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Abstarct 

Let M(x) be a function from R
k --4R.Let en, n = 1,2,... be 

vectors in R
k
, el 

being the value at which M(x) achieves its 

unique minimum. Set M(x) = Mi(x), for n = 1,2,..., 	set Mn(x) 	= 

M(x - en  - el). Then en 
is the unique minimum of Mn

(x), which is 

unknown and is to be estimated. In our case, we assume that en  

moves in such a manner that en+1 
= gn

(8n
) + v

n 
where gnn

) is 

general non-linear k-vector measurable function (known) defined 

for all >cell
k and vn 

is an unknown k-vector function (random or 

non-random) independent of x. Let an
, c

n
, n = 1,2,... be two 

sequences of positive numbers. Let xl  be an arbitrary random 

variable. Define for n = 1,2,...,xn+1  = xn 	an(Y2n 
- y2n-1

)/cn 

where xn 
= gn(xn

), and v2n' Y2n-1 are random variables such that -  

their expectations given xi,x2, 	 ,xn 
are E Mn+1(xn + ei

cn
)e 

i-1 

k 
and E Mn+1(xn 	e c n

)e. respectively and their conditional 
 1 

1=1 

variance are bounded by a constant a2 and they are conditionally 

independent. Under conditions similar to those used by Dupac 

(1966), we show that Ilxn  - en 	
0 with probability one. 
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1. INTRODUCTION 

This paper is concerned with the dynamic Kiefer-Wolfowitz 

(KW) stochastic approximation procedure. This problem has been 

firstly studied by Dupac [2], [3]. He discussed in his papers the 

cases where the movement of the maximum can be expressed by a 

certain linear function of its present location and determinestic 

trend, i.e. he assume that 

1  P 
n+1 	2 - (1 	)en 	 (1.1) 

where B pi  is the unique maximum of the regression function Mn(x). 

Uosaki, K. (1974) discussed the one-dimensional dynamic 

PoI,binF;-Mnro (PN) pr cis. He considers the case where the 

movement of the root can he expressed by a specified non-linear 

function of its present 	location. Sorour 	(1978) geenralizes 

-Ilt to tho vinitidimnsional dynamic 	In 	this 

paper; we shall be concerned with the non-linear multidimensional 

dynamic systems. The convergence of the approximation to the 

moving minimum of a nonlinear regression function, with 

probability one, is proved. In sec. 4 we prove the convergence 

with probability one and in sec. 5 , we show that under some 

regularity conditions on the noise, the process is asymtotoically 

normal. 

2. DESCRIPTION OF THE PROCEDURE 

Let R
k 

be a real k-dimensional vector space. If x and y are 

two vectors in Rk we denote their-inner product by (x,y) and 

their nroms by llxll and ilylt respectively. Let Mn(x) be a (unknown) 
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function from R 	R. Assume that en 
is the unique minimum of 

Mn(x). Our goal is to estimate en
. In our case we assume that en 

moves in a manner that 

n+1 
= g

n
(en) + vn 
	 (2.1) 

where g(x) is in general a nonlinear measurable function (known) n   

from R
kk and vn 

is unknown k vector (non-random). 

Let an
, n = 1,2,... be positive numbers. Let X1 

be an arbitrary 

random variable define for n = 1,2,.... 

=  X
n+1 	

X - an
F
n 

where 

X FI 
	gn(Xn) 

F 	Ti
n 

+ d
n  

(2.2) 

(2.3) 

and the ith compenent of 15n 
is given by 

7-7 i 1-110_ 1(Y.n  
1 Il 	

Mn+1(xn  - eicn) /2 c . n 

where e. is the ith column in the identity matrix and cn 
is a 

1 	— 

positive sequence of real numbers. Let Yn 
be the a-field 

generated by X1,X2,. .,Xn
. For x a random vector in R

k let En
(x) 

and Varn
(x) denote the conditional expectation and the 

conditional variance of x with respect to 'fin 
respectively. Let 

(2.4) 

-2 
k1 

cn 
(2.5) 

Let Dn(x) denotes the vector of the partial derivatives of Mn
(x) 

Then 
0 Mn(x) 

Dn
i(x) - 

0 x 

En
(d

n
) = 0 

and for constant k1 
let 

En(il dng 2)  
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Assume that 

	

II Dr, - Dn+1(xn 	k
2 

cn 
	 (2.6) 

In what follows (Q, 	P) will be a probability space, relations 

and convergence of random variables, vectors and matrices will he 

meant with probability one. The indicator function of set A will 

be denoted x
A 
- R

kxk is the space of all real kxk natrices. The 

unit matrix in R
kxk is denoted by I and 0'0 is the Euclidean 

norm. With hn 
a sequence of numbers let 0(hn

), 0(hn
) denote 

sequences gn  and Gn, say of elements in one of the sets R, R
k 

such that h
1 

yn 	
0, ghn

1 
Gn

II 5 f for f€R. 

