MILITARY TECHNICAL COLLEGE
CAIRO - EGYPT

# A NEWTON-RAPHSON VERSION OF THE MULTIVARIATE DYNAMIC ROBBINS-MONRO PROCEDURE 

El Sayed Sorour<br>Military Technical College, Department of Mathematics.

## ABSTRACT

Let $M$ be a function from $R^{k}$ to $R^{k}$, let $\theta_{n}, n=1,2, \ldots$ be (unknown) vector numbers, the first $\theta_{1}$ being the unique root of the equation $M(x)=0$, set $M_{1}(x)=M(x)$, for $n=1,2, \ldots$ set $M_{n}(x)=M\left(x-\theta_{n}-\theta_{1}\right)$ so that $\theta_{n}$ is the unique root of $M_{n}(x)=0$. Initially $M_{n}(x)$ is unknown, but for any $x$ in $R^{k}$ we can observe a random vector $Y_{n}(x)$ with conditional expectation $M_{n+1}(x)$. The unknown $\theta_{n}$ can be estimated recursively by the author (1978), that procedure requires the rather restrictive assumption that the infimum of the inner product $\langle x-\theta, M(x)\rangle$ over any compact set not containing $\theta$ be positive, i.e. along each line through $\theta_{1}, M(x)$ is unimodal with minimum $\theta_{1}$. Unlike our previous method, the procedure introduced in this paper does not necessarily attempt to move in the direction of $\theta_{n}$ but except of that random fluctuations it moves in the direction which decreases $\left\|M_{n}(x)\right\|^{2}$, consequently it does not require that $\left\langle x-\theta_{n}, M_{n}(x)\right\rangle$ have a constant signum. This new procedure is a stochastic analog of the Newton-Raphson technique.

## 1. INTRODUCTION

This paper is concerned with the multivariate dynamic version of the Robbins-Monto [3] stochastic approximation procedure. This problem first studied by Dupac [l]; where the loot of the regression function moves in a specified maraner. He discussed in his papers [1]; [2] only the cases where the movement of the root (one-dimensional) or the maximum (multidimensional) can be expressed by a certain linear function of its present location, and where the trend is deterministic. Uosaki, K. [9] discussed some generalization of Dupac's work in the one-dimensional case where the movement of the root can be expressed by a specified non-linear function of its present location. Uosaki's result has been generalized to the multidimensional case by the author (1978). This version begins with an initial cotimate $X_{\text {? }}$. Given $X_{1}, X_{2}, \ldots, X_{n}$ one observes $Y_{n}$, such that $E_{n}\left(Y_{n}\right)=M_{n+1}\left(X_{n}\right)$, where $E_{n}$ denotes the conditional expectation given $X_{1}, X_{2}, \ldots, X_{n}$ and $\stackrel{*}{X}_{n}=g_{n}\left(X_{n}\right)$ for some function $g_{n}$ from $R^{k} \longrightarrow R^{k}$. Then $X_{n+1}$ is defined by

$$
\begin{equation*}
X_{n+1}=\stackrel{\star}{X}_{n}-a_{n} Y_{n} \ldots \cdot \tag{1.1}
\end{equation*}
$$

where $\left\{a_{n}\right\}$ is a suitably choosen positive sequence converging to 0 as $n \longrightarrow \infty$. Let $\theta_{n}$ be the unique root of $M_{n}(x)$. Then $X_{n}-\theta_{n} \longrightarrow 0$, under the assumption for every $\varepsilon>0$

$$
\begin{equation*}
\left.\inf _{\operatorname{n\in N}} \inf _{\left\|x-\theta_{n}\right\|>\varepsilon} \frac{\left\langle x-\theta_{n}, M_{n}(x)\right\rangle}{\left\|x-\theta_{n}\right\|}\right\rangle 0 . \tag{1.2}
\end{equation*}
$$

In fact it can be proved that (1.2) can be replaced by a weaker one, for every $\varepsilon>0$

$$
\begin{equation*}
\inf _{n \in N} \underset{n}{\inf }\left\langle\left\|-\theta_{n}\right\|<\varepsilon<x-\theta_{n}, M_{n}(x)\right\rangle>0 \tag{1.2}
\end{equation*}
$$

