

CAIRO - EGYPT

A NEWTON-RAPHSON VERSION OF THE MULTIVARIATE DYNAMIC ROBBINS-MONRO PROCEDURE

El Sayed Sorour

Military Technical College, Department of Mathematics.

ABSTRACT

Let M be a function from R^k to R^k , let θ_n , n = 1, 2, ... be (unknown) vector numbers, the first θ_1 being the unique root of the equation M(x) = 0, set $M_1(x) = M(x)$, for n = 1, 2, ... set $M_n(x) = M(x - \theta_n - \theta_1)$ so that θ_n is the unique root of $M_n(x) = 0$. Initially $M_n(x)$ is unknown, but for any x in R^k we can observe a random vector $Y_n(x)$ with conditional expectation $M_{n+1}(x)$. The unknown θ_n can be estimated recursively by the author (1978), that procedure requires the rather restrictive assumption that the infimum of the inner product $\langle x - \theta, M(x) \rangle$ over any compact set not containing θ be positive, i.e. along each line through θ_1 , M(x) is unimodal with minimum θ_1 . Unlike our previous method, the procedure introduced in this paper does not necessarily attempt to move in the direction of θ_n but except of that random fluctuations it moves in the direction which decreases $\|M_n(x)\|^2$, consequently it does not require that $\langle x - \theta_n, M_n(x) \rangle$ have a constant signum. This new procedure is a stochastic analog of the Newton-Raphson technique.

FIFTH ASAT CONFERENCE 4 - 6 May 1993, CAIRO

1. INTRODUCTION

This paper is concerned with the multivariate dynamic version of the Robbins-Monro [3] stochastic approximation procedure. This problem first studied by Dupac [1]; where the root of the regression function moves in a specified makuder. He discussed in his papers [1]; [2] only the cases where the movement of the root (one-dimensional) or the maximum (multidimensional) can be expressed by a certain linear function of its present location, and where the trend is deterministic. Uosaki, K. [9] discussed some generalization of Dupac's work in the one-dimensional case where the movement of the root can be expressed by a specified non-linear function of its present location. Uosaki's result has been generalized to the multidimensional case by the author (1978). This version begins with an initial estimate X_1 . Given X_1 , X_2 ,..., X_n one observes Y_n , such that $E_n(Y_n) = M_{n+1}(\tilde{X}_n)$, where E_n denotes the conditional expectation given X_1, X_2, \ldots, X_n and $X_n^* = g_n(X_n)$ for some function g_n from $R^k \longrightarrow R^k$. Then X_{n+1} is defined by

where $\{a_n\}$ is a suitably choosen positive sequence converging to 0 as $n \longrightarrow \infty$. Let θ_n be the unique root of $M_n(x)$. Then $x_n - \theta_n \longrightarrow 0$, under the assumption for every $\varepsilon > 0$

$$\inf_{n \in \mathbb{N}} \inf_{\|X - \Theta_n\| > \varepsilon} \frac{\langle x - \Theta_n, M_n(x) \rangle}{\|x - \Theta_n\|} > 0.$$
(1.2)

In fact it can be proved that (1.2) can be replaced by a weaker one, for every $\varepsilon > 0$

FLETH ASAT COUPERBNCE

GC-6 353

FIFTH ASAT CONFERENCE

4 - 6 May 1993, CAIRO

$$\inf_{n \in \mathbb{N}} \inf_{\varepsilon < \|X - \theta\| \le \varepsilon} \langle x - \theta_n, M_n(x) \rangle > 0$$
(1.2)'

The importance of (1.2)' can be easily seen as follows. Suppose that $\sup\left\{ \text{Var } Y \ : \ x \in \mathbb{R}^k \right\} < \infty$. Thus from (1.1) we have

$$E_{n}(\|X_{n+1} - \theta_{n+1}\|^{2}) \leq \|X_{n} - \theta_{n}\|^{2}(1 + \mu_{n})$$

- $2a_{n}(1 + 0(1)) < \overset{*}{X}_{n} - \theta_{n+1}, M_{n+1}(\overset{*}{X}_{n}) > + v_{n}$

where $\sum \mu_n < \infty$; $\sum v_n < \infty$. Using (1.2)' and theorem 1 of Robbins and Sigmund [4] $\|X_n - \theta_n\|$ converges to 0. Unfortunately, (1.2)' is a rather restrictive assumption, Amplying that for each x, $M_n(x)$ points a-way from θ_n . There are many practical examples for functions do not astisfy the condition (1.2)'. An alternative procedure would to apply the multivariate Kiefer-Wolfowitz (KW) to minize $\|M_n(x)\|^2$ a fact used by Ruppert (1985) for the ordinary (RM) procedure. We assume that $E_n(\|Y_n\|^2) = \|M_n(x)\|^2 + \text{const.}$ Thus the (KW) procedure does not attempt to move towards θ_n ; but in a direction of decreasing $\|M_n(x)\|^2$. If θ_n is the only local minimum of $M_n(x)$, we prove that $x_n - \theta_n \rightarrow 0$ under mild conditions.

