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ABSTRACT

This work deals with the Jacobian computation for robot
manipulators using a wunified quaternion parameterization of
position and orientation of members.

Proposed generalized relations expressing the elements of
manipulators Jacobian are derived in terms of Boolean parameters.
These parameters introduce the contribution of both revolute and
prismatic joints. The proposed relations are applied on a case
study of a PUMA 560 robot manipulator for which analytical
expressions of the Jacobian are obtained and tested by
simulation. ‘

1. INTRODUCTION

The major task of an industrial robot manipulator is to position
and orient an end effector (EEF) during an approach phase of
motion over a predefined time-based trajectory. To perform this
task, a robot manipulator should have a mechanical structure of
variable configuration with several powered joints between 1its
members. In order to position and orient the EEF arbitrarily
w.r.t a base fixed frame, the number of joints n or the degree of
freedom of the manipulator must be greater than or equal to six.
The first step in the formulation of the control problem of
manipulators is to establish a relationship between the vector of
EEF spatial coordinates X and the vector gq of the joint
coordinates or the general ized coordinates 1in the Lagrangian
sense.

The trajectory control of manipulators consists of forcing the
vector X(t) to track a vector gd(t) representing the desired

evolution of the position and orientation of the EEF. A
differential Inverse Kinematics Algorithm calculates the error Aq

of the joint variables corresponding to an error vector AX =

Ed(t) - X(t) to be compensated for. This process passes by the
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computation of the manipulator Jacobian Matrix J(q) - The
computation of the elements of X(t) and those of J(gq) depends on
the kinematical parameterization of the manipulator. The
computation of J(g) for manipulators using the Homogeneous

Transformation Matrix parameterization is given in [1,2]. The use
of Quaternions for the parameterization of manipulators has been
recently investigated [4-9]. They provide a wunified represent-
ation of both position and orientation of members. In this paper,
the computation of manipulators Jacobian in terms of quaternion
parameterization is investigated.

The organization of the paper is as follows : In section 2, the
fundamental relations defining the wunified quaternion position
and orientation parameterization are shortly described. These

relations are judged as essential for the derivation of the
Jacobian matrix presented in section 3. The rest.of the paper |is
reserved to the presentation of an application where a Quaternion
based Jacobian of the PUMA 560 manipulator 1is obtained. A
solution of the differential kinematic equations based on the
Jacobian inversion is used to verify the validity of the obtained
Jacobian by numerical simulation.

2. A UNIFIED QUATERNION PARAMETERIZATION OF
POSITION & ORIENTATION

Considep-a frame bF in a general space motion w.r.t. a frame I F.

Based on Chasle's theorem [3], the motion of bF w.r.t. °F 1is a
superposition of a translation following any point (say Ob), the

origin of bF. and a rotation about that point.
This rotation may be defined by a Quaternion of Finite Rotation

en'b as [8,9]7,

N

e, p = cos(e/2) + sin(8/2)u (1)

where € and 3 are respectively the principal angle and the
principal axis associated with Euler’'s theorem of finite rotation
[3]. The quaternion of finite rotation € b is a unit quaternion
having the same representation on both frames bF and nF, i.e.,

N -

c
* ==
®n,b  ®n,p " 1 (2)
ne _ b _ t
®n,b T En,p T [8p € e, ejl (3)
The four elements of the quaternion representation ngn p are the

Euler parameters of finite rotation

e

0 cos(68/2)

; e, = u sin(6/2)

(4)

12
I

u2 sin(6/2) ; e, = u ‘sin(6/2)

3 3
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The angular velocity of bF w.r.t. np may be expressed as [5];

n n* n_c
w =

(5)

The position of bF Wl .t NrF {s defined by the vector quaternion

n b
pn,b from the origin On of "F to the origin Ob of F. pn,b and
its representation are expressed as
A
Pn,b = 0 + Onob
n n . (6)
P - [0 x y z] :

-n,b

n
where x,y and z are the coordinates of 0b in "F.

Vector Transformations - Successive Rotations

Consider a spatial quaternion vector V. It may be shown [9] that

the representations of V w.r.t. bF and "F are related by
n n b n_c
v €0 b \ b (7)

Eq.(7) is the quaternion equivalent of Vector Transformations.

