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POLE ZERO PLACEMENT CONTROLLERS 

I** 
G. M. El -BAYOUMI
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ABSTRACT 

The paper describes the theory and application of 
multi-input/multi-output CMIMO) self tuning controllers 
where the control objective is the tracking of reference 
signals. The two schemes previously introduced by the 
authors for SISO case are extended for the case of MIMO. The 
two schemes require pole placement of the closed loop 
transfer function as well as zero placement of the error 
transfer function. The problem in the case of MIMO systems 
is more difficult than that for SISO, mainly because, the 
matrices describe the system are not commute. Simulation 
example is given to demonstrate that the second scheme is 
more suitable than the first one. 

1. INTRODUCTION 

Several papers have been recently appeared on multivariable 
self tuning control. The earlier papers extended the minimum 
variance controller to multivariable systems. To overcome 
the restriction of stably invertible (minimum phase) system 
the technique of Clarke and Gawthrop (8) has been extended 
to multivariable systems. More recent papers have, however, 
focused on pole assignment objectives. The attractiveness of 
pole assignment methods include their ability to handle 
nonminimum phase systems, and the fact that desired closed 
loop performance characteristics are easily specified via 
pole configuration. Furthermore new classical objectives, 
such as decoupling and the reduction of steady state errors, 
introduce slight modifications of the basic algorithms. 

In this paper, we shall extend the concept of set point 
tracking to the case of multivariable systems. This concept 
is modified and studied well in the case of SISO systems. 
The paper extend two schemes previously proposed for SISO 
systems (Q). The two schemes are compared with the original 
pole placement technique and proves good tracking. Also it 
is found that the second scheme is more suitable and give 
better results than the first one. 

The paper proceeds as follows. Section 2 presents the OFF 
line design using the schemes for tracking. In section 3 thea  
ON line algorithm is introduced. Section 4 presents  

simulation example. Main results and conclusions are found 

in section 5. 
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2. OFF LINE DESIGN 

Consider the general form of feedback control system shown 
in Fig.C1), where the system is an m-input/m-output linear 
system described by the model 

ACz
-1) yCt) = z

-K BCz-1D uCt) 
	 C1D 

Y(t ) 
rCt) 

feedforward 

controller 
system 

feedback 
controller 

Fig.C1) General feedback control system 

where uCt) is Cmxl) s)stem input vector, y(t) is Cmx1) 
system output vector, z 	is the backward shift operator and 
k is the time delay in the systomi  which is_i  a multiple 
integer of the sampling period. ACz ) and BCz ) are Cmxm) 
matrices of order na and nb respectively and have the 
following structure, with Ao = I 

z
-1 	-nx 

XCz-1D = Xo 
+ X1 	

+ 	+ X 	 C2D
nx 

Let the control input vector given by 

uCt) = TCz
-1) R

-1Cz
-1D rCt) + SCz

-1D R
-1Cz

-1) y(t) (3) 

wherg r(t) is Cmx1) reference input vector and TCz
-1D, 

SCz ) and RCz
-1) are Cmxm) matrices of order nt, ns and nr 

respectively, and have the structure given by (2), with 
Ro=I. 

The output yCt) can be written as 

y(t) =RCAR+ z
-k BS]-1 z-k BTR

-1 r(t) 	C3) 

and the error eCt) is given by 

eCt) = r(t) - yCt) 

eCtD=R[AR+z-k -1 BS] CAR+z
-kBS-z-kBT]

-1RrCt) 	(4) 
equations C3) and (4) are the basic equations for pole 
placement and set point tracking. 

2.1. First Scheme 

In the first scheme it is assumed that TCz
-13= SCz

-1) and 
therefore equations (3) and C4) becomes 

y(t) =RCAR+ z
-kBS]-1z

-kBSR
-1rCt) 	C5D 
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eCt) =RCAR+ z
-kBS]

-1  A R rCt) 	C6D 

in equation C6D R is chosen such that the modes of the 
input are cancelled by R, so let us assume that 

N Cz-1D 	N Cz
-1D 

1 	 m 	 >T 	(7) 

R = RD 
. R1 

where RD  .* IAi  cz-1D 1 
CgD 

i=1 	
mxm 

The pole placement problem is to find R and S such that the 
closed loop transfer function has certain poles, which lead 
to the Diophantine equation 

A R+ z
-k BS=AA 	 C10) 

m o 
Both Am 

and Ao 
are Cm.NmD matrices, where Am 

is the desired 

characteristic polynomial of the closed loop system and Ao  

is another polynomial which can be considered as the 
observer polynomial. Substitute from Cg) into C10), let Am  

Ao 
= A and ARD  = Al, we get 

ml 

Al R1 
+ z

-k B S= Aml 	
Cl1D 

Thus equation C11D can be solved for R1  and S. Then R is 
determined from equation CBD. 