The importance of (1.2)' can be easily seen as follows. Suppose that $\sup \left\{\operatorname{Var} Y: x \in R^{k}\right\}<\infty$. Thus from (l.l) we have

$$
\begin{aligned}
& E_{n}\left(\left\|X_{n+1}-\theta_{n+1}\right\|^{2}\right) \leq\left\|x_{n}-\theta_{n}\right\|^{2}\left(1+\mu_{n}\right) \\
& \left.\quad-2 a_{n}(1+0(1))<\stackrel{\stackrel{\star}{x}}{n}-\theta_{n+1}, M_{n+1}\left(\stackrel{\star}{x}_{n}\right)\right\rangle+v_{n}
\end{aligned}
$$

where $\Sigma \mu_{\mathrm{n}}<\infty ; \Sigma \mathrm{v}_{\mathrm{n}}<\infty$. Using (1.2)' and theorem 1 of Robbins and sigmund $[4]\left\|x_{n}-\theta_{n}\right\|$ converges to 0 . Unfortunately, (1.2)' is a rather restrictive assumption, lmplying that for each $x$, $M_{n}(x)$ points a-way from $\theta_{n}$. There are many practical examples for functions do not astisfy the condition (1.2)'. An alternative procedure would to apply the multivariate Kiefer-Wolfowitz (KW) to minize $\left\|M_{n}(x)\right\|^{2}$ a fact used by Ruppert (1985) for the ordinary (DM) procedure. We assume that $E_{n}\left(\left\|Y_{n}\right\|^{2}\right)=\left\|M_{n}(x)\right\|^{2}+$ const. Thus the (KW) procedure does not attempt to move towards $\theta_{n}$; but in a direction of decreasing $\left\|M_{n}(x)\right\|^{2}$. If $\theta_{n}$ is the only local minimum of $M_{n}(x)$, we prove that $x_{n}-\theta_{n} \rightarrow 0$ under mild conditions.

## 2. NOTATIONS AND ASSUMPTIONS

2.1 : Let $R^{k}$ be the $k$-dimensional vector space. For $x$ in $R^{k}$ let $x^{i}$ be the ith component of $x$. For $x, y$ in $R^{k}$ we define

$$
\langle x, y\rangle=\sum_{i=1}^{k} x^{i} y^{i} \text { and }\|x\|^{2}=\langle x, x\rangle
$$

If $A$ is a matrix of order $k \times \ell$ let $A^{i j}$ be the entry of $A$. Also, let $A^{t}$ be the transpose of $A$, and let

$$
\|A\|^{2}=\sum_{i=1}^{k} \sum_{i=1}^{l}\left|A^{i j}\right|^{2}
$$

2.2 : Let $M(x), \quad x \in R^{k}$ be an (unknown) twice differentiable function from $R^{k} \rightarrow R^{k}$. Let $\theta_{n}(n=1,2, \ldots)$ be (unknown) vectors in $R^{k}$. The first $\theta_{1}$, being the unique root of the equation $M(x)=0$, Set $M_{1}(x)=M(x)$; for $n=1,2, \ldots$ set $M_{n}(x)=M\left(x-\theta_{n}+\theta_{1}\right)$ so that $\theta_{n}$ is the unique root of $H_{11}(x)$.
2.3 : Let $D(x)$ be the derivative of $M(x)$, i.e., $D^{i j}=\left(\partial / \partial x_{j}\right) M^{i}(x)$ and assume the following assumptions on $D$
i) $D\left(\theta_{1}\right)$ is non singular
ii) For all $\varepsilon>0$

$$
\inf \left\{\left\|D^{t}(x) M(x)\right\|: \varepsilon<\|M(x)\| \leq \varepsilon^{-1}\right\}>0
$$

iii) $\sup \left\{\|D(x)\|: x \in R^{k}\right\}<\infty$.
2.4 : Let $H(x)$ be the Hessian of $\|M(x)\|^{2}$, i.e.
$H^{i j}=\left(\partial^{2} / \partial x^{i} \partial x^{j}\|M(x)\|^{2}\right.$. and assume that $\sup \left\{\|i(x)\|: \quad x=R^{1!}\right\}<\infty$.
2.5 : Assume that $\theta_{\mathrm{n}}$ moves in a such manner that