Consider three frames lF, mF and UF in successive rotations; it
may be shown [9] that when the quaternions of finite rotations
are represented w.r.t. local frames, the representation of the
overall rotation corresponds to the post multiplication of the

quaternion for the fore rotation by that for the following
rotation i.e.,

—1,n =1l,m Em,n (8)

Manipulator Kinematics

A robot manipulator is considered here as an open kinematic chain
of rigid links. The first link is fixed to the base frame and the
last link is attached to an end effector. The links are numbered
starting from the base link which is given the number 0. The last
link is given the number n which is the degree of freedom of the
manipulator, i

A right handed orthogonal frame "F is assigned to each 1link i

according to Denavit & Hartenberg convention [2]. iF may be

obtained starting from i—lF through four steps of successive
rotations and translations as follows : a) Rotation around the

L) at an angle 61; b) Translation in the direction of Xy by
the member length aj; ¢) Translation in the direction of 251 by
di; d) Rotation about Xy by the member twist ay .

Based on Eq.(8), the orientation of 'Fow.r.t. 1_lF is given by,
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i=1 _ i1 % @ 9
Zi-1,1i T 84-1,a(93) * e, y(ey) (9)
where
-1, (8,) = [cos8./2 0 O sin@, /2]t .
—i-1,a‘' 1 i i
. = a, /2 sina /2 0 O]t ;
ea,i(ai) = [cos i/ i -
[ cos 8,/2 cos 01/2—
i—-]_e._1 - cos 81/2 sin ai/z (10)
T sin €,/2  sin & /2
sin 81/2 cos a1/2
The position of iF w.r.t. i_lF may be specified by
i-1 _ t
Ei—l,i = [0 a, cos 81 ay sin 61 di] (11)

For a revolute joint, the Joint variable gy = e
prismatic joint a, = d

1 while for a

i
Based om Eq.(8) the orientation of link 1 w.r.t. link J(3<i) 1is,

j ] L 3+l . o 1-1
3,1 7 785,501 S3+1, 542 T fi-1,1 (123

The position of link.i w.r.t. link j may, however, be defined by

the position vector Pj { from Oj to Oi represented in JF as
i

.- ¢ e w K1 x Jg€

=3 T T8k k-1 ¥ By k- (13)

For a manipulator having n links, the position and orientation of

the EEF w.r.t. the base frame are given respectivély by PO . and

€0 n* Their representations in the base frame are expressed using
Eqs.(12) and (13) as

0] 0 1-1 0 ¢ t
EO,n igl Eo,i—l Ei—l,i 30,1—1 [0 X v 2] (14)
0 0 1 n-1 c t
= * * * = !
So,n T Eo0,1 % &1, *e-- ®n-1,n T [Eg E; E, Eg] (15
(0] 0
The elements of EO n and €0 p @re grouped in a vector X

X = [X X,] (16)
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where X. = M P = [X N4 Z] (17)
(18)

3]; and I3 is a 3%x3 unit matrix.

The vector X(7xl) hence defines uniquely the position and
orientation of the EEF w.r.t. the base frame. It should however
be noted that the last four elements of X are not independent.
They are inter-related by the normality condition (Eq.(2)). The
right hand side of Egs.(l7) and (18) are function of the
manip lator configuration defined by the vector q-

manipulator wusing quaternion parameterization and may be
rewritten as ;

X = X(q) (19)

3. QUATERNION-BASED JACOBIAN COMPUTATION

The differentiation of Eq.(l9) w.r.t. time yields

k- E 5o (0 q (20-a)
i=1 i :
or .
A3 n | %1, n| Bi |
: 1~ L 5= q; = I qy (20-b)
__52_1 i=1 1 X, i=1 Ei
Eq.(20-b) may be rewritten in the following matrix form
[ X, | TR - TS Bn | .
. - N Je q (20-c)
| 22 Hy Hp sesconcns b,

where Je is a 7xn jacobian matrix which relates the motion rate
of the EEF X to the joint speeds q.
The upper 3x1 pbrtion of the ith column of Je is associated with
position of the EEF and is given by

a (0] . a (0] (0]
By 7 3q] [ Eo,n] " 3q] [ 2o i1 * Ei—1,n] (21:-a)