2. NOTATIONS AND ASSUMPTIONS

2.1 : Let R^k be the k-dimensional vector space. For x in R^k let x^i be the <u>ith</u> component of x. For x,y in R^k we define

$$\langle x, y \rangle = \sum_{i=1}^{k} x^{i} y^{i}$$
 and $||x||^{2} = \langle x, x \rangle$.

If A is a matrix of order $k \times l$ let A^{ij} be the entry of A. Also, let A^{t} be the transpose of A, and let

$$\|\mathbf{A}\|^{2} = \sum_{i=1}^{k} \sum_{i=1}^{\ell} |\mathbf{A}^{ij}|^{2}$$

FIFTH ASAT CONFERENCE 4 - 6 May 1993, CAIRO

- 2.2: Let M(x), $x \in \mathbb{R}^k$ be an (unknown) twice differentiable function from $\mathbb{R}^k \longrightarrow \mathbb{R}^k$. Let $\Theta_n(n = 1, 2, ...)$ be (unknown) vectors in \mathbb{R}^k . The first Θ_1 , being the unique root of the equation M(x) = 0,. Set M₁(x) = M(x); for n = 1,2,... set $M_n(x) = M(x - \Theta_n + \Theta_1)$ so that Θ_n is the unique root of $M_n(x)$.
- 2.3 : Let D(x) be the derivative of M(x), i.e., $D^{ij} = (\partial/\partial x_j)M^i(x)$ and assume the following assumptions on D
 - **i)** $D(\theta_1)$ is non singular
 - ii) For all ε > 0
 - $$\begin{split} &\inf \Big\{ \| D^{t}(x) \ M(x) \| \ : \ \varepsilon \ < \ \| M(x) \| \ \le \ \varepsilon^{-1} \Big\} \ > \ 0 \\ &\text{iii} \ & \text{Sup} \Big\{ \| D(x) \| \ : \ x \in \mathbb{R}^{k} \Big\} \ < \ \infty. \end{split}$$
- 2.4 : Let H(x) be the Hessian of $\|M(x)\|^2$, i.e.
 - $$\begin{split} \textbf{H}^{ij} &= (\partial^2 / \partial x^i | \partial x^j \| \textbf{M}(x) \|^2, \text{ and assume that} \\ & \text{Sup} \Big\{ \| \textbf{H}(x) \| : x \in \mathbb{R}^k \Big\} < \infty \end{split}$$

2.5 : Assume that $\boldsymbol{\theta}_n$ moves in a such manner that

 $\theta_{n+1} = g_n(\theta_n) + v_n \tag{2.1}$

where $g_n(x)$ is in general a non-linear measurable function (known) from $\mathbb{R}^k \longrightarrow \mathbb{R}^k$ and v_n is an unknown (random or nonrandom) k-vector function independent of x and

$$\|v_{n}\| = O(\delta_{n}), \sum_{n=1}^{\infty} \delta_{n} < \infty$$
 (2.2)

2.6 : For x and y in R^k, we assume that exists a sequence of positive numbers $\{\gamma_n\}$ independent of x and y and let

$$Z_n = x - y$$
, and $\tilde{Z}_n = g_n(x) - g_n(y)$

Then

$$\|M(Z_{n})\|^{2} \leq \gamma_{n} \|M(Z)\|^{2}$$
 (2.3)

GC-6 355

FIFTH ASAT CONFERENCE

4 - 6 May 1993, CAIRO

(2.4)

$$\sum_{n=1}^{\infty} (\gamma_n - 1)^+ < \infty .$$

where Z^+ means (Z + |Z|)/2.

FIFTH ASAT CONFERI

and

 $\lim_{n \to \infty} M(\tilde{Z}_n) = M(Z) \qquad \text{for } ||Z|| < \infty . \qquad (2.5)$

3. THE PROCEDURE

The dynamic Robbins-Monro procedure will be described formally by the following assumptions.