2.2. Second Scheme : 

In the second scheme, T is chosen different from S, and thus 
equations C3D and C4D are used. In equation (3) S and R are 
chosen such that 

AR+ z
-k BS=Am  Ao  = Amt 	

C12D 

Substitute from C12D in (4), we get 

eCt) =RCA R + z
-k B S]-1 CAml - z

-k B TJR
-1 rCtD C13) 

In equation Cl3D T is chosen such that it cancels the modes 
of rCt). let 

A - z
-k B T = RD R2 ml 	

C14D 

where RD 
is given by equation CgD, and R2 

is another matrix 

to satisfy the compatibility degree of equation C14). 
Rearranging equation C14) 

RD R2 
+ z

-k B T = A ml 	
C15D 

rCtD - < 	 
MlCz-1 

 

In order to cancel WCz-1 D, i =1 . 

M Cz
-1D 

, m, let 

C8D 
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Equation C15) is solved for T and R2
. Note R2 

is not of 

interest. 

2.3. Solution of the Diophantine Equation 

The solution of the Diophantine equation of the form 

A R+ z
-k B S= Aml 	

C16) 

has a unique solution, if and only if, the following 
conditions are satisfied C 2 ] 

nr = nb + k - 1 

ns = na - 1 	 C17) 

naml <= na + nb + k - 1 

The solution is obtained by equating equal powers of z
-1 in 

both sides of equation C16), which is transformed to a set 
of simultaneous equations. 

It is seen that solution of Diophantine equation requires 
inversion of matrix of order Cna+nb+k-1)*m, subtraction, and 
matrix multiplication. 

2.4. Control Law Application 

The control law of equation (3) can be implemented by 
introducing a further assumption of commutivity, it is 
assumed that, there exist S and R such that 

-1 	 -1  
SR =R S C18) 

where S and R are Cmxm) matrices of order ns and nr 
respectively. The solution of equation C18) leads to a 
system of linear equations. 

The solution of equation C18) requires inverse of matrix of 
order m*Cnr+ns), unless nr=O,i.e. nb+k=1, where R = I and 
= S. Or when m=1, where the transformation is unnecessary. 
From equation C18) the control law is given by 

uCt) = fft-1 
 T rCt) - s-1 

 S yCt) 	C1g) 

3. ON LINE DESIGN 

When the parameters of the system are unknown, then, they 
must be estimated using recursive least square, and the 
controller is redesigned in each step using the estimated 
paameters instead of the true ones. 

4. SIMULATION EXAMPLE 

The schemes proposed for tracking as well as pole placement 
technique are compared using a simulation example. Consider 
the 2-input/2-output system described by equation (1), where 
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-1 D= I + Al 
z-1 + A2 z

-2 

-I 
-1)= Bo + B1  z 	

, 	K -= i 

-1 . 4 	-0. 2-  0. 48 	0. 1 

given 	Al 
= A2 = 

[ 

-0. 1 	-o.g 0 	0. 2 

1 	0  1.5 	11 

B= 

[ 

B1  o 
O 	0 0 	1 

The model_is chosen to be 1 
Am
Cz 	= I + A 	z 	+ Am2 

z -2 
ml 

0 25 	0 

[

-1.0 

given 	Am1 

[0. 

Amt  

-0.1 	-0.7 -0.050.12 

while the observer polynomial is taken as AoCz
-1  ) = 	I . The 

caseof 	periodic 	step 	input 	is 	considered, 	where 	MCz 
-1D 

1  
=1-z 	. 
Simulation for the 3 cases 	are shown in figures 2,3,4 for 

the 	Off 	line 	design 	and 	figures 	5,6,7 	for 	the 	On 	line 

design. 	It 	is 	very 	clear 	that 	both 	schemes 	give 	good 

tracking than design using pole placement only. 	It is also 
clear by comparing figures 3 and 4 as well as 6 and 7 that 
the second scheme give better tracking specially at sudden 
changes of reference signal. 

