ON DYNAMIC KIEFER-WOLFOWITZ

STOCHASTIC APPROXIMATION PROCEDURES

El Sayed Sorour

Military Technical College, Department of Mathematics.

Abstarct

Let $M(x)$ be a function from $R^{k} \longrightarrow R$. Let θ_{n}, $n=1,2, \ldots$ be vectors in R^{k}, θ_{l} being the value at which $M(x)$ achieves its unique minimum. Set $M(x)=M_{l}(x)$, for $n=1,2, \ldots$, set $M_{n}(x)=$ $M\left(x-\theta_{n}-\theta_{l}\right)$. Then θ_{n} is the unique minimum of $M_{n}(x)$, which is unknown and is to be estimated. In our case, we assume that θ_{n} moves in such a manner that $\theta_{n+1}=g_{n}\left(\theta_{n}\right)+v_{n}$ where $g_{n}\left(\theta_{n}\right)$ is general non-linear k-vector measurable function (known) defined for all $x \in R^{k}$ and v_{n} is an unknown k-vector function (random or non-random) independent of x. Let $a_{n}, c_{n}, n=1,2, \ldots$ be two sequences of positive numbers. Let x_{1} be an arbitrary random variable. Define for $n=1,2, \ldots, x_{n+1}=\stackrel{\star}{x}_{n}+a_{n}\left(\stackrel{\star}{y}_{2 n}-\stackrel{\star}{y}_{2 n-1}\right) / c_{n}$ where $\stackrel{*}{x}_{n}=g_{n}\left(x_{n}\right)$, and $\stackrel{\star}{y}_{2 n}, \stackrel{\star}{y}_{2 n-1}$ are random variables such that their expectations given $x_{1}, x_{2}, \ldots ., x_{n}$ are $\sum_{i=1}^{k} M_{n+1}\left(x_{n}+e_{i} c_{n}\right) e_{i}$ and $\sum_{i=1}^{k} M_{n+1}\left(x_{n}-e_{i} c_{n}\right) e_{i}$ respectively and their conditional variance are bounded by a constant σ^{2} and they are conditionally independent. Under conditions similar to those used by Dupac (1966), we show that $\left\|x_{n}-\theta_{n}\right\| \longrightarrow 0$ with probability one.

1. INTRODUCTION

This paper is concerned with the dynamic Kiefer-Wolfowitz (KW) stochastic approximation procedure. This problem has been firstly studied by Dupac [2], [3]. He discussed in his papers the cases where the movement of the maximum can be expressed by a certain linear function of its present location and determinestic trend, i.e. he assume that

$$
\begin{equation*}
\theta_{n+1}=\left(1+\frac{1}{2}\right) \theta_{n}+v_{n} \tag{1.1}
\end{equation*}
$$

where θ_{n} is the unique maximum of the regression function $M_{n}(x)$. Uosaki, K. (l974) discussed the one-dimensional dynamic Robbins-Monto (rii) process. He considers the case where the movement of the root can be expressed by a specified non-linear function of its present location. Sorour (1978) geenralizes Woraki's iesult to the multidimensional dynamic (Rく). In this paper; we shall be concerned with the non-linear multidimensional dynamic systems. The convergence of the approximation to the moving minimum of a nonlinear regression function, with probability one, is proved. In sec. 4 we prove the convergence with probability one and in sec. '5, we show that under some regularity conditions on the noise, the process is asymtotoically normal.

