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ABSTRACT

The paper describes the theory and application of
multi—input/multi—output C MI MOD cself tuning controllers
where the control objective is the tracking of reference
signals. The two schemes previously introduced by the
authors for SISO case are extended for the case of MIMO. The
two schemes require pole placement of the closed 1loop
transfer function as well as zero placement of the error
transfer function. The problem in the case of MIMO systems
is more difficult than that for SISO, mainly because, the
matrices describe the system are not commute. Simulation
example is given to demonstrate that the second scheme is
more suitable than the first one.

1. INTRODUCTION

Several papers have been recently appeared on multivariable
self tuning control. The earlier papers extended the minimum
variance controller to multivariable systems. To overcome
the restriction of stably invertible Cminimum phase) system
the technique of Clarke and Gawthrop (8> has been extended
to multivariable systems. More recent papers have, however ,
focused on pole assignment objectives. The attractiveness of
pole assignment methods include their ability to handle
nonminimum phase systems, and the fact that desired closed
loop performance characteristics are easily specified via
pole configuration. Furthermore new classical objectives,
such as decoupling and the reduction of steady state errors,
introduce slight modifications of the pasic algorithms.

In this paper, we shall extend the concept of set point
tracking to the case of multivariable systems. This concept
is modified and studied well in the case of SISO systems.
The paper extend two schemes previously proposed for SISO
systems (93. The two schemes are compared with the original
pole placement technique and proves good tracking. Also it

is found that the second scheme is more suitable and give
better results than the first one.

The paper proceeds as follows. Section 2 presents the OFF
line design using the schemes for tracking. In section 3 the
ON line algorithm is introduced. Section 4 presents a
simulation example. Main results and conclusions are found
in section S.
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2. OFF LINE DESIGN

Consider the general form of feedback control system shown

in Fig.<(1>, where the
system described by the

-K

system is an m-input/m—-output linear
model

ACz 1y yetd = =z ECz_l) uC td C1d
feedforward (i)
>
Tt controller M Systam
feedback
controller
Fig.C1) General feedback control system
where uCt) is Cmxl) system input vector, yCtd is Cmx12

system output vector,
k

z

is the time delay in the system which
integer of the sampling period. ACz

is the backward shift operator and
is_, a multiple
> and BCz ") are (mxmd

matrices of order na and nb respectively and have the
following structure, with AO = I

xczls = x_ +x, z '+ + X s ced

o] 1 nx

Let the control input vector given by

wets = Tez by hee by pets + Sz s B e S yitd €3
wher rCtd is_lcmxl) reference input vector and TCZ_l),
SCz °) and RCz D are Cmxm) matrices of order nt, ns and nr
respectively, and have the structure given by (23, with
R =I.
o
The output yCtd can be written as

= -1 _-k =1

yCtdD = R [ AR + =z B S 1 z B TR tCED 3D
and the error eCt) is given by

eCtd = rCtd - yCid

_ -k =1 -k -k -1
eC(t)=R[AR+z BSI] [AR+z BS-z BT] "Rrctd (4)
equations (3> and (4> are the basic equations for pole

placement and set point

2.1. First Scheme

In the first scheme it
therefore equations (3D

yCtdD =R [ AR + =z

tracking.

1

y= scz Yy and

is assumed that TCz—
and (4) becomes

kg g 171.7%g 5 R rcd '4sp)
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eCt) =R [ AR + > kB s 17t AR rc Ced

in equation (B> R is chosen such that the modes of the
input are cancelled by R, so let us assume that

N1c2'1) N cz 1 »
rctd = < e s Y 7>
MICz D MmCz 2
In order to cancel MiCz—l), i=1, ... , m, let
R=Ry. Rl csd
T -1
where R._ =11 Mz > 1I d=))
D ™ i mxm

The pole placement problem is to find R and S such that the
closed loop transfer function has certain poles, which lead
to the Diophantine equation

AR+z BS=A_ A C10d

m o
Both Am and Ao are C(mxmd matrices, where Am is the desired
characteristic polynomial of the closed loop system and Ao

is another polynomial which can be considered as the
observer polynomial. Substitute from (9> inte €103, let Am
A0 = Aml and ARD = Al, we get
AR +z5BS=A C11d
1 1 ml
Thus equation (113 can be solved for Eland S. Then R is
determined from equation (8.