5. CONCLUSIONS 

Two schemes for better set point tracking which are 
previously adopted for SISO systems are generalized here for 
the case of MIMO. The two schemes still prove good tracking. 
The second scheme is advantageous than the first one, both 
in the results obtained as well as computations required for 
the controller design. 
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A MODEL REFERENCE ADAPTIVE CONTROLLER (MRAC) WITH PERIODIC 

RESETTING OF ADAPTATION MECHANISM (PRAM) 

ADEL T. Y. TAWFIK * 	A.M. WAHDAN ** 

ABSTRACT 

It has been assured that standard adaptive control algorithms, 
designed in the so-called ideal case, would likely become unstable 
when one takes disturbances and neglected dynamics into account. 

For the stability problems to be tackled; we propose a modified 
model reference adaptive controller that introduces the concept of 
periodic resetting of adaptation mechanism. In order to attain the 
best feasible performance; an optimum adaptation-time is computed 

on-line,via minimization of certain quadratic criterion. 

In this paper, a modified algorithm of MRAC with (PRAM) has been 
developed. Such a controller can provide stability with better 
performance to a large family of real plants, where sinusoidal 
disturbances and unmodeled dynamics are most probable. 

The proposed scheme prevents the dangerous problems due to 
unbounded parameter drift present in available MRAC schemes, in 

such practical conditions. The analytical arguments and 
improvements provided by the proposed algorithm, has been verified 

by simulation results. 

* Brig.Gen.Eng. Adel T.Y. Tawfik, E.A.F., Ph.D. candidate, Dpt.of 
Computers and Systems Eng., Ain-Shams Univ., Cairo, Egypt. 

** Prof.Dr.A.M. Wandan, Dpt. of Computers and Systems Engineering, 
Ain-Shams University, Cairo, Egypt. 
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1.. INTRODUCTION 

An intensive investigation study of the stability and robustness 
properties of a wide class of conventional adaptive control 
algorithms in the presence of unmodeled high-frequency dynamics 
and persistent output disturbances, has been carried out(Rohrs and 
others, [141). Their main conclusion was that: 

1) Sinusoidal reference inputs at specific frequencies 	and / or, 
2) Sinusoidal output disturbances at any frequency (including 

dc), can cause the loop gain to increase without bound leading 
to instability. 

Since then, ROBUST MODEL REFERENCE ADAPTIVE CONTROL(MRAC) for real 
systems, under practical conditions, have been extensively studied 
in the literature during the last decade. For linear single-input-
single-output (SISO) systems, several robust modifications have 
been proposed that can be turned into the following main classes: 

(i) Modifying the adaptive law, such as, dead zone : ((10],[15]), 
mdification;[2], (-_:modification:(81, dead zone using an upper 

1.1ou&I of the plant parameteLs [5], and with a variable width: 
=,Efl) , controller with bounded parameters using appropriate 
TA1n limiLer t171. 

(ii.) Tncring the richness of the reference input:(Narendra and 
Annaswamy [7]) derived the sufficient conditions on the persistent 
excitation of the reference input, given the maximum amplitude of 
disturbance, for the signals in the adaptive system to be globally 
bounded. 

Concerning nonlinear systems, several researches dealing with 
robust adaptive control are now available in the literature, howe-
ver, few results have been ohtained(see e.g.[11],[16],[3],[4], and 
[191) 

In this p,Jper, we propose the PRAM-modification as a solution for 
stability problems of a plant subject to disturbances and unmodel-
ed dynamics. 

The proposed modification makes a conventional adaptive controller 
globally :•table, and robust to uncertainties; in the sense that 
all the signals in the loop remain bounded. For reviewing the 
general structure of a standard MRAC algorithm and the associated 
infinite gain operators in the presence of such uncertainties 
(unmodeled dynamics and disturbances); the reader may refer to 
[13] , [14] , and [17]. 

