	
( ) 25 Oqi 	-i,n 	= 0 

Substituting from Eqs.(22-25) into (21-b), pi  for a prjsmatic 

joint is expressed as : 

Pi = 0e . 	1-1k 	e * 0c . (26) -1 	-0,1-1 	1-1 	-0,1-1 

For a revolute joint and based on Eq.(11), 

	(i-1 
Oqi 	pi-1,i -ai sin q1 	a1  cos q1 	0]t  (27) 

Considering on the other hand the quaternion product it may be 
shown that : 

	

1-1k 	* i-1P-asilaq.a_cosq.0]t (28) ri 	
1 1-1 	1 	1 	1 	1 

and based on Eqs (9,10) it may also be shown that : 

0 ri-12i_iri) = 12  riki_,  * 1-1 
agil 	 2 	(29-a) 1-1,1);  

a i-lec 	1 _ 12  (i-127-1,1 	* i-lki_i) 
(29-b) '3(10- -1-1,ij 

Based on Eqs.(22) and (29) the last term in the R.H.S. of 
Eq.(23) may be rewritten as : 

a  [1-1e 	* i p 	e 1-1c 

	

Oqi 	-1-1,1 	-i,n 	-1-1,i 

0  (i-1e 	* i-1 c 
Oqi 	) * ip  -1,n 	

+ 

1-1 * 1p 	* 0 r 	e 	) 1-lC 
2i-1,1 -i,n dq 1 

(30-a) 
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0 [1.-1e. 	* p 	* 1-1 c 
Oqi 	-1-1,1 	-i,n 	

e. -1-1,1) 

1 (i-1k 	
i-1e 	* p 	1-1 C 	) 

! 2 	1-1 	-1-1,1 	-1,n 	i-1,i  

	

11 e 1-1 	* 	e ip 	* 1-1 	* c 	1-1k (30-b) 
2 i -i-1,i 	-i,n 	-i-1,i 	1-1) 

	

1 (1-1k 	
iP. ) + 1 (1P 	* i-lk 	1  * 	

(30-c) 

- 2  l 	1-1 	-1,n 	2 -1,n 	1-1J 

Substituting from eqs.(22,23,27,28  and 30-c) into (21-b), p1 
 for 

a revolute joint is expressed as; 

	

_. _ 140e 	i-1k 	
i-1 	* 0ec * 	* 	P 	 (31) 

El 	-0,i-1 	i-1 	-1-1,n 	-0,1-1] 

Based on Eqs.(26) and (31), a generalized expression for the 
position portion of the Jacobian matrix is given by, 

pi= Mr!0,1-1* (1-°.i)  f 	
i-1 k 	 *0ec 

1-lei i-lki-l*i-lE1-1,n) -0,1-11 (32) 

WhereceiisaBoolearlIparameter,a.1 m0 for a prismatic joint and 

ai 
 = 1 for a.revolute joint. 

, 
The lower 4x1 portion of the ith column of Je 

is associated with 

the orientation of the EEF and is given by, 

	

(0e 	
0 	0 ri-1 	* ie 

h .- 	
(33-a) 

1 	eqi 
-0,n) - !0,1-1

* Oqii 	21-1,1) 	-1,n 

Using the results of Eq.(29), Eq.(33-a) reduces to 

	

1 CD e 	
1-1k i-1 * 

i-1 
* 	

(33-b) 
h1  - 2 	-0,1-1 	!1-1,n) 

for joint 1 being a revolute joint and; 

h1 	
0 
	 (33-c) 

for joint 1 being a prismatic joint. 
A generalized expression for hi  may hence be written as : 

1 	fo 	* 1-1k i-1 * 
i-1 

hi = 	
(34) 

2 ("IA 2.0,1-1 	-2.1-1,n) 

Equations (32) and (34) express in general the elements of Je  

which is defined by Eq.(20-c). It should be noted that the left 
hand side of Eq.(20-c) is a 7x1 vector X consisting of two parts: 

1) the upper 3x1 vector Xi  - v representing the components of the 



Oec 
-0,n 

= 
n 

1-• i1 

H 
"11. 