2.2. Second Scheme

In the second scheme, T is chosen different from S, and thus
equations (3> and C4) are used. In equation (3> S and R are
chosen such that

AR+ 2z XBS=A A =A c12d
m o ml

Substitute from C12) in (4D, we get

k 1

ect) =RIAR + z © B S]_ltAmi - 2% B TR rcwd €13d

In equation (13> T is chosen such that it cancels the modes
afipCtd, let
A —z¥BT=R_R C14
ml B >

where RD is given by equation (893, and Ra is another matrix

to satisfy the compatibility degree of equation (C14D.
Rearranging equation (145
-k

RD Ra & it A BT = Aml 15D
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Equation €15) is solved for T and Ra. Note Ra is not of

interest.
2.3. Solution of the Diophantine Equation
The solution of the Diophantine equation of the form

AR+2zEBS= A C16d
ml

has a unique solution, if and only if, the following
conditions are satisfied [ 2 ]

nr = nb + k -1
ne = na = 1 A7
naml <= na + nb + k - 1

—1
The solution is obtained by equating equal powers of =z 1n
both sides of equation (16>, which is transformed to a set
of simultaneous equations.

It is seen that solution of Diophantine equation requires
inversion of matrix of order Cna+nb+k-1J%m, subtraction, and
matrix multiplication.

2.4. Control Law Application

The control law of equation (32> can be implemented by

introducing a further assumption of commubtivity, it is
assumed that, there exist S and R such that
srtl=rtgs c18d

where S and R are (mxm) matrices of order ns and nr
respectively. The solution of equation (18) leads to a
system of linear equations.

The solution of equation C18) requires inverse of matrix of
order m*(nr+ns), unless nr=0,i.e. nb+k=1, where R =1 and S
= S. Or when m=1, where the transformation 1is unnecessary.
From equation (18) the control law is given by

=1 = = =1

ucCtd = ﬁt T rCtd - R_ S yCtd 19D

3. ON LINE DESIGN

When the parameters of the system are unknown, then, they
must be estimated using recursive least square, and the
controller is redesigned in each step using the estimated
paameters instead of the true ones.

4. SIMULATION EXAMPLE
The schemes proposed for tracking as well as pole placement

technique are compared using a simulation example. Consider
the 2-input-2-output system described by equation (13, where
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ACZ 1= +A121 +Aaz_2
-1 -

BCz > =B  + B z , K=1 _

—1.4 -0.2 0.48 0.1}
given A1 = Aa =

i=0. 4 -0.9 | O 0.8
[ 1 0 1.5 1]
| © 0 | O 1]

The model_is chosen to be

=g
AmCz 2 =1 + Aml z + Ama =z

2t -0 6} 0.28 o)
given Am1 = Ama =

o ® P =0. 7 -0.050.12
while the observer polynomial is taken as AoCz_lD = I . The
case, of periodic step input |is considered, where MCzri)
=1-z .

Simulation for the 3 cases are shown in figures 2,3,4 for
the Off line design and figures 5,6,7 for the On line
design. It 1is very clear that both schemes give good
tracking than design using pole placement only. It is also
clear by comparing figures 3 and 4 as well as B and 7 that
the second scheme give better tracking specially at sudden
changes of reference signal.

5. CONCLUSIONS

Two schemes for better set point tracking which are
previously adopted for SISO systems are generalized here for
the case of MIMO. The two schemes still prove good tracking.
The second scheme is advantageous than the first one, both
in the results obtained as well as computations required for
the controller design.
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A MODEL REFERENCE ADAPTIVE CONTROLLER (MRAC) WITH PERIODIC

RESETTING OF ADAPTATION MECHANISM (PRAM)

ADEL T. Y. TAWFIK * , A.M. WAHDAN * %

ABSTRACT

It has been assured that standard adaptive control algorithms,
designed in the so-called ideal case, would likely become unstable
when one takes disturbances and neglected dynamics into account.