$$
\begin{equation*}
\theta_{n+1}=g_{n}\left(\theta_{n}\right)+v_{n} \tag{2.1}
\end{equation*}
$$

where $g_{n}(x)$ is in general a non-linear measurable function (known) from $\mathrm{R}^{\mathrm{k}} \rightarrow \mathrm{R}^{\mathrm{k}}$ and $\mathrm{v}_{\mathrm{n}}$ is an unknown (random or nonrandom) $k$-vector function independent of $x$ and

$$
\begin{equation*}
\left\|v_{n}\right\|=0\left(\delta_{n}\right), \sum_{n=1}^{\infty} \delta_{n}<\infty \tag{2.2}
\end{equation*}
$$

2.6 : For $x$ and $y$ in $R^{k}$, we assume that exists a sequence of positive numbers $\left\{\gamma_{n}\right\}$ independent of $x$ and $y$ and let

$$
z_{n}=x-y, \quad \text { and } \quad \stackrel{\star}{Z}_{n}=g_{n}(x)-g_{n}(y)
$$

Then

$$
\begin{equation*}
\left\|M\left(\stackrel{\star}{Z}_{n}\right)\right\|^{2} \leq \gamma_{n}\|M(Z)\|^{2} \tag{2.3}
\end{equation*}
$$

$$
\begin{align*}
& \qquad \sum_{n=1}^{\infty}\left(\gamma_{n}-1\right)^{+}<\infty .  \tag{2.4}\\
& \text { where } z^{+} \text {means }(z+|z|) / 2 . \\
& \text { and } \\
& \quad \lim _{n \longrightarrow \infty}^{\lim } M\left(\stackrel{\star}{z}_{n}\right)=M(z) \quad \text { for }\|z\|<\infty . \tag{2.5}
\end{align*}
$$

## 3. THE PROCEDURE

The dynamic Robbins-Monro procedure will be described formally by the following assumptions.
3.1 : Let $X_{1}$ be atbitrary; define

$$
\begin{equation*}
\mathrm{x}_{\mathrm{n}+1}=\stackrel{\star}{\mathrm{x}}_{\mathrm{n}}-a \mathrm{n}^{-1} \mathrm{~F}_{\mathrm{n}}^{\mathrm{t}} \mathrm{Y}_{\mathrm{n}} \tag{3.1}
\end{equation*}
$$

where

$$
\stackrel{\star}{X}_{n}=G_{n}\left(X_{n}\right) ; a>0 ; X_{n} \text { in } R^{k} \text { and } F_{n} \text { is } k \times k \text { random }
$$ matrix, is used to estimate $D_{n+1}\left(\stackrel{\star}{x}_{n}\right)$ and $y_{n}$ is the observation with conditional expectation equal to $M_{n+1}\left({ }_{\mathrm{x}}^{\mathrm{n}} \mathrm{*}\right)$. The ith column of $F_{n}$ is constructed as follows: Let e(i) be the ith column of the $k \times k$ identity matrix. Let $c_{n}>0$ be constant and let $Y_{n}(i, 2)$ and $Y_{n}(i, 1)$ each be the observation with conditional expectation equal to $M_{n+1}\left({ }^{*}{ }_{n}+\right.$ $\left.c_{n} e(i)\right)$ and $M_{n+1}\left(\stackrel{\star}{x}_{n}-c_{n} e(i)\right)$, respectively. Then, the ith column of $\mathrm{F}_{\mathrm{n}}$ is

$$
\begin{equation*}
F_{n}^{i}=\left[Y_{n}(i, 2)-Y_{n}(i, 1)\right] / 2 c_{n} \tag{3.2}
\end{equation*}
$$

Let $\mathscr{F}_{n}$ be the $\alpha$-algebra generated by $X_{1}, x_{2}, \ldots, x_{n}$. For any random vector $X$ in $R^{k}$, let $E_{n}(X)$ and $\operatorname{Var}_{n}(X)$ be respectively the conditional mean and the variance of $x$ given $\mathscr{F}_{n}$.