2. DESCRIPTION OF THE PROCEDURE

Let R^{k} be a real k-dimensional vector space. If x and y are two vectors in R^{k} we denote their-inner product by (x, y) and their nroms by $\|x\|$ and $\|y\|$ respectively. Let $M_{n}(x)$ be a (unknown)
function from $R^{k} \longrightarrow R$. Assume that θ_{n} is the unique minimum of $M_{n}(x)$. Our goal is to estimate θ_{n}. In our case we assume that θ_{n} moves in a manner that

$$
\begin{equation*}
\theta_{n+1}=g_{n}\left(\theta_{n}\right)+v_{n} \tag{2.1}
\end{equation*}
$$

where $g_{n}(x)$ is in general a nonlinear measurable function (known) from $R^{k} \longrightarrow R^{k}$ and v_{n} is unknown k vector (non-random). Let $a_{n}, n=1,2, \ldots$ be positive numbers. Let X_{1} be an arbitrary random variable define for $n \doteq 1,2, \ldots$.

$$
\begin{equation*}
X_{n+1}=\stackrel{\star}{X}_{n}-a_{n} F_{n} \tag{2.2}
\end{equation*}
$$

where

$$
\begin{align*}
& \stackrel{\star}{\mathrm{X}}_{\mathrm{n} 1}=\mathrm{g}_{\mathrm{n}}\left(\mathrm{X}_{\mathrm{n}}\right) ; \\
& \mathrm{F}_{\mathrm{n} 1}=\overline{\mathrm{D}}_{\mathrm{n}}+\mathrm{d}_{\mathrm{n}} \tag{2.3}
\end{align*}
$$

and the ith compenent of \bar{D}_{n} is given by

$$
\bar{D}_{n}^{i}=\left[M_{n+1}\left(x_{n}+e_{i} c_{n}\right)-M_{n+1}\left(x_{n}-e_{i} c_{n}\right)\right] / 2 c_{n}
$$

where e_{i} is the ith column in the identity matrix and c_{n} is a positive sequence of real numbers. Let ${ }_{F}{ }_{n}$ be the $\sigma-f i e l d$ generated by $X_{1}, x_{2}, \ldots, X_{n}$. For x a random vector in R^{k} let $E_{n}(x)$ and $\operatorname{Var}_{n}(x)$ denote the conditional expectation and the conditional variance of x with respect to $\mathfrak{F r}_{n}$ respectively. Let

$$
\begin{equation*}
E_{n}\left(d_{n}\right)=0 \tag{2.4}
\end{equation*}
$$

and for constant k_{1} let

$$
\begin{equation*}
E_{n}\left(\left\|d_{n}\right\|^{2}\right) \leq k_{1} c_{n}^{-2} \tag{2.5}
\end{equation*}
$$

Let $D_{n}(x)$ denotes the vector of the partial derivatives of $M_{n}(x)$ Then

$$
D_{n}^{i}(x)=\frac{\partial M_{n}(x)}{\partial x^{i}}
$$

Assume that

$$
\begin{equation*}
\left\|D_{n}-D_{n+1}\left(\stackrel{\star}{x}_{n}\right)\right\| \leq k_{2} c_{n} \tag{2.6}
\end{equation*}
$$

In what follows $(Q, \not \approx, P)$ will be a probability space, relations and convergence of random variables, vectors and matrices will be meant with probability one. The indicator function of set A will be denoted $x^{A}=R^{k \times k}$ is the space of all real $k \times k$ natrices. The unit matrix in $R^{k \times k}$ is denoted by I and $\|\cdot\|$ is the Euclidean norm. With h_{n} a sequence of numbers let $O\left(h_{n}\right)$, $O\left(h_{n}\right)$ denote sequerices g_{n} and G_{n}, say of elements in one of the sets R, R^{k} such that $h_{n}^{-1} g_{n} \longrightarrow 0,\left\|h_{n_{1}^{-1}} G_{n}\right\| \leq f$ for $f \in R$.

Remark $=$ Let $Y_{n}(i, 1), Y_{n}(i, 2)$ be two random variables such

$$
\begin{aligned}
& E_{n}\left(Y_{n}(i, 1)\right)=M_{n+1}\left(\stackrel{\star}{X}_{n}+e_{i} c_{n}\right) \\
& E_{n_{1}}\left(Y_{n}(i, 2)\right)=M_{n+1}\left(\stackrel{\star}{X}_{n}-e_{i} c_{n}\right)
\end{aligned}
$$