2. PRAM - MODIFICATION 

The essential idea of PRAM is to reset the adaptive gains to their 
optimum nominal values periodically. The time-period after which 
the adaptation mechanism is reset periodically, is named the 
adaptotion-period ; 	Dy defining a permissible limit for the 
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ratio of adaptive gain drift to system mismatch error 	( (t) 
H 	e 	(t) 	), 	that would not be exeeded, we can 	derive 	the upper 
bound 	for 	the 	adaptation-period 	(Ta 	) 	. 	Also 	a 	lower bound 

max 
(T

a 

	

	
) can be determined according to the transient reponse of 

min 
the conLrol system. Depending on the selected value of the 
adaptation period, the resetting mechanism can be designed. Thus, 
the proposed modified algorithm is capable to prevent the 	un- 

definite drift of controller parameters k (t) ; by assuming a 
finite time of adaptation-period, after which the drift of 
parameters will be reset to zero periodically. The limiting bounds 
of adaptation-period ( 	Ta 	, T

a 	
) , 	will be 	properly 

min 	max 
evaluated in order to contain the drift of adaptive 

OSP 

parameters k(t) within the assumed permissible 	limits. PRAM- 
modification can be introduced in the adaptive mechanism of the 
available standard MRAC algorithm, as shown with CA1 in Fig.l. 

PRAM 

 

K (t) 	K (t) 
u(t) 

	sp-ill 	mi.[Y] 	 

7 
W
T 
(t) 

e(t) 

	TP- 1  - 

w (t) 

Fig.l. CAl. Modified Adaptive Parameters k m(t) using RRAM. 

3. ADAPTATION - PERIOD ( Ta) 

Using one of the available standard adaptive algorithms (CA1 is 
chosen for its simplicity), and considering an additive output 
disturbance of the form 

d (t) = d0 sin (wt) 	 (1) 

Then, the plant output will be 

y (t) = y (t) + d  (t) 	 (2) 

The mismatch error between the plant output and the desired model 
output,e (t), even at full adaptation convergence state, will have 
a residual sinusoidal component of the form 

e (t) = a sin (w t + ,Z) 	d sin (o.t + 
0 0 (3) 

For simplification of the mathematical derivation, a zero value 
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n. 

k ( I) 

0 e (t) 

1/2. 

- ( k
1 
 T ) 

1/2 

d
o 
T 

3 1/2 

( k 	T ) 

ao 	(10) 
co 

for the phase-shift angle (T) is considered, and a scalar 

auxiliary signal w (t) is assumed as 

w (t) = b + c sin (c t) 
	 (4) 

where a, b, c , d
o 
, w are assumed to be positive constants. 

From equations (3) and (4) we get 

w (t).e (t) 	a sin w
o 

t . ( bfc sin
o
w t ) 

= a b sin (wot) + 1/2 ac - 1/2 ac cos (2 wot) 	(5) 

According to adaptation law of CA1 algorithm, as given in [14] the 

variation of a single controller parameter [k (t)] will be 

k (t) = k
o 	

+ 	f w (T) e (T) d r 	 (6) 

0 
+ 
	

[ab sin w
o
t + 1/2 ac - 1/2 ac cos(2w

o
t)] dt 

(1 

= k 	+ 1/2 act i ah/w 	(ab/w
o
) cos w

o
t -- (ac/4w

o
) sin 2w

o
t 

0 	 0
(7) 

Using standard norm inequalities, we can finally obtain the follo-

wing inequality ( full derivation is given in [ 13],[141 ). 

II k (t) 	(k, 
	

(k
1 
 T)

1/2 
	

(8) 

Himilarly, the square of error norm is 

0 

) = 	 j sin
2 
 w

o 
t dt 	a

z 
T 
	

(9) 

Accordirtg to equation (3), the parameter a can be approximated by 
d , at some cases neat final convergence state. Using (8) and (9), 

a ratio between drift or parameters and the error (ratio between 
the norms) can be obtained .s 

Where = 

 2 

 
( 	)

2 
 4 	

(a b 
wo 	4 woj 

F. 
 

(11a) 



k3-  ( 12 
(11b) 

Inspecting 'inequality (10), it is clear that as time 	(T) 

increases, the ratio ( 	k t) H / V e (t) 0 ) 	will , icrease 

without bound. 	In this paper, we propose limiting values for 
adaptation time ( Ta 	, Ta  ); in order to make the drift 

max 	min 
of parameters 	bounded 	within accepted limits. 