= 2 r 0  ro 
facI , L 1=1 

(35) 

I
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velocity of the EEF origin; 2) the lower 4x1 vector X2  represent-

ing the time rate of change of the Euler parameters of the EEF. 
Hereafter, another formulation for Eq.(20-c) is presented where 

• 
X2 is replaced by X2  = °w0 n' the angular velocity of the EEF. 

Eq.(5) may be rewritten as : 

n foo  0
w 	 0 c 
-0,n = 2 	Oqi( f-0,ni * 

where 

	

H i - 2 hi 	0ec 

	

-1 	-0,n 

= a.10e 	i-1k. 	i-1e. 1 * oec 
-0,i-1 	1-1 	-1-1,nj 	-0,n 

= 
 a (

0e 	, 	i-1k. 	* 0 ec . ) -0,1-1 * 	1-1 	-0,1-1 

Eq.(20-c) may, hence, be rewritten as 

(36) 

El 22 	2n 
(37) 

-
H
1 -H2 	-Hn 

X e J q 	 (38) 
where 

   

 

X = fk 	k2 	J = 

P1 22 	 2n 

1 E2 - 	 n 

(39) 

   

where J is a (6xn) Jacobian matrix. The definition of J based on 
Eq.(39) is identical to that given in [1]. The only difference is 
that the elements of J here as calculated by Eqs.(31 and 36) are 
based on the quaternion parameterization of members. 

4. APPLICATION : QUATERNION BASED JACOBIAN COMPUTATION 
OF THE PUMA 560 MANIPULATOR 

The Denavit-Hartenberg link parameters of the Puma 560 
Manipulator are given in Table 1. Based on these parameters and 
using Eqs.(10,11) the orientation and position of the successive 
frames are given by : 

Al 
— 

2 

or 
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t 	t 
oe0,1-1/121c1  -C1  -Si  Sl] ; 1.21,2=  [C2 	0 	0 	S2] 

t 	 t 
2e2,3-1/1121C3  C3  S3  S3] ; 

3e3,4 1/1 21C4  -C4  -S4  S4] (40) 

t 	 t 
4e4,5-1/1-2105  C5  S5  S5] ; 

5.2.5,64C6 	0 	0 	S6] 

0 	 t 
P 	-4P 	-5P 	= [0 0 0 01t 1, 	[0 a2C2 	d2 0,1 4,5 5,6 	' ; '1,2--  

2P2,3 -, [0 0 0 d3 	' ]t • 	3.,E.3,4- [0 0 0 d4]
t 

where C 	cos(ei/2); 	Si  = sin(ei/2); Ei - cos(e); 
Si 	sin(ei) 

Using the values of the relative position and orientation of the 
Puma 560 defined by Eqs.(40,41), the columns of the Jacobian 
matrix are calculated based on Eqs.(39) as follows : 

t 
J1  - [-Y X 0  0 0 1] 

t 
J2  - [ZC1  ZS].  -(XCi  + YS1) -S, Li  0] 

 

J3  - [C23d4C1 	C d 23 4-S  1 -S23d4 -S1 El 

t 
J4 - [0 	0 	0 1E1 52351 1 C23] 

J5 .., [0 0 0 -(E4E1+E4S23E1) -(S C 
	C 	) S S 4 231S+  4-C  1 	-4 23 

0 

0 

0 

E5(E4c23E1-14E1)  E552321 

E5(E4C23E1+E4E1) + E5523E1 

E5C23 	- E5E4523 

Where 

-2-1 2 CCa + d4S23  C1  - d23S1  

Y=CSa +dS S +d -2-1 2 	4 23-1 	23-C  1 

Z = d4C23  - a2S2  

J6 

k (42) 

d23  = d2  + d3, C23  = cos(q2  + q3) 	S23  = sin(q2  + q3) 
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Validation by Numerical Simulation : 

Fig.(1) shows the scheme of numerical simulation proposed to 
verify the validity of the analytical expressions obtained for 

the Jacobian matrix (Eq.42). The motion rate X(t) corresponding 

to a desired EEF time based trajectory Xd(t) are calculated and 

used as input to a Differential Kinematics Equation Solver 
(DKES). This DKES is based on the inversion of the obtained 
Jacobian. The output Xa(t) of the DKES is compared to Xd(t) to 

calculate the EEF attitude error A
e and position error A 	[9] 

associated with the solution every sampling period. 