Then $F_{n}=\left[Y_{n}(i, 1)-Y_{n}(i, 2)\right] / 2 c_{n}$, and $Y_{n}(i, 1)$ and $Y_{n}(i, 2)$ are conditionally independent. If $\operatorname{Var}_{n}\left(Y_{n}(i, l)\right)$ and $\operatorname{Var}\left(X_{n}(i, 2)\right)$ are bounded. Then (2.5) holed. Also let $H_{n}(x)$ be the Hessian of $M_{n}(x)$ i.e.

$$
\begin{aligned}
& H_{n}^{i j}(x)=\frac{\partial^{2} M_{n}(x)}{\partial x^{i} \partial x^{j}} \\
& \text { If } \sup _{x}\left\{\left\|H_{n}(x)\right\|<\infty\right\} \text { for } n=1,2, \ldots \text { Then (2.6) holds. }
\end{aligned}
$$

3. CONSITIONS

$$
\text { Conditions on the regression function } M_{n}(x)
$$

$M 1$: There existy two numbers A and B such that

$$
\left\|D_{n}(x)\right\| \leq A\left\|x-\theta_{n}\right\|+B
$$

M2 : For all $\delta>0$, we have

$$
\left.\operatorname{if~}_{n \in N} \quad \inf _{n} \quad \delta\left\|x-\theta_{n}\right\|<\delta^{-1}<x-\theta_{n}, D_{n}(x)\right\rangle>0
$$

Conditions on the sequences a_{n} and c_{n}
Al: $\quad \sum_{n=1}^{\infty} a_{n} c_{n}<\infty ; \quad \sum_{n=1}^{\infty} a_{n}=\infty, \quad \sum a_{n}^{2}<\infty, \quad \sum_{n=1}^{\infty} a_{n}^{2} c_{n}^{-2}<\infty$ Conditions on the functions $g_{n}(x)$ and v_{n}
Gl : There exists a sequence of positive number γ_{n} independent of x and y such that

$$
\left\|g_{n}(x)-g_{n}(x)\right\| \leq \gamma_{n}\|x-y\| \quad \text { for all } x, y \in R^{k}
$$

G2 : $\sum_{n=1}^{\infty}\left(\gamma_{n}^{2}-1\right)^{+}<\infty ;$ where z^{+}means $(x+|z|) / 2$
G3 : $\underset{n \longrightarrow \infty}{\lim } g_{n}(x)-g_{n}(y)-v_{n} \quad$ exists for all $\|x-y\|<\infty$ G4 : $\sum_{n=1}^{\infty}\left\|v_{n}\right\|<\infty$.

4. ASYMPTOTIC CONVERGENCE

Theorem 4.l. If the conditions Ml, M2, Al, Gl-G4 hold. Then

$$
\lim _{n \longrightarrow \infty}\left\|x_{n}-\theta_{n}\right\|=0
$$

Proof:- From (2.1) and (2.2) we have

$$
x_{n+1}-\theta_{n+1}=g_{n}\left(x_{n}\right)-g_{n}\left(\theta_{n}\right)-v_{n}-a_{n} F_{n}
$$

Thus

$$
\begin{aligned}
\left\|x_{n+1}-\theta_{n+1}\right\|^{2}= & \left\|g_{n}\left(x_{n}\right)-g_{n}\left(\theta_{n}\right)-v_{n}\right\|^{2}-2 a_{n}\left\langle g_{n}\left(x_{n}\right)-g_{n}\left(\theta_{n}\right)\right. \\
& \left.-v_{n}, F_{n}\right\rangle+a_{n}^{2}\left\|F_{n}\right\|^{2} \\
= & \left\|g_{n}\left(x_{n}\right)-g_{n}\left(\theta_{n}\right)\right\|^{2}-2\left\langle g_{n}\left(x_{n}\right)-g_{n}\left(\theta_{n}\right), v_{n}\right\rangle+ \\
& +\|v\|^{2}-2 a_{n}\left\langle\stackrel{\alpha}{x}_{n}-\theta_{n+1}, F_{n}\right\rangle+a_{n}^{2}\left\|F_{n}\right\|^{2}
\end{aligned}
$$