	

3.1 Higher Limit ( Ta 	) : 
max 

In order to make the ratio ( 0 k(t) 0 / 0 e (t) 	0 j not higher 

than a finite positive constant (L) ; higher limit for the 
adaptation - period (Ta 	

) can be evaluated, 
max 

339 
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Ta 	m31/2 

(t) 0 max 	( %I  Ta ma
x 	

( kl  Ta  
max 

c (t) 	Ta  max 
	( 

c, max 

1/2 

- L 	(12) 
)1/2 

amax 

then, Ta max 

1/2 
(k1

) 	+ 	a L 
(13) 

 

(k3)
1/2 

 

substituting for 	and k, 	we can get 

1/2 ab 2 ac 
(12) 	( a I.. 	[ (k0)` +2 	(7,;--) + (---4FL- )

2 
]

1/2 

o 	o • 
Ta max 
	 (14) 

3.2 Lower Limit ( Ta 	
) 

min 
 

A zero value for the lower limit of adaptation time, must be 
avoided because this prevents any sort of adaptive control to go 
on. The reasonable lower limit for adaptation-time can be 
considered as the minimum time after which a nearly zero drift of 

gain parameters is attained, i.e., when 0 k (t) 0 = 0 . 

Referring to inequality (10), we may have, 

ac 
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1/2 
,3  
a min  

 

1/2 

T 
1 a  min 

 

 

then, 

T
a 
min 

1/2 

(16) 

Substituting for k and k, we get -I 
1/2 2 	2 

.1  
(._?..._ 	3 	I ac [ 12 ( k 	+ 24 	+ 	12 

0 	4 	1
.'6)0  - 0 

Ta 
min 

4. COMMENTARY ANALYSTS ON ADAPTATION-TIME LIMITS 

(i) From eqn. (14), one can notice that as 	frequency 
(w 0)increaseo, 	( Ta 	would decrease. This 	means 	that 

max 
instability of a standard MRAC system would occur sooner for high-
er frequency of disturbance. 

(ii) Investigating inequality (10) and eqns.(11a,b), we note that 
as sinusoidal disturbance amplitude do 	decreases; the ratio 

(.11 k (t) II / 	(L)Ill 	will 	increase. 	To make it more clear, 

consider a very low extent of disturbance ( d = 1 x 10-6 ) ; then 0 
(10) can be approximated by ( neglecting higher orders of d

o
) 

k
0 
 T 1/2 	k 

 N k (t) 4
T 

/ II e ( t ) HO 	!.= 	
1/2 

'     , 	 

 d
o doT 

(18) 

Thus, decreasing (do) the ratio of parameter drift to error signal 

is increased; thereby pushing the adaptive system faster to 
instability. This analysis gives a clear mathematical 
interpretation for the simulation results first obtained by(Rohrs, 
1982 [123), and which were amazing at that time. 

(iii) flue may also note that the developed higher limit for 
adaptation time ( T

a 

	

	), can be viewed, 	in some sense, as a 
max 

stability indicator for the adaptive system subjected to mentioned 
practical conditions. 

(17) 
ac 
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(iv) Investigating the mathematical 	condition for computing 

(Ta 	
), namely H k(t) H = 0, this state is satisfied when k (t) 

 . min 
is nearly constant, i.e., when the variation (drift) of adaptive 
parameters is nearly zero. From practical experience, supported by 
simulation results, we know that the drift of parameters will not 
approach zero until, at least, the transients of the controlled 
system are damped out. The transient is assumed to be over when 
the response error has become below certain minimum level. 
Note: settling time for a second order system, when response 
error is reduced below 2% of its nominal value, is approximately 
equal to four time constants of the envelope of the damped 
sinusoidal oscillations. 

Thus, the lower limit ( Ta 	) may be well approximated by 
in 

Ta 4 rm 	 (19) 
min 

Where (r ) is assumed to be equal to the time constant of the 

desired reference model specified in the used MRAC algorithm. One 
may consider that the lower limit obtained by eqn.(19) is more 
practical than the former one given by eqn. (17). 