For the stability problems to be tackled; we propose a modified
model reference adaptive controller that introduces the concept of
periodic resetting of adaptation mechanism. In order to attain the
best feasible performance; an optimum adaptation-time is computed
on-line,via minimization of certain quadratic criterion.

In this paper, a modified algorithm of MRAC with (PRAM) has Dbeen
developed. Such a controller can provide stability with better
performance to a large family of real plants, where sinusoidal
disturbances and unmodeled dynamics are most probable.

The proposed scheme prevents the dangerous problems due to
unbounded parameter drift present 1in avallable MRAC schemes, 1in
such practical conditions. The analytical arguments and
improvements provided by the proposed algorithm, has been verified
by simulation results.

* PBrig.Gen.Eng. Adel T.Y. rawfik, E.A.F., Ph.D. candidate, Dpt.of
Computers and Systems Eng., Ain-Shams Univ., Calro, Egypt.
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1. INTRODUCTION

An intensive investigation study of the stability and robustness
properties of a wide c¢lass of conventional adaptive control
Aalgorithms in the presencs of unmodeled high-frequency dynamics
and persistent oultpul dislurbances, has been carried out(Rohrs and
others, [141). Their main conclusion was that:

1) sinuscidal reference inpuls al specific frequencies and / or,

2) Sinnsoidal oultpnt  disturbances at any frequency (including
dc), can cause the loop gain to increase without bound 1leading
to instability.

fince then, ROBUST MODEIL REFERENCE ADAPTIVE CONTROL (MRAC) for real
systems, under practical conditions, have been extensively studied
in the literature Aduring Lhe last decade. For linear single-input-
single-output (3I30) systems, several robust modifications have
veen proposed that can be turned into the following main classes:

(i) Modifying the adaptive law, such as, dead zone : ([10],[151]),
ivatians [2], mud.i' 3{ ion:[{8], dead zone using an upper

bound of the plant pw*¥FI%QLS t%], and with a wvariable width:
(1,001, controller with bounded parameters using appropriate
- :

$on § ) G PSR
ML= L Ed .

(ii) Tuerveoesing Lhe vichness of Lhe reference input:(Narendra and
Annaswamy [7]) derived the sufficient conditions on the persistent
excitation of Lhe reforence input, given the maximum amplitude of
disturbance, for the signals in the adaptive system to be globally
bounded. '

Concerning nonlinear systems, several researches dealing with
robustl adaptive control are now available in the literature, howe-

ver, few results have bern chtained(see e.g.[11]1,[16]1,[3],04]1, and
F'|q \

| e

ITn this paper, we propose the PRAM-modification as a solution for
stability problems of a plant sulhject to disturbances and unmodel-
ed dynamics.

The propozed modification makes a conventional adaptive controller
globally stable, and robust to uncertainties; in the sense that
all the signals in the loop remain bounded. For reviewing the
general structure of a standard MRAC Aalgorithm and the associated
infinite gain operators in the presence of such uncertainties
(unmodeled dynamics and disturbances); the reader may refer to
(131 , [141 , and [17]

2. PRAM - MODIFICATION

The essential idea of PRAM is to resel the adaptive gains to their
optimum nominal values periodically. The time-period after which
the adaptation mechanism  is  reset periodically, is named the

1 s

adaptation period ( Tu), By defining a permissible limit for the
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ratio of adaptive gain drift to system mismatch error ( | K (t) V4
| e (t) || ), that would not be exeeded, we can derive the upper
bound for the adaptation-period (Ta S Also a lower bound

max
(Ta ) can be determined according to the transient reponse of
“min

the conlrol system. Depending on the selected value of the
adaptation period, the resetting mechanism can be designed. Thus,
the proposed modified algorithm is capable to prevent the un-

definite drift of controller parameters k (t) ; by assuming a
finite time of adaptation-period, after which the drift of
parameters will be reset to zero periodically. The limiting bounds

of adaptation-period ( 'Ta e Ta ) B will Dbe properly
min max

evaluated in order to contain the drift of adaptive

parameters k(1) within the assumed permissible limits. PRAM-

modification can be introducred in the adaptive mechanism of the
available standard MRAC algorithm, as shown with CAl in Fig.l.

