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Abstarct
Let M(x) be a function from Rk-—+R.Let en' #, w8 1250 wsy rBE
vectors in Rk, 61 being the value at which M(x) achieves 1its
unique minimum. Set M(x) = Ml(x), for m = Y25 00mp set Mn(x) =

M(x - en - 81). Then Gn is the unique minimum of Mn(x), which 1is

unknown and is to be estimated. In our case, we assume that en

&= -+ i
qn(en) v where gn(en) is

moves in such a manner that 9n+1

general non-linear k-vector measurable function (known) defined
for all xeRk and Vi is an unknown k-vector function (random or
non-random) independent of x. Let a . che n = 1,2,... be two

sequences of positive numbers. Let Xy be an arbitrary random

] ] X * _ X
variable. Define for n l,2,...,xn+1 = X + an(y2n y2n_l)/cn
* * *
where xn = gn(xn), and Yon' Yom-i are random ;arlables such that
their expectations given xl,xz, ..... ,xn are i)Ean+l(xn + eicn)e1
k
and iEan+1(xn - eicn)ei respectively and their conditional

variance are bounded by a constant 02 and they are conditionally
independent. Under conditions similar to those wused by Dupac

(1966), we show that "xn - en" —» 0 with probability one.
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1. INTRODUCTION

This paper is concerned with the dynamic Kiefer-wolfowitz
(KW) stochastic approximation procedure. This problem has been
firstly studied by Dupac [2], [3]. He discussed in his papers the
cases where the movement of the maximum can be expressed by a
certain linear function of its present location and determinestic

trend, i.e. he assume that

8r1+l =4l __]2;_)911 - vI'l (1'1)
where En is the unique maximum of the regression function Mn(x).
Uosaki, K. (1974) discussed the one-dimensional dynamic
Robhins-Monro (RM) process. He considers the case where the

movement of the root can be expressed by a specified non-linear
function of its present location. Sorour (1978) geenralizes
losaki’s r1esolt to the multidimensional dynamic (R<). In this
paper; we shall be concerned with the non-linear multidimensional
dynamic systems. The convergence of the approximation to the
moving minimum of a nonlinear regression function, with
probability one, is proved. In sec. 4 we prove the convergence
with probability one and in sec. 5, we show that under some
regqularity conditions on the noise, the process is asymtotoically

normal.

2. DESCRIPTION OF THE PROCEDURE

Let Rk be a real k-dimensional vector space. If x and y are
two vectors in Rk we denote their-inner product by (x,y) and

their nroms by [x| and |y| respectively. Let M_(x) be a (unknown)
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function from Rk-—+ R. Assume that Bn is the wunique minimum of

Mn(x). our goal is to estimate en. In our case we assume that Bn

moves in a manner that

(=]

ael = Iplfpl T Yy poig( 24l )

where gn(x) is in general a nonlinear measurable function (known)

from Rk——aRk and Vo is unknown k vector (non-random).
Let a . n=1,2,... be positive numbers. Let Xl be an arbitrary
random variable define for n = ) I .
X X F 2.2
n+l  “n n'n §2-4)
where
X )
Xn - qn(xn' !
F =D +d (2.3)
n n n

and the ith compenent of Bn is given by

T2 = I—?~ - = = = » =] -
25 Ljnfl(“n + Lic“) Mn__rl(),n eiun) /2 Ch"

where ey is the ith column in the identity matrix and ch is a
positive sequence of real numbers. Let .?n be the o-field
generated by Xl’xz""'xn' For x a random vector in Rk let En(x)
and Varn(x) denote the conditional expectation and the

conditional variance of x with respect to ?n respectively. Let
En(dn) = 0 (2.4)
and for constant kl let

2 -2
E (a9 = k) ¢ (2.5)

Let Dn(x) denotes the vector of the partial derivatives of Mn(x)
Then
a Mn(x)

a x1

DL (x)
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Assume that

*
Ip Dn+1(xn)" = k? “ Ly

I n

In what follows (Q, ¥, P) will be a probability space, relations
and convergence of random variables, vectors and matrices will be

meant with probability one. The indicator function of set A will

A _ kak

be denoted x is the space of all real kxk natrices. The

unit matrix in RRXK is denoted by I and |*|] 1is the Euclidean

norm. With hn a sequence of numbers let O(hn), O(hn) denote

sequences g and Gn, say of elements in one of the sets R, Rk
such that hil g — 0, ”hnl C_“ < f for feR.
I n n n
Remark : Let Yn(i,l), Yn(i,Z) be two random variables such
*
o r i =
Er1(&;'(l 1)) Mriil (Xll % € Cr»)
by
En(Yn(l'ZJ) - Mr1+l(Xn N eicn)
Then F_ = [Y (d,0% = ¥ (i,?\]/?c . gud ¥ (1.1) and Y (i,2) are
n I't i I 11 I

conditienally independent. IE Varn(Yn(i,l)) and Var(Yn(i,Z)) are

bounded. Then (2.5) holed. Also let Hn(x) be the Hessian of Mn(x)

i.e.
. aZMn(x)
HnJ(X) = 3 3
ax’ ax?
1f Sup{"Hn(x)" < m} for n = 1,2,.... Then (2.6) holds.
X

3. CONSITIONS

Conditions on the regression function Mn(x)

Ml : There existy two numbers A and B such that
= - 8 + B.
Io (x)| < alx - e | + B

M2 : For all & > 0, we have



.
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if inf _, <x - 8, D _(x)>>0
neN é<"x—6n"<6 n n