Given ${\underset{F}{n}}^{n}, Y_{n}, D_{n}$ and $v_{n}$ are conditionally independent. Let

$$
\begin{equation*}
\xi_{n}=Y_{n}-M_{n+1}\left(x_{n}\right) ; \quad E_{n}\left(\xi_{n}\right)=0 \tag{3.3}
\end{equation*}
$$

Let

$$
\begin{align*}
& \bar{F}_{n}=E_{n}\left(F_{n}\right)  \tag{3.4}\\
& d_{n}=F_{n}-\bar{F}_{n} \tag{3.5}
\end{align*}
$$

and assume that

$$
\begin{align*}
& E_{n}\left(\left\|\xi_{n}\right\|^{2}\right) \leq \delta^{2}<\infty,  \tag{3.6}\\
& E_{n}\left(\left\|d_{n}\right\|^{2}\right) \leq k c_{n}^{-2} \tag{3.7}
\end{align*}
$$

and

$$
\begin{equation*}
\left\|\overline{\mathrm{F}}_{\mathrm{n}}-\mathrm{D}_{\mathrm{r} i+1}\left(\mathrm{x}_{\mathrm{r}}\right)\right\| \leq \mathrm{k} \mathrm{C}_{\mathrm{n}} \tag{3.8}
\end{equation*}
$$

$3.2: c_{n}>0 ; c_{n} \downarrow 0$ ard assume thá

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{-1} c_{n}<\infty, \quad \sum_{n=1}^{\infty} n^{-2} c_{n}^{-2}<\infty, \tag{3.9}
\end{equation*}
$$

4. THE MAIN RESULT

Theorem 4.1. : If the assumptions 2.l-3.2 hold. Then $X_{n}-\theta_{n} \rightarrow 0$. Proof : Using (2.1) and (3.1) we obtain

$$
\begin{equation*}
x_{n+1}-\theta_{n+1}=g_{n}\left(X_{n}\right)-g_{n}\left(\theta_{n}\right)-v_{n}-a n^{-1} F_{n}^{t} Y_{n} . \tag{4.1}
\end{equation*}
$$

Let

$$
z_{n+1}=x_{n+1}-\theta_{n+1}, \stackrel{\star}{z}_{n}=g_{n}\left(X_{n}\right)-g_{n}\left(\theta_{n}\right) \text { and } \Delta_{n}=a n^{-1} F_{n}^{t} Y_{n}
$$

Then (4.1) can be written as

$$
\begin{equation*}
z_{n+1}=\stackrel{\star}{z}_{n}-v_{n} \Delta_{n} \tag{4.2}
\end{equation*}
$$

and there is $\eta$ in $(0,1)$ such that

$$
\begin{gathered}
\left\|M\left(z_{n+1}\right)\right\|^{2}=\left\|M\left(\stackrel{\star}{z}_{n}\right)\right\|^{2}-2\left\langle V_{n}+\Delta_{n}, D^{t}\left(\stackrel{\star}{z}_{n}\right) M\left(\stackrel{\star}{z}_{n}\right)\right\rangle+\frac{1}{2}\left\langle V_{n}+\Delta_{n},\right. \\
\\
\left.H\left(\stackrel{\star}{z}_{n}-n\left(V_{n}+\Delta_{n}\right)\right)\left(V_{n}+\Delta_{n}\right)\right\rangle
\end{gathered}
$$