Using (2.4) we obtain

$$
\begin{align*}
& E_{n}\left(\left\|x_{n+1}-\theta_{n+1}\right\|^{2}\right)=\left\|g_{n}\left(x_{n}\right)-g_{n}\left(\theta_{n}\right)\right\|^{2}-2\left\langle g_{n}\left(x_{n}\right)-g_{n}\left(\theta_{n}\right), v_{n}\right\rangle \\
& +\left\|\mathrm{v}_{\mathrm{n} 1}\right\|^{2}-2 a_{\mathrm{n}}\left\langle\stackrel{*}{\mathrm{x}}_{\mathrm{n} 1}^{*}-\theta_{\mathrm{n}+1} ; \overline{\mathrm{D}}_{\mathrm{n}}\right\rangle+\mathrm{a}_{\mathrm{n}}^{2} \mathrm{E}_{\mathrm{n}}\left(\left\|\mathrm{~F}_{\mathrm{n}}\right\|^{2}\right) \\
& \leq\left\|g_{n}\left(x_{n}\right)-g_{n}\left(\theta_{n}\right)\right\|^{2}-2 a_{n}\left\langle\stackrel{\star}{x}_{n}-\theta_{n+1} ; \bar{D}_{n+1}\left(\stackrel{\star}{x}_{n}\right)\right\rangle \\
& +O\left(\left\|v_{n}\right\|\left\|g_{n_{1}}\left(x_{n_{1}}\right)-g_{n_{1}}\left(\theta_{n}\right)\right\|\right)+O\left(\left\|v_{n}\right\|^{2}\right. \\
& +0\left(a_{n}\left\|g_{n}\left(x_{n}\right)-g_{n}\left(\theta_{n}\right)-v_{n}\right\|\left\|\bar{D}_{n}-D_{n+1}\left(\stackrel{*}{x}_{n}\right)\right\|^{2}\right) \\
& +0\left(a_{n}^{2}\left\|D_{n+1}\left(\stackrel{\star}{x}_{n}\right)\right\|^{2}\right)+0\left(a_{n}^{2}\left\|\bar{D}_{n}-D_{n+1}\left(\stackrel{\star}{x}_{n}\right)\right\|^{2}\right) \\
& +0\left(a_{n}^{2}\left\|E_{n}\left(d_{n}^{2}\right)\right\|\right) \tag{4.1}
\end{align*}
$$

By (2.5), 92.6) and $M l$ and using the identity $\|x\| \leq\|x\|^{2}+1$, we obtain

$$
\begin{align*}
E_{n}\left(\left\|x_{n+1}-\theta_{n+1}\right\|^{2}\right)= & \left\|g_{n}\left(x_{n}\right)-g_{n}\left(\theta_{n}\right)\right\|^{2}-\left(1+0\left\|v_{n}\right\|\right)+0\left(a_{n} c_{n}\right) \\
& \left.+0\left(a_{n}^{2}\right)\right)-2 a_{n}\left\langle\stackrel{*}{x}_{n}-\theta_{n+1} ; D_{n+1}\left(\stackrel{*}{x}_{n}\right)\right\rangle \\
& +0\left(\left\|v_{n}\right\|+\left\|v_{n}\right\|^{2}+a_{n} c_{n}+\left\|v_{n}\right\| a_{n} c_{n}+a_{n}^{2}\right) \\
= & \left\|g_{n}\left(x_{n}\right)-g_{n}\left(\theta_{n}\right)\right\|^{2}\left(1+\mu_{n}\right) \\
& -2 a_{n}\left\langle\stackrel{*}{x}_{n}-\theta_{n+1} ; D_{n+1}\left(\stackrel{\star}{x}_{n}\right)\right\rangle+\delta_{n} \quad(4.2) \tag{4.2}
\end{align*}
$$

where

$$
\begin{aligned}
& \mu_{n}=0\left(\left\|v_{n}\right\|+a_{n} c_{n}+a_{n}^{2}\right) \\
& \delta_{n}=0\left(\mu_{n}+a_{n}^{2} c_{n}^{-2}\right)
\end{aligned}
$$