Conditions on the Sequences a, and ¢
n

® [
Al : » B 3.%n < w; >

= w, h a2 < o,
=1 n=1 n

"]

n

)
1™ 8
o
0
Ay
8

Conditions on the functions gn(x) and Vo

Gl : There exists a sequence of positive number ¥ independent of

x and y such that

k
lg, (x) = g (x)] = rollx - vl for all x,yeR .
[e o)
2 + +
G2 : Y% (yn - 1)7 < w; where z means (X *+ |z|)/2
n=1
G3 : lim g (») - g, (¥) - vy exists for all [x - y| <
n —ow
®
G4 : L ”vn“ < .
=1

4. ASYMPTOTIC CONVERGENCE

Theorem 4.1. 1f the conditions M1, M2, Al, Gl1-G4 hold. Then
lim HX - 8 " =0
n n
n —o
Proof :- From (2.1) and (2.2) we have
Xnt1 ~ Cnel T 9ntxy) - 9,(8,) ~ vV T anFn
Thus

2
I

2
I%per - 6n+l" "gn(xn) = 9,(8y) = Y - 2a,<qg,, (%) - 9.8y

2 2
- vn' Fn> * an"FnH 2

2
o (x,) = 9,8 )" - 2<9,(xy) = 9p(8p). V> *

2 * 2 2
+ v - 2a <X - en+l' Fn> + an"Fn“

Using (2.4) we obtain
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2. 2
En("xn+l - 8n+l" ) = ”gn(xn) B gn(an)” ~ ERgiEL) - 9, (Epds V2
2 ¥ — 2 2
t “vllll - ‘?al‘lkxn - 8”“"1; D]‘]> = al’l EII(”FI]” )
) * e *
= ”gn(xn) - gn(en)" N Zan<xn - 6n+1; Dn+l(xn)>
2
ovpllla, (x ) = 9,80 + o(fv |
= * 2
+ O(an"gn(xn) N gn(en)_ Vn""DnH Dn+l(xn)" )
2 * 2 2,= * 2
" O(an”Dn+l(xn)" ) O(an"Dn_ Dn+l(xn)" )
2 2
+ 0(a E (d )]) (4.1)

By (2.5), 92.6) and Ml and using the identity ]| = "x"2 + 1, we

obtain
2

I

"gn(xn) - g (en)u - (1 + O"vn") + O(ancn)

2
En("Xn+1 - en+1" ) n

2 *
+ 0(a_)) - 2a <x_ - @
Il n n

D ) >

*
; X
n+l"’ n+1( n

2 2
= + ac,  + "vn" a c_ + an)

+o(llv l + v, e

1

laptxy) = g @17 (1 + u)

* *
- 2an<xn - en+l; Dn+l(xn)> + 6n (4.2)
where
Ho = 0(flv._ || + a_c_ + aZ)
n n nn n
_ 2 =2
én = O(un + a. S )
From Al and G4 it follows that
w 0
b Mo < o and I 6n < o (4.3)
n=1 n=1

Using Gl1, (4.2) can be written as
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By (g, T Ol ) E W 8l = g o sid )
X x & 4.4
+ Zan<xn - 9n+l; Dn+l(xn)> + 7 (4.4)

From M2, G2, (4.3) and (4.4), it follows from Theorem 1 Robbins

and Siegmund [8] that

lim |x_ - €& | exists and finite
n In
n —o
and
= o e . I (4.5
ngl A %*n T “n+l’ Doy pl®g )2 < & { e

Using M2, Al and G3 obtain that

lim ||xn - en" = 0, which completes the proof of theorem.
n ——»C0 i "

5. ASYMPTOTIC NORMALITY OF THE PROCEDURE

Theorem 5.1. Let A;PeRka, A positive definite, P orthogonal,

p’ap = A diagonal, A = min Alll) 5 ¢ B < 2na,

= _l = —r = _l_. -_— - . !
a =an?-, cy cn ', ¥ >— (1 )3 {5.1)
X -¢é, — 0 ¢> lE (a dr) - 2l — 0.
-3 Bz
n Y o, —» 0 for every r > 0 with

y=1 %
2 - 2 .ol 2
o Ex{"dj" > r 3 } laj1® ana
let for Xn in a neighborhoud of Gn

5, - atx, - ap,y) - 02wl = oy [0 4 1k, - o]

(5.2)

n+l)

la (x) - g (6,) - (X, — o] = 0(1)[n“ﬁ/2 +ntx_ - e |

{5.3)
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Then the asymptotic distribution of nﬁ/z(xn N Bn) is normal

with mean -a(aA - (f3/2) I) lm and covariance matrix PMP’
with M(IJ) = az C—Z[P' z p](lJ)/ (a A(lj) 3 a/\(ij) "ﬁ)
Proof : From (2.1) (2.2) and (2.3) we have

, o T
| 8n+l = By 6n+l At Ph A dn (4]

From (2.5) it follows that

— _ * _ —{5’/2
By = Api¥y @'n+l)n My

with A ,m_ are F -measurable and A_ — A, m_— m
n'n n n n
uniformally. Thus (5.4) can be written as

* = - -
X ~ B = (X -9 J(I - an 1 An)— an L n B

n+1l n+1 n n+1 n

- an" 14 (5.5)

Also it follows from (5.3) that

& _ - _ ~BlE
}{“ ei‘iw‘l Ci‘l(xr; 81'1) ton “n (a8}
where
G —>» I
n
g, ~—* 0
uniformally, |6 - If = o(n”ty.
Substituting (5.6) in (5.5) we get
X -6 = (1 -an YA +o0(1))(x -6 ) -
n+1 n+l n n n
an—l n_ﬁ/z(mn + O(1l)) = an_ldn (5.7)

From (5.7) and Theorem (2.2) Fabian [5)], giving the desired

result.
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