PRAM

u(t)

T

w (t)

Fig.1l. CAl. Modified Adaptive Parameters k m(t) using RRAM.

2. ADAPTATION - PERIOD ( Ta)

Using one of the available standard adaptive algorithms (CAl is
chosen for its =implicity), and considering an additive output

disturbance of the form

a (tyvs JU Ein {u'-UL) (1)
Then, the plant oubtput will be

Y.Lk} = ¢ (t) ¢ & [E) (2)
The micsmatch error between the plant output and the desired model
output,e (t), even at full adaptation convergence state, will have

a residual sinusoidal component of the form

e Tk = a s5i 5 + 5y e 5]
(t) 1 in (\”t } ) = dU in (wut + &) (3]

For =implification of the mathematical derivation, a zero value
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for Lthe phase-shift angle (¥) is considered, and a scalar
auxiliary signal w (t) is assumed as
w (t) = b + ¢ 5in (mot) (4)
where a, b, c , do ;W are assumed to be positive constants.
From equations (2) and (4) we get
w (t).e (t) = a sin w_ t C b¥e SinUoz t )

= 8 b sin (mot) t 1/2 ac - 1/2 ac cos (2 th) (5)

According to adaptation law of CAl algorithm, as given in (141 the

variation of a single controlle
s . t
kK (t) = k + J" v (1) e (T)
O
0
L]
} + [{db Ssin w bt
0 ~ 0
(B}
=k + 1/2 act ¢ ah/w
© )

Using standard norm inequalitie

wing ineqguality ( full derivati
- R

I Sk, T

(&)

~ ‘:"12
|k )

(t)

SJimilarly, the =quare of error

2z I

] L f

(3),

(t}

o

p——

l

According to equation

r parameter [k (t)] will be
a r (6)
1/2 ac 1/2 ac cos QwUt)] dt
(ab/wo) cos mot = (ac/4wo) sin Zmot
(7)

i; is given in [ 13]1,[14] ).
e, A
norm is

=in® w, b dt = a®r

the parameter a can be approximated

we can finally obtain the follo-

(8)

(9)

by

d“, al some cases near fFinal convergence state. Using (8) and (9),

a ratio between drift of parameters and the error (ratio
the norms) can Le obtained as
1 T1/2 1/2
Ik () | (k, T ) (hy T
— ey 2 - 173 —_— —>
1 T —m o
- d T
| e t) | o
[§]
2 2
. 2 a b a c
Where | = k ) 2 S +
NS 1 ( [wo ] [4 wo] !

between

(10)

(1la)
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a2 rz

k3= {_ﬂfﬁ;" ] (11b)
Inspecting inequality (10), it 1is clear that as time (T)
increases, the ratio C ||k t) || ~ | e (%) I ) will icrease
without bound. In this paper, we propose limiting values for
adaptation time 'I‘q ;T ); in order to make the drift

“max “min

of parameters bounded within accepted limits.

3.1 Higher Limil ( Ta )

max -
In order to make the ratio [ | ket)y || 7 || e (£) I ] not higher
than a finite positive constant (L) ; higher limit for the
adaptation - period (T_ ) can be evaluated,
“max
. Ta 3 172 1/2
IRRE "O max ( k, Tdmw? ) - Ky Tamax )
sl LALLEL = TS VEP R 2 73 =, (12)
5 !
| e k) du max a ( Ta )
max
142
(kl) + a L
then, ’I‘q = i (13)
“max 1/2
(k3)

substituting for kl and k? , we can get

1/2 » 2 2 41/2
(12)  (a Lt [ k¥ vz (22y 4 (35 ) ] )
(8] o -
T SRR —— (14)

a
max ac

3.2 Lower Limit ( Ta )

min
A zero value for the lower 1limit of adaptation time, must be
avoided because this prevents any sort of adaptive control to go
on. The reasonable 1lower 1limit £for adaptation-time can be
considered as the minimum time after which a nearly zero drift of

gain parameters is attained, i.e., when || k (t) | =0 .