From Al and G4 it follows that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \mu_{n}<\infty \quad \text { and } \quad \sum_{n=1}^{\infty} \delta_{n}<\infty \tag{4.3}
\end{equation*}
$$

Using Gl, (4.2) can be written as

$$
\left.\begin{array}{rl}
E_{n}\left(\left\|x_{n+1}-\theta_{n+1}\right\|^{2}\right) \leq & \left\|x_{n}-\theta_{n}\right\|^{2}-\left(1+\mu_{n}+\left(\gamma_{n}^{2}-1\right.\right.
\end{array}\right)
$$

From M2, G2, (4.3) and (4.4), it follows from Theorem 1 Robbins and siegmund [8] that

$$
\underset{\mathrm{n} \longrightarrow \infty}{\lim }\left\|\mathrm{x}_{\mathrm{n}}-\theta_{\mathrm{n}}\right\| \text { exists and finite }
$$

and

$$
\begin{equation*}
\sum_{n=1}^{\infty} a_{n}\left\langle\stackrel{\star}{x}_{n}-\theta_{n+1} ; D_{n+1}\left(\stackrel{*}{x}_{n}\right)\right\rangle<\infty . \tag{4.5}
\end{equation*}
$$

Using M2, Al and G3 obtain that

$$
\lim _{n \rightarrow \infty}\left\|x_{n}-\theta_{n}\right\|=0, \text { which completes the proof of theorem. }
$$

5. ASYMPTOTIC NORMALITY OF THE PROCEDURE

Theorem 5.1. L.et $A ; P \in R^{k \times k}$, A positive definite, P orthogonal,

$$
\begin{align*}
& P^{\prime} A P=\wedge \text { diagonal, } \lambda=\min \wedge(i j), 0<\beta<2 \lambda a, \\
& a_{n}=a n^{-1}, c_{n}=n^{-\gamma}, \gamma=\frac{1}{2}(1-\beta) ; \tag{5.1}\\
& X_{n}-\theta_{n} \longrightarrow 0 \quad C>E_{n}\left(d_{n} d_{n}^{\prime}\right)-\Sigma \| \rightarrow 0 \\
& n^{-1} \sum_{j=1}^{n} \alpha_{j, r}^{2} \longrightarrow 0 \text { for every } r>0 \text { with } \\
& o_{j, r}^{2}=E_{x}\left\{\left\|d_{j}\right\|^{2} \geq r j^{\alpha}\right\}\left\|d_{j}\right\|^{2} \text { and }
\end{align*}
$$

let for X_{n} in a neighborhoud of θ_{n}

$$
\begin{equation*}
\left\|\bar{D}_{n}-A\left(x_{n}-\theta_{n+1}\right)-n^{-\beta / 2} m\right\| \leq 0(1)\left[n^{-\beta / 2}+\left\|\dot{x}_{n}-\theta_{n+1}\right\|\right] \tag{5.2}
\end{equation*}
$$

$$
\begin{equation*}
\left\|g_{n}(x)-g_{n}\left(\theta_{n}\right)-\left(x_{n}-\theta_{n}\right)\right\| \leq 0(1)\left[n^{-\beta / 2}+n^{-1}\left\|x_{n}-\theta_{n}\right\|\right] \tag{5.3}
\end{equation*}
$$

Then the asymptotic distribution of $n^{\beta / 2}\left(x_{n}-\theta_{n}\right)$ is normal with mean $-a(a A-(\beta / 2) I)^{-1} m$ and covariance matrix PMP' with $M^{(i j)}=a^{2} c^{-2}\left[P^{\prime} \Sigma P\right]^{(i j)} /\left(a \wedge^{(i j)}+a \wedge^{(i j)}-\beta\right)$