                                       

        

Position Correction 

          

Calculate 

        

                                       

                         

i-1 
—i-1,i' 	—1-1 i 

    

        

Calculate X 0) a 

              

                      

                      

                                       

                                       

                                       

                                       

      

Xd  (j+1) 

                  

calculate 

0 	Op 

-0,i' -0,i 

        

                                

                                    

                                    

                                    

                                       

        

X =EXd(j+1)-Xa(j)1/Ts 

                    

                            

                 

Calculate 

J(a),J-1(a) 

20)=J-1  

        

                                    

                                    

        

0.  0w —0,n' 0,n 

                        

                                

                                

                                    

                                    

                                       

                                       

                                       

        

Trajectory 
Generator 

                           

                                   

                                   

         

X ( d J)  

                            

    

X (j ) 

                              

                                  

                                  

                                  

         

Error Evaluation 

       

q(j)=q(j-1)+q(j)T 

    

                    

                                       

          

Ae, 

                  

j=j+1 

      

                                       

                                       

                                       

Fig.1. Scheme of Numerical Simulation 

Table 1: 
Link  and ioint  
parameters  

1 
di  

MM 

a1  . 

mm 

a.0 

1 0 0 -90 

2 223 432 0 

3 -73.9 0 90 

4 433 0 -90 

5 0 0 90 

6 0 0 0 

Results and Discussions : 

The simulation have been carried out for several trajectories. 
The typical results presented hereafter correspond to a closed 
circular path of the EEF origin with a,  constant speed v. The 
location of the EEF over this path is uniquely specified by a 
polar angular coordinate 0. 
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Figs.(2.a,b) show respectively the evolution of position and 
attitude errors for two successive turnes of the EEF over the 

circular path with a reference speed v = vo  = 0.2 m/s. The 

Jacobian here is updated every computation step. It can be seen 
that both errors are bounded (this is due to the effect of the 
position correction loop used). The of magnitude of errors are 
A
e 
 5 0.3 m.rad. and A -5. 0.1 pm. 

Figs.(3.a,b) represent the evolution of errors for different 
values of speed v as indicated by the dimensionless parameter 
v - v/vo

. Both errors are again bounded, however, the order of 

magnitude of errors increases as v increases. 
The main disadvantage of using a DKES based on the Jacobian 
inversion is the computation effort associated with the matrix 
inversion. To overcome this problem, one may reduce the Jacobian 
updating frequency f3  w.r.t. the solution frequency fs

. The 

effect of fj  on the solution accuracy may be seen from the 

comparison of Figs.(4-a,b) and Figs.(5-a,b). Both are calculated 
for v - 0.5 and for f

1 
 /f respectively equal to 1/4 and 1/10. It 

canberecognizedthatasf.
3 
 decreases Ap and A 	increase. A 

compromise between the computation effort and the solution 
accuracy may be achieved by a proper selection of f.

3
. 

CONCLUSION 

Quaternions establish a unified representation and a symmetric 
treatment of manipulators members position and orientation. 
Proposed generalized relations expressing the elements of 
manipulators Jacobian based on quaternion parameter- izations are 
derived. The study of these relations shows that they have the 
same physical meaning as those derived on basis of Homogeneous 
Transformation parameterization [1]. Using the derived relations 
the Jacobian matrix for the Puma 560 manipulator is obtained and 
tested by numerical simulation. The test results are quite 
satisfactory. Proper selection of the frequency of Jacobian 
updating enables one to reduce the computation burden associated 
with the Jacobian inversion keeping the level of the solution 
accuracy. 
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ABBREVIATION AND NOTATION 

EEF 	End Effector 
DKES 	Differential Kinematic Equation Solver 

Denotes a quaternion product 
Head Symbols : 	: Quaternion 

-* : Vector 
Bottom notation - : 4x1 column which correspond to the represent-
ation of a quaternion in a given frame. 
Left superscript denotes the basis or the frame w.r.t which a 
quaternion representation is considered. 
Right superscript c denotes the conjugate of a quaternion or its 
representation. 

Right Subscript under a quaternion of rotation denotes the 
direction of rotation. 
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