Referring to inequality (10), we may have,
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iF¥. 1/2
[,_ s ] [1.._ ™ ] = i (15)
3 Ta_, 1 a_ .
min - N min -
then, " 172
a . ks
min 2

Substituting for k., and k., , we get

1 3
2 LN, , _1/2
” i Fj - . an 3 ac
[12 (5, ) o2 (8] «§ (2] ]
) ‘ 0 = o
T S ) - B (1)
“min .

4. COMMENTARY ANALYSTS ON ADAPTATION-TIME LIMITS

(i) Trom egn. (14), one c¢an notice that as frequency
(w Jincreases, ( iy ) would decrease. This means that
[§) Qa
max

instability of a standard MRAC system would occur sooner for high-
ey frequency of disturbarnce.

(i1) TInvesligating inequality (10) and egns.(lla,b), we note that

A5 Sinusoidal disturbance amplitude do decreases; the ratio

(I ®x ¢ty § 7§ ¢ ¢ty ) will increase. To make it more clear,
5o . : 3 ~&

consluer a very low extent of disturbance ( dn= 1 x 10 ) ; then

(10) can be approximaled by { neglecting higher orders of 4 )
) 0

o
: . k, T 172 k,
It 3 ! = / | N - e e e s, N =
b 1T s e | s 7T ® o
d.T o
(8]

Thuz, decreasing (d ) the ratio of parameter drift to error signal
o

iz increased; thereby pushing the adaptive system faster to

instability. This analysis gives a clear mathematical

interpretalion for Lhe simulation results first obtained by(Rohrs,

19382 1{121), and which were amazing at that time.

(1ii) Mne may alse nobe  Lhat  the developed higher 1imit for

adaptation btime ( TJ b, can he viewed, in some sense, as a
ma

stabhility Indicator for the adaptive system subjected to mentioned

1= 3 e 3= ey 8 T oty es
L.’}.ﬂ.’.t] =il . .):21_:4{_4.‘-41;.’-.
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(iv) Investigating the mathematical condition for computing
(T ), namely | k(t) | = 0, this state is satisfied when k (t)

“min

is nearly constant, i1.c., when the variation (drift) of adaptive
parameters is nearly =zZero. From practical experience, supported by
simulalion results, we know that the drift of parameters will not
approach zero until, at least, the transients of the controlled
asystem are damped out. The transient is assumed to be over when
the response error has become below certain minimum level.

Note: settling time for a second order system, when response
error is reduced below 2% of its nominal value, 1is approximately
equal to four time constants of +the envelope of the damped
sinusoidal oscillations.

Thus, the lower limit ( Ta ) may be well approximated by
min
T b 4 T ‘ (19)
a_ . m
min
Where (rm) is assumed Lo be equal to the time constant of the

decsired reference model specified in the used MRAC algorithm. One
may conzider that the lower limit obtained by egn.(19) 1is more
practical than the former one given by egn. (17).

5. OPTIMAL ADAPTATION - PERIOD ( T )
aopt
The derived equations (14) and (17) prove that, 1in principle,
there is a feasible proper range of adaptation time, within which
all signals in the adaptive system can be kept bounded in
practical applicalions subjected to wunmodeled dynamics, and
sinusoidal disturbances.

As mest items of eqns. (14) and (17) such as, (a,b,c, W and du )

can nol be known a priori. Besides, such items are not positive
constants as what has becn assumed 1in section.4, but they are
rather variables affecting one another. Thereforée, we need to
develop here an  approach to determine an optimal value for the
parameter Ta( in some sense ) by minimizing an assumed

performance criterion, on - line.