5. OPTIMAL ADAPTATION - PERIOD ( T
a 
opt 

The derived equations (14) and (17) prove that, in principle, 
there is a feasible proper range of adaptation time, within which 
all signals in the adaptive system can be kept bounded in 
practical applications subjected to unmodeled dynamics, and 
sinusoidal disturbances. 

As most items of eqns. (14) and (17) such as, (a,b,c, wo, and do  ) 

can not be known a priori. Besides, such items are not positive 
constants as what has been assumed in section.4, but they are 
rather variables affecting one another. Therefore, we need to 
develop here an approach to determine an optimal value for the 
parameter T ( in some sense ) by 	minimizing 	an 	assumed a 
performance criterion, on - line. 

Suppose that the system is described in discrete-time form by 

g q 
-dP(m) 

y (t) 	p 

A(n) 	
[ u (t)] J v (t) (20)  

Where y (L) and u (t) are the output and input, respectively at 
time t and u (t) is a disturbance term, and 

B(m) 	-1 '2 -2 " = 1 b
1 q 	q + 	+ bm q

-m 
(21)  

A(n) = 1 + a
1 q

-1 	-2 	. + a
2 g 	+ 	• + an q-n 	(22) 
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Where q 
1 
 is the backward shift operator, g 	and dp are the gain 

and delay of the system respectively. Assuming the system (20) 
is controlled by a conventional adaptive controller with PRAM 
modification, then the adaptive gain, the input, and the output of 
the system will of course depend on the modification parameter Ta, 

and will be denoted by k(t, 	, u (t,Ta) and y (t,Ta) . 

The parameter Ta  is to be chosen so that a criterion of the 	form 

V ( Ta) 	E 	g ( y (t, Ta) , u (t,Ta  ) 	 (23) 

is min:miy:ed. The detail:, of a similar approach can be found in 
[3] , where expectation is done over the stochastic signals in the 
system, s•c!-. us 	u (t) ] which was assumed in [3] to be 
statieny tochastic process, with zero mean and arbitrary 
correlation properties. Minimizing (23) could be replaced by the 
solution of 

0 	V (T1) = E 	g: 	( y (t, T
a) ) y" (t, Ta ) Y ( 

( y (t, T
a
), u (t, T

a 
) ) u' (t, Ta) 	(24) 

Here y' (t, T
a) and u (t, Ta) denote the 	output and input 

differentiated with respect to T
a,and g (y,u) is the derivative of 

g with respect Lo its first argument y, and so forth. The idea of 
this approach is to update Tin a negative gradient direction of 

the criterion [41. The parameter Ta  is adjusted on-line in what 

1:7 believed to 	:11resLion of a quadratic criterion V. 
The parameter Ta  will cenverge to, at least, a local minimum of 

tl!i• C2 ItQT1 ,-j] 	(T
a opt 

Withool. i.of.:s of generality,a quadratic criterion can be assumed as 

V 
_ 2 	_ 2 	2 1 

L)
Fc. 	

+ F-
k  k 
	4 F- k 	+ F

u 	(25) 
r 

r 	k  y 

where F , PT ,, and F are arbitrary weighting factors. K   

For the quadratic criterion (25) to he minimized, we seek the 
of the next eqn. 

	

dk r 	Ok 	_ au  0 - V (T ,t)= EiFe 	+ F; k 	f F; 	
y 

k 	+ e u 	(26) a 	 I dT 	y ur 	u OT r 	a 	a a 	 a 
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During searching process, the adaptation-time parameter (Ta) 	is 

considered the real time t which Is always updated by the 
sampling-period (Ts) of the discrete-time system; till the optimal 

value T 	is reached. Hence, V\  can be approximated as, 
aopt 

 

VN(t) = E i Fe 
e(t) 	' 

k 
r 
 (t) - kr

(t-1) 
e(t) r- e(t-1- T 

Ts 	
)+ F 

kr r
(t) 	Ts 

k (t)-k (t-1) 
- 	(t) Y 	Y 	+ F 	

u(t)-u(t-l) 
+ F 	k 	

t 
k 	y 	Ts 	

u u(t) 	Ts 	
r 	

(27) 

Y 
Since the signals of the system are assumed to be deterministic, 
and the disturbance is a sinusoid with distinct frequency; then 
the expectation is replaced by the current values of signals and 
parameters. 