: N a 0 -
The analysis of Egs.(l0-13) shows that 56:[ Bo,i—l] 0. Eq.(21-a),
hence, reduces to;

a 0 4 (0 1~1 8 S o

= = * * e

By 7 3q; [ E1-1,n_] aqi[ 20,1-1 Pi-1,n g0,1—1] L21-b)

The analysis of Egs.(10-13) shows also that :



FIFTH ASAT CONFERENCE

DD-1|194
| 4 - 6 May 1993, CAIRO
a (o d (0 c a (i
s i S5 —— = e == 22
3q [ 30,1—1] aq [ Eo,i—l] 3q [ Bi,n] B (22)
i i i
However;
8 (i-1 a8 (i-1
aq [ Ei-l;n] - 99 [ Ei-l'i] N
i i
a (i-1 i i-1_c |
é&;[ fi-1,i © Bin " 31—1,1] (23)
For a prismatic joint and based on Eq.(1l1l),
d [i-1 _ t _ i-1
35;[ 31—1,1] =0 o 0 1] Kooy (24)
Using Eq.(22) it may be shown that
a [i-1 i i=1_c
ot * * =
aqi[ E1"1.1 Ei,n Ei—1,i] 0 (45)
Substituting from Egs.(22-25) into (21-b), Py for a prismatic
joint 1s expressed as :
(0] i—1 0 €
By 20,i-1 Ki-1 Lo, i~1 120)
For a revolute joint and based on Eq.(l1l),
a (i-1 t
5&:[ —i—l,i] = [O —a, sin qy a; cos q, 0] (27)
Considering on the other hand the quaternion product it may be
shown that :
i-1 i-~1 t
ki-l Ei—l,i [di —ay sin q; a; cos q, 0] (28)
and based on Egs.(9,10) it may also be shown that
a (1i-1 . 1 fi=l % 3=l . _
aqi( 31—1,1] ) [ Ki-1 31—1,1]' {23~a)
a (i-1 c 1L fi-1 ¢ i-1
—— T, x —
aqi[ 31—1,1] 2 [ 21-1,1 ki—l} §23=i)
Based on Egs.(22) and (29) the 1last term in the R.H.S. of
Eq.(23) may be rewritten as
8 (i-1 i i-1 ¢ B
aqi[ i-1,1 * Byn " Eiul,i] -
a (i-1 | & 1 ¥ 1—% ¢
aqi[ 31—1,1] Pin ei-1,1 7
i-1 i d ri-1_c
% b, S -
&i-1,1 * Ein aqi[ 31—1,1] (30-a)
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_g_[i—le i . i-1.c ] _
dq;l  Si-1,4 7 =i By-q,i
- —%ﬂ[iﬂlki—l S Y G T lel o)t
—%_[1—131—1,1 * iP-i,n « el gy ¥ i—1}‘1-1] (30=3
- ”%‘[i—lki—l % iEi,n] & —%—[igi.n . i#lki-l] (30-c)

substituting from eqs.(22,23,27,28 and 30-c) into (21-b), Py for
a revolute joint 1is expressed as;

0 g -1 0.c
= * * *
P, “[ 25, i=1 ki-1 Bi-1,m Eo,i—l] (31)

Based on Egs.(26) and (31), a generalized expression for the
position portion of the Jacobian matrix is given by,

0 i=1 i=1 i-1 o_.c

= - * *

Bj M[ Eo,i—l*{(l o) TRty K Eifl,n} 30,1—1] (22
Where o, is a Boolean parameter, o, = 0 for a prismatic joint and

oy = 1l for qﬁrevolute joint.
The lower 4x1 portion of the ith column of Je is assocliated with
the orientation of the EEF and 1is given by,

- _g_ 0 - 0 * _ﬂ_ i-1 * 1 -
h, aqi[ Eo,n.] £0,1-1 aqi[ 91—1,1] 24,0 (33-a)