Suppose that the system is described in discrete-time form by

‘:ip q-f_lp B(m)

y (£} - S 1 S [ v (8)] + v (t) (20)
al
W@nrw ¥ (L} and u (L) are the output and input, respectively at
Lime L and o (t) is a disturbance term, and
BV o 18 Bog T 1B =2 + b o
1 1 2 g . o a m q (21)
(n) _ - =1 -2 & -n
A = 1 + d, 4 t a, 4 + + a g (22)
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Where qmjiu ‘he  backward shift operator, gp and dp are the gain

and dclay 7 the =system respectively. Assuming the system (20)
iz controlled by a conventional adaptive controller with PRAM
modification, Lhen Lhe adaptive gain, the input, and the output of
the system will of conrse depend on the modification parameter Ta’

and will be denobted by k{(t, T_) , u (t,Tq) and vy (t’Ta) i

A
The parameter ’I‘_i iz to be chosen so that a criterion of the form
Vo ']“_]) = B g ( vk, T‘l) , u (t’Ta J (23)

oo winiwmized . The details of a zimilar approach can be found in
2} , where expectalion i done over the stochastic signals in the
aysbtem, such us [ o (L) } which was assumed in [31 to be
stationssry nlochastic process with zero mean and arbitrary

'
correlation properties. Minimizing (23) could be replaced by the
solublion of

0 v (T.) = E [ g, (y (t, T ) ) Yy o(t, T_ )
P C

a ~ a
gy, (o e Ty w (e, T ) ) w o (E, T ] (24)
Here y (L, T ) and n (%, T ) denote the output and 1input

differentiated with respect to Tq,and g;(y,u) is the derivative of

j with respect Lo its First argument y, and so forth. The idea of

this approach is to update T)in a negative gradient direction of

the criterion [41. The paranmeter Ti iz adjusted on-line in what
iz believed to be descenl direclion of a guadratic criterion V.
The parameter T will converge to, at least, a local minimum of
45
Vi of Thel Tan ¥ ak (7 )
”()LH‘
Withouol Gocs of gencrality,a yuadratic criterion can be assumed as
| - ~ 2 w 2 2
V(T t t{r e +FT Ok t F” k tF_u 25
fLar b 2 LIS "k T k Y 1 } L2310
L ¥
where r., ff., T;J, and F” are arbitrary weighbting factors.

For the qusdratic eriterjon (2%) to be winimized, we seek the

el ion of bthe newxt ocon
g Ie . c?l,r o (3ky i
0 =V (T ,t)= E P&t P~ K et & B Ok =—d.} B
gt { F Ky o7 Py kyor ¥ Fua5—t (26)
A Y a Y a (e}
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During searching process, the adaptation-time parameter (Ta) is

considered the real time t which 1is always wupdated by the
sampling-period (TS) of the discrete-time system; till the optimal

value Ta is reached. Hence, V> can be approximated as,
opt
. W k. () = k_(t-1)
Ny e(t) - e(t-1) ~ 4 b4
Vi(t) = E { Fo e(t) 0 t Fp kr(t) T
s r s
y Ko (t)-k. (t-1)
~ Y Y u(t)-u(t-1)
+ FkY ky () T + Fou(t) T_ } (27)

Since the slignals of the system are assumed to be deterministic,
and the disturbance is a sinusoid with distinct frequency; then
the expectation is replaced by the current values of signals and

parameters.
Being Interested In the lnstant when the gradient changes Iits
direction, rather than getting the precise value of that gradient,

N
V' can be rescaled as

~

vi(t) = Fe E(t)[ e (t)-e (t-1) ] + F7 Kk (t)[ Er(t) = Er(t—l) ]

k r
- E ky(t)[ky (t)- ky(t-l)]+ Fuu(t)[Fuu(t)—u(t-l)] (28)
In this approach the tine Ta corresponds to the gradiént first

opt
conversion of direction from negative to positive one, just after
the assumed transient-time 1ls over(see Fig.2.). Thls on-line comp-
uted value (Ta ) 1s the local optlimum choice of adaptation-time
) opt
that would ensure local minimization of performance criterion (V)
in the feasible operating conditlions.