Using 2.3 and (3.3)-(3.5) we get

$$
\begin{align*}
& \left.E_{n}\left(\left\|M_{2}\left(Z_{n+1}\right)\right\|^{2}\right)=\left\|M\left(\stackrel{\star}{Z}_{n}\right)\right\|^{2}-2 E_{n}\left(\Delta_{n}\right), D^{t}\left(\stackrel{\star}{Z}_{n}\right) M\left(\stackrel{\star}{Z}_{n}\right)\right\rangle-2\left\langle E_{n}\left(V_{n}\right)\right. \text {, } \\
& \left.D^{t}\left(\stackrel{\star}{Z}_{n}\right) M\left(\stackrel{*}{Z}_{n}^{*}\right)\right\rangle+\frac{1}{2} E_{n}\left[\left\langleV_{n}+\Delta_{n}, H\left(\stackrel{*}{Z}_{n}-\right.\right.\right. \\
& \left.\left.\left.r\left(v_{n}+\Delta_{n}\right)\right)\left(v_{n}+\Delta_{n}\right)\right\rangle\right] \\
& \leq\left\|M\left(\stackrel{\star}{Z}_{n}\right)\right\|^{2}-2 a n^{-1}\left\|D^{t}\left(\stackrel{\star}{Z}_{n}\right) M\left(\stackrel{\star}{Z}_{n}\right)\right\|^{2}-2 a n^{1-}<\left[F_{n}^{-t}-\right. \\
& \left.\left.\left.D^{t}\left(Z_{n}\right)\right] M\left(\stackrel{\star}{z}_{n}\right), D^{t}\left(\stackrel{\star}{z}_{n}\right) M\left(\stackrel{\star}{Z}_{n}\right)\right\rangle+0\left(\left\|V_{n}\right\|\right)\left\|D^{t}\left(\stackrel{\star}{\mathrm{Z}}_{n}\right) M\left(\stackrel{\star}{z}_{n}\right)\right\|\right)+ \\
& 0\left(n^{-2} E_{n_{1}}\left(\left\|F_{n}^{t} Y_{n}\right\|^{2}\right)\right)+O\left(\left\|V_{n}\right\|^{2}\right)+0\left(\left\|V_{n}\right\| E_{n}\left\|F_{n}^{t} Y_{n}\right\|\right) \text {. } \tag{4.3}
\end{align*}
$$

Hence

$$
\begin{equation*}
E_{n}\left(\left\|M\left(z_{n+1}\right)\right\|^{2}\right)=\left\|M\left(\stackrel{\star}{Z}_{n 1}\right)\right\|^{2}-2 a n^{-1}\left\|D^{t}\left(\stackrel{\star}{Z}_{n}\right) M\left(\stackrel{\star}{Z}_{n}\right)\right\|^{2}+\sum_{i=1}^{5} T_{i} \tag{4.4}
\end{equation*}
$$

where $T_{i} \quad i=1,2, \ldots, 5$ are the corresponding, terms respectively in (4.3) By (3.8) we have

$$
\begin{align*}
& \left|T_{1}\right|=O\left(\mathrm{n}^{-1} C_{\mathrm{n}}\left\|\mathrm{M}\left(\stackrel{\star}{\mathrm{z}}_{\mathrm{n}}\right)\right\|^{2}\right)  \tag{4.5}\\
& \left|\mathrm{T}_{2}\right|=0\left(\left\|\mathrm{~V}_{\mathrm{n}}\right\|\left\|D^{+}\left({\stackrel{\star}{z_{n}}}_{\mathrm{n}}\right) M\left({\stackrel{\star}{z_{n}}}_{\mathrm{n}}\right)\right\|^{2}\right)+\left\|\mathrm{V}_{\mathrm{n}}\right\| \tag{4.6}
\end{align*}
$$

By (3.3) - (3.8) we have

$$
\begin{aligned}
\left.E_{n}\left(\| F_{2}{ }^{t} Y_{n}\right) \|^{2}\right)= & \left\|D^{t}\left(\stackrel{\star}{Z}_{n}\right) M\left(\stackrel{\star}{Z}_{n}\right)\right\|^{2}+M^{t}\left(\mathcal{Z}_{n}\right)\left[F_{n} F_{n}^{-t}-D\left(Z_{n}\right) D^{t}\left(Z_{n}\right)\right] M\left(\stackrel{\star}{Z}_{n}\right) \\
& +E_{n}\left[\left\|d_{n}^{t} \xi_{n}\right\|^{2}\right]+E_{n}\left[\left\|F_{n}^{-t} \xi_{n}\right\|^{2}\right] \\
\leq & \left\|D^{t}\left(Z_{n}\right) M\left(Z_{n}\right)\right\|^{2}+0\left[\left(c_{n}+c_{n}^{-2}\right)\left\|M\left(\stackrel{\star}{Z}_{n}\right)\right\|^{2}\right] \\
& +O\left(1+c_{n}+c_{n}^{-2}\right) .
\end{aligned}
$$