Using the results of Eq.{29), Eq.(33-a) reduces to

_ 1 (o . i-1 . i-1 B
by =2 [ 8o.,1~1 ey 31—1,n] (33=03

for joint i being a revolute joint and;
Ei =0 (33-c)

for joint i being a prismatic joint.
A generalized expression for Ei may hence be written as

£ Ly 0 : begeg L i1
By 2 C’i[ £0,1-1 " K51 Ei—l,n] (34)

Equations (32) and (34) express in general the elements 6f Je

which is defined by Eq.(20-c). It should be noted that the left
hand side of Eg.(20-c) is a 7x1 vector X consisting of two parts:

1) the upper 3x1 vector 51 = v representing the components of the
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velocity of the EEF origin; 2) the lower 4dxl vector 32 represent-

ing the time rate of change of the Euler parameters of the EEF.
Hereafter, another formulation for Eq.(20-c) is presented where

.

* 0
52 ls replaced by %2 Eo,n'

Eq.(5) may be rewritten as

the angular velocity of the EEF.

o, -5 o [® o, £ ¥ g OB
~o,n =1 @ L Zo,n) % =o,n

s n
a 0 0O c . .
= 2 z " “‘[ e ] * e }q = Z H q (35)
where
Q€
- *
E:I. 2 Ei Eo’n
= g w Bl x 171 o Q0
oi[ 20,1i-1 Kj-1 Z2i-1,n Z0,n
0 1-1 0 c
di[ Eo.i“l ki--l EO,i—l] (36)
Eq.(20-c) may, hence, be rewritten as
ﬁl 21 EZ ......... Bn .
%2 El EZ ......... Hn
or . .
S (38)
where
. " . t By Py el <
)f = {2(-1' )fZ} ’ J = |H H H (39)
_.l Bn:,  BEEEEFREs L

where J i1s a (6xn) Jacobian matrix. The definition of J based on
Eq.(39) 1s identical to that given in [1]. The only difference is
that the elements of J here as calculated by Egs.(31 and 36) are
based on the quaternion parameterization of members.

4. APPLICATION : QUATERNION BASED JACOBIAN COMPUTATION
OF THE PUMA 560 MANIPULATOR

The Denavit-Hartenberg 1link parameters of the Puma 560
Manipulator are given in Table 1. Based on these parameters and

using Egs.(10,11) the orientation and position of the successive
frames are given by
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. t t
0 / 1 .
€.1 1/7 2 Lc1 sGyio | w8y sl] B [Cz o o0 sz] N
. o t
2 fig T 3 /.
€3.3 1/7 2 LC3 C, s, Sa] i "e3 4 1.7 2 [c4 C, =S, 54] +(40)
. t >
4q VT 5
4.5 1/¢ 2 Lc5 C. Sg 55] P 85 6 [C6 o o0 Ss] J
0 4 5 t 1 B t )
Booi™ Ba 57 Bsog™ 9:,9,,0 Q175 7By o= [0, a6, 4,5, d,]
r(41)
2 t 3 t
Py 3 [0 0 0 d;]1" ; Py 4 [0 0 0 d,] )
where C1 = cos(ei/Z); si = sin(ei/Z); Ei = cos(ei);
§i = sin(ei)

Using the values of the relative position and orientation of the
Puma 560 defined by Egs.(40,41), the columns of the Jacobian
matrix are calculated based on Egs.(39) as follows

Jl = :—Y X 0 0 O l]t W
o t

3= [re wsy oy v s oo o
= t

Ig = [Readefy ' 239481 823 E1 4 0]

o t
I “I I} . 9 1 9 8a3f; 8323 Cza]