Remark : Let Yn
(i,1), Yn

(i,2) be two random variables such 

* 
n) En(Yn(i,1)) - Mn4_ 1(Xn  + e,c 

E
n
(Y

n
(i,2)) = Mn+1

(Xn 
- e

i
c
n
) 

Then F 	= 1-Y 
n 
 (i,l) - Y (1,2)1/2c . and Y (1,1) 	and 	Y (i,2) 	are 

 n 

conditionally independent. If Varn
(Y

n
(i,1)) and Var(Yn

(i,2)) are 

bounded. Then (2.5) holed. Also let Hn
(x) be the Hessian of Mn

(x) 

i.e. 
2 
Mn(x)  ij 

Hn 
(x) 

ax
i 
ax
j 

If 

	

	Sup{ IIHn( x)11 < co 	for n = 1,2,.... Then (2.6) holds. 
x 

3. CONSITIONS 

Conditions on the regression function Mn(x) 

M1 : There existy two numbers A and B such that 

pn(x)11 5 Apt - enD + B. 

M2 : For all 6 > 0, we have 
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if 	inf<x - en
, Dn

(x)> > 0 
neN 6<flx-en

Vc5-1 

Conditions on the Sequences an  and cn  

Al E a C < co; 	E n n 	a = m, 
n=1 	n=1 

n 
 

E a2 < m, 	E an
2  cn

2  < co 
n=1 

Conditions on the functions gn(x) and vn  

G1 : There exists a sequence of positive number yn  independent of 

x and y such that 

O gn(x) 	gn(x)11 	rnilx 	
for all x,yeR

k 

co 
G2 : E (y2 - 1)

+ < m; where z
+ means (x + lz1)/2 

n=1 

G3 : 	lint gn(x) - 	(y) - vn 

00 

G4 : E ilv 	< 
n=1 

exists for all 	Hy. - yO < m 

4. ASYMPTOTIC CONVERGENCE 

Theorem 4.1. 	If the conditions Ml, M2, Al, GI-G4 hold. Then 

lim n - en ll  = o 
n 

Proof :- From (2.1) and (2.2) we have 

xn+1 
- en+1 = g

n(xn) - gn(en) - vn  - anFn  

Thus 

Il an+1 
- en+1 n

2 
	il( ng 

x
n
) - gn

(8) - vn
2 - 2an

<gn
(xn

) - gn
(en

) 

20  
- vn' 

Fn
> + an

HE'n
H 2 ' 

= n
(xn

) - gn(en )11
2 
- 2<gn

(xn
) - gn

(e
n
), v

n
> + 

2 
+ fig

2 - 2ann - n+1' F n
> + ann

11 2 

Using (2.4) we obtain 



FIFTH ASAT CONFERENCE 

4 - 6 May 1993, CAIRO 

GC-2 310 

E
n
( N xn+1 - n+1 

2 
) = Ng 

n 
 (x 
nn  
) - 	(e 

n )g
2 

- 2<g n (x 
n
) - g

n
(0

n
), v

n
> 

▪ ovrio - 2a <x - 0 	D> n n 	n+1' 	
n + a2 

En(liFn H 2 ) 

H gn(xn) 	gn(en ) H 2-  
2a

n
<x

n 
 - en+1n+1n )> 

• 0 ( 11v n lillgn (xn ) 
	

g ri (en )10 	0olvfl 11 2  

* 	2 
( 	( 	) 	q 	( 	) 	- 	D 	(x 	) an- -n•xn 	-n'en' 	vn 	n 	n+1 	n 

2 	2 	2 - 	* 	2 + 0(anpn4.1(xn )H 	) 	+ 	0(a
n

HDn- Dn+1(xn)H 	) 