Being interested In the Instant when the gradient changes its 
direction, rather than getting the precise value of that gradient, 
N V can be resealed as 

V\(t) = Fe  e(t)[ e (t)-e (t-1) I + Fi Tcr  (t)[ ir(t) - Kr(t-1) 

+ F-k 
 k 

y  (t)[ky 
 (t)- k (t-1)]+ Fuu(t)puu(t)-u(t-1)] 	(28) 

In this approach the time Ta 	corresponds to the gradiant first 
opt 

conversion of direction from negative to positive one, just after 
the assumed transient-time is over(see Fig.2.). This on-line comp- 
uted value (Ta 

	

	) is the local optimum choice of adaptation-time 
opt 

that would ensure local minimization of performance criterion (V) 
in the feasible operating conditions. 

Fig.2 T 	corresponds to first conversion of VS" direction. 
clopt. 

( from negative to positive after transient is over) 
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6. SIMULATION RESULTS 

To illustrate the effectiveness of the proposed PRAM-modification 
presented in the previous sections; consider the following 
example with a plant described by, 

229 
Y (l) 

  

[u (t) ] 	(29) 
( s 	1 ) (s2  1 30 5 +229) 

The adaptive scheme CA1 [14] is used, with a first order reference 
model given as 

I r (t) I 	 (30) 

The simulations were all initialized with 

k 	(0) 
	

0.65 ; k (0) = 1.14 	 (31) 

which yield a nominal controlled plant with the following transfer 
function 

J P (s) 
	

527 

(32) 
(F,) 	4 	+ 259 s + 527 

Remark: — 	the clo: 0 loop transfer function that would 
A 

LL:::,u1L if k were identically ero,i.e., if a constant control law 

The 	rence inpuit. signal was chosen to be: r(t) = 0.3 	(33) 

with an additive output disturbance: (:w) = 0.001 sin 5.0t 	(34) 

The _IdaLlta:1.01; gain:7. were 	e(lual to four.i.e r = 4, 	(35) 

buL the amplitude and frequency of the sinusoidal disturbance were 
varic:d for. different cases Lo study their effects. The relatively 
large; value of adaptation gain in (35) was chosen so that the 
untahle hehavior would occur over a reasonable simulation time, 
1-■.:1-7uch 
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All imnl - 	wet carried out with the discretized 	equivalent 
system. In order to obtain a discrete-time system which is 
equivalent to the system (29), the standard technique of 
discrate--time control system analysis was used (see (1], section 
3.4). A sampling period of Ts  = 0.04 seconds was used. This 

represents fairly fast sampling, since it is approximately ten 
times as fast as the fastest dynamics in the plant [13] . 

It ie seen from F.imulation results depicted in Figs.3 and 4 that 
the stability of MRAC system using CA1, is more deteriorated when 
increasing the frequency of the sinusoidal disturbance and / or 
deereaeing its amplitude. It is shown also that PRAM-modification 
does provide a stable closed-loop control system with a reasonable 
performance, at conditions where none of the available standard 
adaptive control schemes can provide. 

Fig.5 indicates that PRAM-modification, using the computed optimal 
value of T ( here, Ta 

- 1.8 sec.) gives better response 	than 

7. CONCLUSIONS 

In this paper, a modified MRAC algorithm with Periodic Reset of 
Adaptation Mechanism (M:ZAN) has been developed. Such a controller 

with better performance when the system 
operates in the presence of unmeasured and possibly persistant 
sinus- nide' disturbances. 

The pr, j.,o-C. :;(-!teme alleviates the dangerous problems of the 
unbounded parameter drift present in all available standard 
adaptive schemes, in such practical conditions. The analytical 
arguments ;.ind improvements provided by the proposed algorithm has 
been verified by simulation results. 
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Fig.3. Simulation of CA1 with and without PRAM, 
r(t)= 0.3 and d(t)= 0.001 sin w t. 0 
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Fig.4. Simulation of CA1 with and without PRAM, 
r(t)= 0.3 and d(t)= D sin 5t. 
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Fig.5. Simulation of CA1 with PRAM, r(t)= 0.3, 

and d(t)= 1 x 10
-5
sin 5t, at different T. 
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