Thus

$$
\begin{align*}
&\left|T_{3}\right|=O\left(n^{-2}\left\|D^{t}\left(\stackrel{\star}{z}_{n}\right) M\left(\stackrel{\star}{z}_{n}\right)\right\|^{2}\right)+O\left(n^{-2} c_{n}+n^{-2} c_{n}^{-2}\right)\left\|M\left(\stackrel{\star}{z}_{n}\right)\right\|^{2} \\
&+O\left(n^{-2}+n^{-2} c_{n}+n^{-2} c_{n}^{-2}\right) \tag{4.7}
\end{align*}
$$

From which it follows also that

$$
\begin{equation*}
\left|T_{5}\right|=0\left(\left\|V_{n}\right\| E_{n}\left\|\Delta_{n}\right\|\right)=0\left(\left\|V_{n}\right\|+\left\|V_{n}\right\|\left|T_{3}\right|\right) \tag{4.8}
\end{equation*}
$$

Substituting (4.5)-(4.8) in (4.5) and using (2.3) we get
$E_{n}\left(\left\|Z_{n+1}\right\|^{2}\right) \leq\left\|M\left(Z_{n}\right)\right\|^{2}\left(1+\mu_{n}\right)-2 a n^{-1}(1+0(1))\left\|D^{t}\left(\stackrel{\star}{Z}_{n}\right) M\left(\stackrel{\star}{Z}_{n}\right)\right\|^{2}+\varepsilon_{n}$
where

$$
\begin{equation*}
\mu_{n}=0\left(n^{-1} c_{n}+n^{-2} c_{n}^{-2}+\gamma_{n}-1\right)^{+} \tag{4.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\varepsilon_{n}=0\left(\left\|v_{n}\right\|+n^{-2} c_{n}^{-2}\right) \ldots . \tag{4.11}
\end{equation*}
$$

From (2.2), (2.4) and (3.9) it follows that $\Sigma \mu_{n}<\infty$ and $\Sigma \varepsilon_{n}<\infty$. Therefore by Therem $l$ of Robbins and siegmund (l971) $\underset{n \longrightarrow \infty}{\lim M\left(\mathcal{Z}_{n}^{*}\right)}$ exists and is finite and

$$
\sum_{n=1}^{\infty} n^{-1}\left\|D^{t}\left(\stackrel{\star}{Z}_{n}\right) M\left(\stackrel{\star}{Z}_{n}\right)\right\|^{2}<\infty
$$

By 2.2(ii) and (2.5) $x_{n}-\theta_{n} \longrightarrow 0$, which completes the proof of the theorem.

## FEFEREINCES

[l] Dupac, V. (1965), Adynamic stochastic approximation method. The Anal. Math. Statist. 36, 1695-1702.
[2] Dupac, V. (1966), Stochastic aproximation in the presence of the trend. Czechosloak Mathematical Jounal, 16, 454-461.
[3] Robbins, H. and Monoro, S. (1951), A stochastic approximation method. Ann. Math. Statist. 22, 400-407.
[4] Robbins, H. and Siegmund, D. (1971), A convergence theorem for non-negative almost super martingles and some applications. In optimizing Methods in statistics (J.S. Rustagi, ed.) 233-257, Academic, New York.
[5] Ruppert, D. (1985), A Newtor-Raphson version of the multivariate Robbins-Monoro procedure. Ann Statist. 13 , 236-245.
[6] Sorour, E. (1978), On the convergence of the dynamic stochastic approximation method for stochastic non-linear multidimensional dynamic dystems. Kybernetika, Volume 14 , 28-37.
[7] Sorour, E. (1991), A dynamic Kiefer-Wolfowitz stochastic approximation procedure. Statistics \& Decision 9, 201-211.
[8] Sorour, E. (1993), Dynamic multivariate stochastic approximation using a simultaneous perturbation gradient approximation. (appear)
[9] Uosaki, K. (1974), Some generalization of the dynamic stochastic approximation process. Ann. Statist. 2, 1042-1048.