t
Jg =400 ~{ 0 8 18,5538, ) —h8, <38 E5y) 54523] s

b

Je * 55(C4C3C8178,48;) + £55,55,;
85(C4C38;%8,4C)) + £55,35;
£5C23 " 5554523

L — /

Where
K = CoCa, + d,8,,C) — dy538,

Y = C,S.a, + d,5,.5, + d,.C

2—1" 2 4-23-1 23—-1

d4C23 ~ 355,
d23 = dz + d3, 023 = cos(q2 + qa) 523 = sin(q2 + q3)
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Validation by Numerical Simulation :
Fig.(1l) shows the scheme of numerical simulation proposed to
verify the validity of the analytical expressions obtained for
the Jacobian matrix (Eq.42). The motion rate i(t) corresponding
to a desired EEF time based trajectory Ed(t) are calculated and
used as 1input to a Differential Kinematics Equation Solver
(DKES). This DKES is based on the inversion of the obtained
Jacobian. The output Ea(t) of the DKES is compared to ﬁd(t) to
calculate the EEF attitude error Ae and position error Ap [9]
associated with the solution every sampling period.
Position Correction Calculate
. i-1 i-1 P
Calculate 53(3) gi—l,i' Ei—l,i
- 1
Xgqi+1) calculate '
Table 1:
+ O, .,% . Link and joint
- 0,i ‘ Q,i parameters
X =[X4(i+1)-X,(3)1/T
d ° = Calculate ) d-1 a; |x;°
l -1 4 rnrn mim
0s 0 ¢ J(ga),J “(a)
Bo.ns Yo x . 1| o 0 |-90
W e acir=9t £
, 2 223 [422] o0
Trajectory
Generator . 3(-73.9] 0 90
a3i)
Xgq(3) 4l 433 | 0 |-90
X503) _ - 5| o 0 | 90
— Error Evaluation 9€3)=q(i-1)+g(i)T_
I - 6l o 0 0
Ay, &, l i=i4l
Fig.1l. Scheme of Numerical Simulation
Results and Discussions :
The simulation have been carried out for several trajectories.
The typical results presented hereafter correspond to a closed
circular path of the EEF origin with a' constant speed v. The
location of the EEF over this path is wuniquely specified by a

polar angular coordinate ¢.

’
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Figs.(2.a,b) show respectively the evolution of position and
attitude errors for two successive turnes of the EEF over the
circular path with a reference speed v = ¥ 0.2 m/s. The

Jacobian here is updated every computation step. It can be seen
that both errors are bounded (this is due to the effect of the
position correction loop used). The of magnitude of errors are
Ae < 0.3 m.rad. and Ap =00 ypm.

Figs.(3.a,b) represent the evolution of errors for different
values of speed v as indicated by the dimensionless parameter
v = v/vo. Both errors are again bounded, however, the order of

magnitude of errors increases as Vv increases. g

The main disadvantage of using a DKES based on the Jacobian
inversion is the computation effort associated with the matrix
inversion. To overcome this problem, one may reduce the Jacobian
updating frequency fj w.r.t. the solution frequency fs. The

effect of fj on the solution accuracy may be seen from the

comparison of Figs.(4-a,b) and Figs.(5-a,b). Both are calculated
for v = 0.5 and for fj/fS respectively equal to 1/4 and 1/10. It

can be recognized that as fj decreases Ap and Ae increase. A

compromise between the computation effort and the solution
accuracy may be achieved by a proper selection of fj.

CONCLUSION

Quaternions establish a unified representation and a symmetric
treatment of manipulators members position and orientation.
Proposed generalized relations expressing the elements of
manipulators Jacobian based on quaternion parameter- izations are
derived. The study of these relations shows that they have the
same physical meaning as those derived on basis of Homogeneous
Transformation parameterization [1]. Using the derived relations
the Jacobian matrix for the Puma 560 manipulator is obtained and
tested by numerical simulation. The test results are quite
satisfactory. Proper selection of the frequency of Jacobian
updating enables one to reduce the computation burden associated

with the Jacobian inversion keeping the 1level of the solution
accuracy.
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ABBREVIATION AND NOTATION

EEF End Effector
DKES Differential Kinematic Equation Solver
* Denotes a quaternion product
Head Symbols : " : Quaternion
— = Vector
Bottom notation - : 4x1 column which correspond to the represent-
ation of a quaternion in a given frame.
Left superscript denotes the basis or the frame w.r.t which a
quaternion representation is considered.
Right superscript c denotes the conjugate of a quaternion or 1its
representation.

Right Subscript under a quaternion of rotation denotes the
direction of rotation.
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