+ 	0(aliEn (d12.1 )11) 	 (4.1) 

, M1 	and 	using 	the 	identity 	11x112 
	4. 
	1, 
	

we 

gn(xn) 	gn(-n)112 	
(1 	+ 	Opn11) 	+ 	0(ancn ) 

I * 	I + 	0(a2)) 	- 	2an<xn 
	- en+ 	•; 	Dn+1'x 	

N 

n'' 

+ 0(Ovn 1l + llvn11 2  + ancn 	Hvnil anon + al21 ) 

= ilgn (xn ) - gn (en )11 2  (1 
	

/-in)  

By (2.5), 92.6) and 

obtain 

En(Hxn4_ 1  - 0n4.1 2
) 

- 2an<xn  - en+1, D  n+1(xn)> + 6n  

where 

2 pn  = 0(11vn 11 + a
n
c
n 

+ an  

6
n 

= 0(p
n 

+ a
2 

c
-2

) 
n n 

From Al and G4 it follows that 

(4.2) 

co 

E p
n 

< m 
n=1 

and 
00 

E 6n  < (4.3) co 
n=1 

Using Cl, (4.2) can be written as 
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( II 
	2 

) 5-  O xnn11  - ( 1 	Mn 	(rn 	
+ 

- 	1 )  

* 
(x+ 2an

<xn 
 - en+1; Dn+1 n

)> + do 
 

(4.4) 

From M2, G2, (4.3) and (4.4), it follows from Theorem 1 Robbins 

and Siegmund [S] that 

lim 0x - 	exists and finite 
n --4 W 

and 

co 
E an

<xn 
- n+1; Dn+1

(xn
)> < co . 

n=1 

Using M2, Al and G3 obtain that 

(4.5) 

lim 	- e r, ll = 0, which completes the proof of theorem. 

n 

5. ASYMPTOTIC NORMALITY OF THE PROCEDURE 

	

Theorem 5.1. Let A,-1-1,-ER
kxk, A positive definite, 	P orthogonal, 

P'AP = A diagonal, a. = min A(ii), 0 < p < 2Xa, 

1 
an 

= a n-1, cn 
= cn-r, r = 2 (1 - 0); 	

(5:1) 

Xn - en 	0 C > HE n (d nd' ) 	Efi 	0, 

n 
E a

2 
,r 	

0 for every r> 0 with 
j 

j=1 

a2 
r = 

ExtHdjg 2 	r 3 	fid 0 2  and 
j, 

let for Xn 
in a neighborhoud of en 

lifon  — A(Xn- e 	
- n-0/2 
	5 0(1)[n

-0/2mlj
n+1) 	 On - en+1 11] 

(5.2) 

Hgn(x) - gn(en) - (Xn  - en)I' 5 0(14n-13/2  + n-10Xn  - end 

(5.3) 
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Then the asymptotic distribution of n0/2(X
n 
- en) is normal 

with mean -a(aA - (0/2) I)-Im and covariance matrix PMP' 

with 	M
(ij) 

= a2 c
2
[P' E / (a A(ij)  + a A(1J) - (3) 

Proof : From (2.1) (2.2) and (2.3) we have 

-1 
D - an  

From 	

- e
n+1 

 = X
n 

-
n+1 - an 

X 
 n (5.4) 

From (2.5) it follows that 

* 
n = A n 

 (X
n  - n+I)n-0/2 mn 

with A n  ,mn  are fi n-measurable and A
n 	A, 	m 	m 

uniformally. Thus (5.4) can be written as 

* X
n+1 

- e 	= (x - e
n+1

)(I - an -1 A )- an -1 n
-0/2 
 mn n41 

- an
-1

d 
n 

Also it follows from (5.3) that 

x - e 	= c (x - 	) + n -0/2 
a n41 	n 	u 	 ri 

(5.5) 

(5.6) 

where 

G n 

g 

uniformally, On  - 	= 0(n
-1
). 

Substituting (5.6) in (5.5) we get 

X
n+1 

-
n+1 

= (I - an
-1 
(An + 0(1))(X

n 
- en) 

an 
-1 

n-0/2(m
n + 0(1)) - an Idn 	

(5.7) 

From (5.7) and Theorem (2.2) Fabian [5], giving the desired 

result. 
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