3.1 : Let X₁ be arbitrary; define

$$X_{n+1} = X_n - an^{-1} F_n^t Y_n$$
 (3.1)

where

 $\overset{*}{X}_{n} = G_{n}(X_{n}); a > 0; X_{n} in R^{k}$ and F_{n} is k×k random matrix, is used to estimate $D_{n+1}(\overset{*}{x}_{n})$ and Y_{n} is the observation with conditional expectation equal to $M_{n+1}(\overset{*}{x}_{n})$. The <u>ith</u> column of F_{n} is constructed as follows : Let e(i)be the <u>ith</u> column of the k×k identity matrix. Let $c_{n} > 0$ be constant and let $Y_{n}(i,2)$ and $Y_{n}(i,1)$ each be the observation with conditional expectation equal to $M_{n+1}(\overset{*}{x}_{n} + c_{n} e(i))$ and $M_{n+1}(\overset{*}{x}_{n} - c_{n} e(i))$, respectively. Then, the ith column of F_{n} is

$$F_{n}^{i} = \left[\Psi_{n}(i,2) - \Psi_{n}(i,1) \right] / 2 c_{n}$$
(3.2)

Let \mathcal{F}_n be the σ -algebra generated by X_1, X_2, \ldots, X_n . For any random vector X in \mathbb{R}^k , let $\mathbb{E}_n(X)$ and $\operatorname{Var}_n(X)$ be respectively the conditional mean and the variance of X given \mathcal{F}_n .

5

FIFTH ASAT CONFERENCE

4 - 6 May 1993, CAIRO

Given \mathcal{F}_n , \mathbf{Y}_n , \mathbf{D}_n and \mathbf{v}_n are conditionally independent. Let $\xi_{n} = Y_{n} - M_{n+1}(x_{n}); \quad E_{n}(\xi_{n}) = 0$ (3.3)

. *

Let

$$\overline{F}_{n} = E_{n}(F_{n})$$
(3.4)

$$d_n = F_n - \overline{F}_n \tag{3.5}$$

and assume that

$$E_n(\|\xi_n\|^2) \le \delta^2 < \infty$$
, (3.6)

$$E_n(\|d_n\|^2) \le k c_n^{-2}$$
 (3.7)

and

$$\|\overline{F}_{n} - D_{n+1}(x_{n})\| \le k c_{n}$$
 (3.8)

3.2 :
$$c_n > 0$$
; $c_n \downarrow 0$ and assume that

$$\sum_{n=1}^{\infty} n^{-1} c_n < \infty , \qquad \sum_{n=1}^{\infty} n^{-2} c_n^{-2} < \infty , \qquad (3.9)$$

4. THE MAIN RESULT

Theorem 4.1. : If the assumptions 2.1-3.2 hold. Then $X_n - \theta_n \longrightarrow 0$. Proof : Using (2.1) and (3.1) we obtain

$$X_{n+1} - \Theta_{n+1} = g_n(X_n) - g_n(\Theta_n) - V_n - an^{-1} F_n^t Y_n.$$
 (4.1)

Let

$$Z_{n+1} = X_{n+1} - \Theta_{n+1}, \quad Z_n = g_n(X_n) - g_n(\Theta_n) \text{ and } \Delta_n = an^{-1} F_n^t Y_n$$

Then (4.1) can be written as

$$Z_{n+1} = Z_n - V_n \Delta_n$$
(4.2)

and there is η in (0,1) such that

$$\| \mathbb{M}(\mathbb{Z}_{n+1}) \|^{2} = \| \mathbb{M}(\overset{*}{\mathbb{Z}_{n}}) \|^{2} - 2 \langle \mathbb{V}_{n} + \Delta_{n}, \mathbb{D}^{t}(\overset{*}{\mathbb{Z}_{n}}) \mathbb{M}(\overset{*}{\mathbb{Z}_{n}}) \rangle + \frac{1}{2} \langle \mathbb{V}_{n} + \Delta_{n}, \mathbb{V}_{n} + \Delta_{n}, \mathbb{V}_{n} + \Delta_{n} \rangle$$

$$\mathbb{H}(\overset{*}{\mathbb{Z}_{n}} - \eta(\mathbb{V}_{n} + \Delta_{n}))(\mathbb{V}_{n} + \Delta_{n}) \rangle.$$

Using 2.3 and (3.3)-(3.5) we get

5

05

0

$$|T_{5}| = 0(||V_{n}|| E_{n}||\Delta_{n}||) = 0(||V_{n}|| + ||V_{n}|| |T_{3}|)$$
(4.8)