Proof : From (2.1) (2.2) and (2.3) we have

$$
\begin{equation*}
x_{n+1}-\theta_{n+1}=\stackrel{x}{x}_{n}-\theta_{n+1}-a n^{-1} D_{n}-a n^{-1} d_{n} \tag{5.4}
\end{equation*}
$$

From (2.5) it follows that

$$
\bar{D}_{n}=A_{n}\left(\stackrel{\star}{X}_{n}-\theta_{n+1}\right) n^{-\beta / 2} m_{n}
$$

with A_{n}, m_{n} are \mathscr{F}_{n}-measurable and $A_{n} \longrightarrow A, \quad m_{n} \longrightarrow \quad m$ uniformally. Thus (5.4) can be written as
$x_{n+1}-\theta_{n+1}=\left(\stackrel{\star}{x}_{n}-\theta_{n+1}\right)\left(I-a n^{-1} A_{n}\right)-a n^{-1} n^{-\beta / 2}{ }_{n}$
$-a n^{-1} d_{n}$
Also it follows from (5.3) that

$$
\begin{equation*}
\stackrel{*}{x}_{n}-\theta_{n+1}=a_{n}\left(x_{n}-\theta_{n}\right)+n^{-\beta / 2} g_{n} \tag{5.6}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{G}_{\mathrm{n}} \longrightarrow \mathrm{I} \\
& \mathrm{~g}_{\mathrm{n}} \longrightarrow 0
\end{aligned}
$$

uniformally, $\left\|G_{n}-I\right\|=0\left(n^{-1}\right)$.
Substituting (5.6) in (5.5) we get

$$
\begin{align*}
x_{n+1}-\theta_{n+1}= & \left(I-a n^{-1}\left(A_{n}+0(1)\right)\left(x_{n}-\theta_{n}\right)-\right. \\
& a n^{-1} n^{-\beta / 2}\left(m_{n}+0(1)\right)-a n^{-1} d_{n} \tag{5.7}
\end{align*}
$$

From (5.7) and Theorem (2.2) Fabian [5], giving the desired result.

FIFTH ASAT CONFERENCE

REFERENCES

[1] Doob, J.L. (l953), Stochastic processes. Wiley, New York.
[2] Dupac, V. (1965), A dynamic stochastic approximation method. Annal. Math. Statist., 1695-1702.
[3] Dupac, V. (1966), Stochastic aproximation in the presence of the trend. Czechosloak Mathematical Jounal, 16, 454-461.
[4] Fabian, V. (1968 a), on the choice of design in stochastic approximation methods. Ann. Math. Statist. 39(457-465).
[5] Fabian, V. (l968 b), on asymtotic normality in stochastic approximation. Ann. Math. Statist. 39 1327-1332.
[6] Kiefer, J. and Wolfowitz, J. (1952), Stochastic estimation of the maximum of a regression function, Ann. Math. Statist. 23, 462-466.
[7] Robbins, H. and Monro (1951), A stochastic approximation method. Ann, Math. Statist. 22, 400-407.
[8] Robbins, H. and Siegmund, D. (1971), A convergence theorem for non negative almost super martingles and some applications. In optimizing Methods in statistics (J.S. Rustagi, ed.) 233-257.
[9] Rupper, D. (1985), A Newton-Raphson Version of the multivariate Robbins-Monro procedure. Ann. Statist. 13, 236-245.
[10] Sorour, E. (1978), On the convergence of the dynamic stochastic approximation method for stochastic non-linear multidimensional dyramic dystems. Kybernetika, Volume 14 , 28-37
[11] Sorour, E. (1991), A dynamic Kiefer-Wolfowitz stochastic approximation procedure. Statistics \& Decision 9, 201-211.
[12] Sorour, E. (1993), Dynamic multivariate stochastic approximation usiry simultaneous perturbation gradient approximation. Proceedings of Eighteenth (18) international conference for statistics and computer science and applications (17-22 April), pages (\quad) , Some generalization of the dynamic
[13] Uosaki, K. (1974), Some generalization of the dynamic stochastic
$1042-1048$.