\ N
\Y
7 "I’/ = . ‘ /;\5/// A /J/,-l‘: 4‘“-/I:"+/ +
*\:/f, i //W////-‘:///' _
pt—————— T e B
e
t ransient time

s 1 a o

Fig.2 Ta corresponds to first conversion of V> direction.
opt
( from negative to positive after translent 1s over)
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PRAM-modification
the following

of the proposed
clbions;  consider

ezxample with a plant described by,
2 229
oL e — fu (&) 1] (29)
2
(= + 1) { b 30 5 +229)
The adaptive scheme CAl [14] is uzed, with a first order reference
model given as :
3

¥ o) = i [ r (t) ] (30)

" s + 2
The simulations were all initialized with

1

which yield a nominal controlled
fTunction

.14 {31}

plant with the following transfer

4 B (=) 527
e R {327
L = -+ a1 Z arC { e ]
’7‘\ \oaY &= d = L t..r,'.') S + & ,-_7
-I‘- 1
g B
Remarl - i Bl clozed - loop transfer function that would
*
A
ult if bk were identd lly zero,i.e., if a constant control law
>
13 E  were gsed
The gyl Vit input. 3ignal was chosen to be: r{t) = 0.3 (33)

c

N0.001 sin ot (34)

with an additive output disturbance: A0y = 3.

The adaplaion yainz were = ~Gual to four.i.e T = 4, {35}
sl Lhe amplitude and frequency of the sinusoidal disturbance were
aried for different cases Lo study their effects. The relatively
large value of adaptation gain in (25) was chosen so that the
unstable hebavior wovld weear over a reasonable =simulation time,
= -~ poy pee Y == L3RR S - .

L L S o S O o LRPRE
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A1l simulations were carried out with the discretized equivalent

system. In order to obtain a discrele-time system which is
cquivalent to the system (29), the standard technique of
discrate time control system analysis was used (see [1], section

2.4). A sanpling period of TS = 0.04 seconds was used. This

represents fairly fast sampling, since it is approximately ten
times as fast as the fastest dynamics in the plant [13] .

It iz =een from simnlation results depicted in Figs.3 and 4 that
the stability of MRAC system using CAl, is more deteriorated when
increasing the freguency of the sinusoidal disturbance and / or
decreasing its amplitnde. It is zhown also that PRAM-modification
docs provide a stable closed-loop control system with a reasonable
performance, at conditions where none of the available standard
adaptive control schemes can provide.

Fig.% indicates that PRAM-modification, using the computed optimal

value of T ( here, T;a = 1.8 sec.) gives better response than
apl

any other one, in such conditions.

7. CONCLUSTIONS

Tn this paper, a modified MRAC algorithm with Periodic Reset of
Adaptaticn Mechanizm (PRAM) has been developed. Such a controller
can provide stability with Dbelter performance when the system
operates in the presence of unmeasured and possibly persistant
sinusaoidal disturbances=

The prognsea scheme alleviates the dangerous problems of the
unbounded parameter drift present inp all available standard
adaptive schemes, in such  practical conditions. The analytical
arguments and improvements provided by the proposed algorithm has

been verified by simulation results.
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]{ w,= 5, with PRAM (T3=2 sec.).
e o= 5, wlithout PRAM.
}{5 Parameters X X X X :J,vo: 20, without PRAM.

Fig.3. Simulation of CAl with and without PRAM,
r(t)= 0.3 and d(t)= 0.001 sin w(}.
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Timelsec. ]

—_—

0.00001, with PRAM (Ta=2 sec. ).
0.001 without PRAM.
0.0001, without PRAM.

Simulation of CAl with and without PRAM,

r(t)=

0.3 and d(t)=

D sin 5t.
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Fig.5. Simulation of CAl with PRAM, r(t)= 0.3,
and d{ty= 1 x 10 ’sin 5t, at different T_.
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