From which it follows also that

$$|T_{3}| = 0(n^{-2} || D^{t}(\ddot{z}_{n}) M(\ddot{z}_{n}) ||^{2}) + 0(n^{-2}c_{n} + n^{-2}c_{n}^{-2}) || M(\ddot{z}_{n}) ||^{2} + 0(n^{-2} + n^{-2}c_{n} + n^{-2}c_{n}^{-2})$$

$$(4.7)$$

Thus

• •

By (3.3) - (3.8) we have

$$E_{n}(\|F_{2}^{t}Y_{n})\|^{2}) = \|D^{t}(\overset{*}{Z}_{n})M(\overset{*}{Z}_{n})\|^{2} + M^{t}(\overset{*}{Z}_{n})\left[F_{n}^{t}F_{n}^{-t} - D(Z_{n})D^{t}(Z_{n})\right]M(\overset{*}{Z}_{n}) + E_{n}\left[\|d_{n}^{t}\xi_{n}\|^{2}\right] + E_{n}\left[\|F_{n}^{-t}\xi_{n}\|^{2}\right] \\ \leq \|D^{t}(Z_{n})M(Z_{n})\|^{2} + 0\left[(c_{n}^{t} + c_{n}^{-2})\|M(\overset{*}{Z}_{n})\|^{2}\right] + 0(1 + c_{n}^{t} + c_{n}^{-2}).$$

$$|T_{2}| = O(\|V_{n}\| \|D^{\dagger}(\tilde{Z}_{n})M(\tilde{Z}_{n})\|^{2}) + \|V_{n}\|$$
(4.6)

$$|T_1| = 0(n^{-1} C_n ||M(\mathring{Z}_n)||^2)$$
(4.5)

in (4.3) By (3.8) we have

THEFTH ABAY CONFERENCE

where $T_i = 1, 2, ..., 5$ are the corresponding, terms respectively

Hence

$$E_{n}(\|M(Z_{n+1})\|^{2}) = \|M(Z_{n})\|^{2} - 2an^{-1}\|D^{t}(Z_{n})M(Z_{n})\|^{2} + \sum_{i=1}^{5}T_{i} \quad (4.4)$$

$$\begin{split} & n \left(\nabla_{n} + \Delta_{n} \right) \left(\nabla_{n} + \Delta_{n} \right) \right) \\ & \leq \| M(\overset{*}{Z}_{n}) \|^{2} - 2an^{-1} \| D^{t}(\overset{*}{Z}_{n}) M(\overset{*}{Z}_{n}) \|^{2} - 2an^{1-1} \left\{ \left[F_{n}^{-t} - D^{t}(Z_{n}) \right] M(\overset{*}{Z}_{n}), D^{t}(\overset{*}{Z}_{n}) M(\overset{*}{Z}_{n}) > + 0(\| \nabla_{n} \|) \| D^{t}(\overset{*}{Z}_{n}) M(\overset{*}{Z}_{n}) \|) + 0(\| \nabla_{n} \|^{2}) + 0(\| \nabla_{n} \| E_{n} \| F_{n}^{t} | Y_{n} \|) . \end{split}$$

$$\begin{aligned} & (4.3) \end{aligned}$$

$$\begin{split} \mathbf{E}_{n}(\|\mathbf{M}_{2}(\mathbf{Z}_{n+1})\|^{2}) &= \|\mathbf{M}(\overset{*}{\mathbf{Z}_{n}})\|^{2} - 2\mathbf{E}_{n}(\Delta_{n}), \ \mathbf{D}^{t}(\overset{*}{\mathbf{Z}_{n}})\mathbf{M}(\overset{*}{\mathbf{Z}_{n}}) > -2 < \mathbf{E}_{n}(\mathbf{V}_{n}), \\ \mathbf{D}^{t}(\overset{*}{\mathbf{Z}_{n}})\mathbf{M}(\overset{*}{\mathbf{Z}_{n}}) > + \frac{1}{2} - \mathbf{E}_{n}\left[< \mathbf{V}_{n} + \Delta_{n}, \ \mathbf{H}(\overset{*}{\mathbf{Z}_{n}} - \mathbf{V}(\mathbf{V}_{n} + \Delta_{n}))(\mathbf{V}_{n} + \Delta_{n}) > \right] \\ &\leq \|\mathbf{M}(\overset{*}{\mathbf{Z}_{n}})\|^{2} - 2\mathbf{an}^{-1}\|\mathbf{D}^{t}(\overset{*}{\mathbf{Z}_{n}})\mathbf{M}(\overset{*}{\mathbf{Z}_{n}})\|^{2} - 2\mathbf{an}^{1-1} < \left[\mathbf{F}_{n}^{-t} - \mathbf{D}^{t}(\mathbf{Z}_{n})\right]\mathbf{M}(\overset{*}{\mathbf{Z}_{n}}), \ \mathbf{D}^{t}(\overset{*}{\mathbf{Z}_{n}})\mathbf{M}(\overset{*}{\mathbf{Z}_{n}}) > + \mathbf{O}(\|\mathbf{V}_{n}\|)\|\mathbf{D}^{t}(\overset{*}{\mathbf{Z}_{n}})\mathbf{M}(\overset{*}{\mathbf{Z}_{n}})\|) + \\ &= (\mathbf{n}^{-2}\mathbf{E}_{n}(\|\mathbf{F}_{n}^{t}|\mathbf{Y}_{n}\|^{2})) + \mathbf{O}(\|\mathbf{V}_{n}\|^{2}) + \mathbf{O}(\|\mathbf{V}_{n}\|\mathbf{E}_{n}\|\mathbf{F}_{n}^{t}|\mathbf{Y}_{n}\|). \end{split}$$

GC-6 357 4 - 6 May 1977, CAIL FIFTH ASAT CONFERENCE 4 - 6 May 1993, CAIRO

358

FIFTH ASAT CONFERENCE 4 - 6 May 1993, CAIRO

Substituting (4.5)-(4.8) in (4.5) and using (2.3) we get $E_{n}(\|Z_{n+1}\|^{2}) \leq \|M(Z_{n})\|^{2}(1 + \mu_{n}) - 2an^{-1}(1 + O(1))\|D^{t}(\mathring{Z}_{n})M(\mathring{Z}_{n})\|^{2} + \varepsilon_{n}$ (4.9)

where

$$u_{n} = 0(n^{-1}c_{n} + n^{-2}c_{n}^{-2} + \gamma_{n} - 1)^{+}$$
(4.10)

and

$$\varepsilon_{n} = O(\|V_{n}\| + n^{-2}c_{n}^{-2}) \dots (4.11)$$

From (2.2), (2.4) and (3.9) it follows that $\sum \mu_n < \infty$ and $\sum \varepsilon_n < \infty$. Therefore by Therem 1 of Robbins and siegmund (1971) $\lim_{n \longrightarrow \infty} M(\overset{\star}{Z}_n)$

exists and is finite and

$$\sum_{n=1}^{\infty} n^{-1} \| \mathbf{D}^{\mathsf{t}}(\mathbf{\tilde{z}}_{n}) \mathsf{M}(\mathbf{\tilde{z}}_{n}) \|^{2} < \infty$$

By 2.2(ii) and (2.5) $X_n - \Theta_n \longrightarrow 0$, which completes the proof of the theorem.

REFERENCES

r

- Dupac, V. (1965), Adynamic stochastic approximation method. The Anal. Math. Statist. 36, 1695-1702.
- [2] Dupac, V. (1966), Stochastic aproximation in the presence of the trend. Czechosloak Mathematical Jounal, 16, 454-461.
- [3] Robbins, H. and Monoro, S. (1951), A stochastic approximation method. Ann. Math. Statist. 22, 400-407.
- [4] Robbins, H. and Siegmund, D. (1971), A convergence theorem for non-negative almost 'super martingles and some applications. In optimizing Methods in statistics (J.S. Rustagi, ed.) 233-257, Academic, New York.
- [5] Ruppert, D. (1985), A Newton-Raphson version of the multivariate Robbins-Monoro procedure. Ann Statist. 13, 236-245.
- [6] Sorour, E. (1978), On the convergence of the dynamic stochastic approximation method for stochastic non-linear multidimensional dynamic dystems. Kybernetika, Volume 14, 28-37.
- [7] Sorour, E. (1991), A dynamic Kiefer-Wolfowitz stochastic approximation procedure. Statistics & Decision 9, 201-211.
- [8] Sorour, E. (1993), Dynamic multivariate stochastic approximation using a simultaneous perturbation gradient approximation.(app@ar)
- [9] Uosaki, K. (1974), Some generalization of the dynamic stochastic approximation process. Ann. Statist. 2, 1042-1048.

3