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ABSTRACT 

Let M be a function from R
k 

to  R
k let en, n 

1,2,... 	be 

(unknown) vector numbers, the first e1 
being the unique root of 

the equation M(g) = 0, set M1(x) = M(x), 	for n 	set 

Mn
(x) = M(x - en - el) so that en 

is the unique toot of Mn
(x)-0. 

Initially Mn
(x) is unknown, but for any x in R

k we can observe a 

random vector Yn
(x) with conditional expectation Mn+I

(x). The 

unknown en 
can be estimated recursively by the author (1978), 

that procedure requires the rather restrictive assumption that 

the infiiuum of the inner product <x - e, M(x)> over any compact 

set not containing & be positive, i.e. along each line through 

el, M(x) is unimodal with minimum el. Unlike our previous method, 

the procedure introduced in this paper does not necessarily 

attempt to move in the direction of en  but except of that random 

fluctuations it moves in the direction which decreases 	(x)11
2
, 

consequently it does not require that <x - en, Mn(x)> have a 

constant signum. This new procedure is a stochastic analog of the 

Newton-Raphson technique. 
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1. INTRODUCTION 

This paper is concerned with the multivariate dynamic 

version of the Robbins-Honvo [3] stochastic approximation 

procedure. This problem first studied by Dupac [1]; where the 

loot of the regression function moves in a specified maKitler. He 

discussed in his papers [1]; 	[2] only the cases where the 

movement of the root (one-dimensional) or the maximum 

(multidimensional) can be expressed by a certain linear function 

of its present location, and where the trend is deterministic. 

Uosaki, K. [9] discussed some generalization of Dupac's work in 

the one-dimensional case where the movement of the root can be 

expressed by a specified non-linear function of its present 

location. Uosaki's result has been generalized to the 

multidimensional case by the author (1978). This version begins 

with an initi a l cr,timtre Y l . (-3i,,o,:n X
1' 
	X2, 	

 ,X 	onP 	observes 

Y
n
, such that E

n
(I

n
) = M

n+1
(X

n), where En denotes the conditional 

expectation given X1, X2,....,Xn  and X 	= gn(Xn) for some 

function gn  from R 	R
k 

Then X n+1 is defined by 

X
n+1 

= X
n 

- a
n
Y
n 	 (1.1) 

where (an} is a suitably choosen positive sequence converging to 

0 as n--4m. Let 6n be the unique root of M
n(x). Then Xn 

- en-40, 

under the assumption for every e > 0 

<x - e , M
n
(x)> 

n 	 inf 	inf 	 > 0. 	 (1.2) 
rif\T lix-6,n I1 >e 	

pc - ad 

In fact it can be proved that (1.2) can be replaced by a weaker 

one, for every E > 0 
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inf 	inf 	<x - e n 	
(x)> , N (x) 	0 	 ( 1.2 )' 
n 

neN Eqx-enVE 

The importance of (1.2)' can be easily seen as follows. Suppose 

that Supt Var Y : xER
k < m . Thus from (1.1) we have 

En
(H Xn+1 

- n+1
) 	HX - en

2(1 + n
) 

- 2an(1 + 0(1)) < Xn  - en+1, Mn+1(Xn" 	vn 

where E in  < co;  E vn  < co. Using (1.2)' and theorem 1 of Robbins 

and Sigmund [4] -n 	
enD converges to 0. Unfortunately, (1.2)' 

is a rather restrictive assumption, emplying that for each x, 

M (x) points a-way from en
. There are many practical examples for 

functions do not astisfy the condition (1.2)' . An alternative 

procedure would to apply the multivariate Kiefer-Wolfowitz (KW) 

to minize DM (x)
2 a fact used by Ruppert (1985) for the ordinary 

(PM) procedure. We assumeassumettvit E (DY 
2  ) 	Dmn(x)112 ± const. Thus 

the (KW) procedure does not attempt to move towards 	but but in a 

direction of decreasing On(x) 2 H . If en 
 is the only local minimum 

of M n (x), we prove that xn - 
en 

 --+0 under mild conditions. 

2. NOTATIONS AND ASSUMPTIONS 

2.1 : Let R
k be the k-dimensional vector space. For x in R

k let 

xi be the ith component of x. For x,y in R
k we define 

<x,y> = Exy and IIxli  - <x,x>. 
i=1 

If A is a matrix of order kxL let A13  be the entry of A. 

Also, let A
t be the transpose of A, and let 

k 
HAH 2 	E 	E IA

ijI. 
i-1 1=1 
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2.2 : Let M(x), xeRk be an (unknown) twice differentiable 

function from Rkk. Let en(n = 1,2,...) be (unknown) 

vectors in Rk. The first el ,  being the unique root of the 

equation M(x) = 0,. Set M1(x) = M(x); for n = 1,2,... 	set 

M (x) _= H(x - e
n  + 

A1 ) so that 8 is the unique root of n 	, 

(x). 

2.3 : Let D(x) be the derivative of M(x), i.e., 

and assume the following assumptions on D 

i) Nei ) is non singular 

ii) For all e > 0 

inffIlDt(x) M(x)II 	< 	 "C 	
11 

iii) Suptp(x)11 	xeRkl < m. 

> 0 

(0/0x,)M (x) 

2.4 : Let H(x) be the Hessian of P-1(x)C ,  
= (0210x i 

ex'ilm(x)0 2 - and assume that 

Suptp(x)ii : 	< 	. 

2.5 : Assume that en moves in a such manner that 

en+1 = gn(en) + vn 	 (2.1) 

where gn(x) is in general a non-linear measurable function 

(known) from Rk 	Rk and v
n is an unknown (random or 

nonrandom) k-vector function independent of x and 

co 
Ovnil = 0(6n), E 6  < co 

n-1 
(2.2) 

2.6 : For x and y in Rk  , we assume that exists a sequence of 

positive numbers (rn) independent of x and y and let 

Zn 	x - y, 	and Zn 	gn(x) - gn(y) 

Then 

DM(Zn)11 2 	rnIIM(Z)11 2 
	

(2.3) 



oo 
E (yn 

- 1)+ < co . 
n=1 

(2.4) 
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where Z
+ means (Z + IZI)/2. 

and 

* 
lim M(Z n) = M(Z)  for pH < m . 	(2.5) 

3. THE PROCEDURE 

The dynamic Robbins-Monro procedure will be described 

formally by the following assumptions. 

3.1 : Let X1 
 be arbitrary; define 

= X -  an 	Fn  
t 

n X
n+1 	

F
n 

Y
n 

(3.1) 

where 

Xn 
= Gn

(Xn
); a > 0; Xn 

in R
k and Fn 

is kxk random 

* 
matrix, is used to estimate Dn+1(xn

) and Yn 
is the 

clervation with conditional expectation equal to Mn+1
(x

n
). 

The ith column of Fn 
is constructed as follows : Let e(i) 

be the ith column of the kxk identity matrix. Let cn 
> 0 be 

constant and let Yn
(i,2) and Yn

(i,l)each be the 

observation with conditional expectation equal to Mn+1(xn  + 

* 
c
n 

e(i)) and Mn+I(xn 
- cn 

e(i)), respectively. Then, the 

ith column of F
n 

is 

F1  = pn(i,2) - In
(1,1)]/2 cn 

(3.2) 

Let Yn  be the a-algebra generated by X1, X2,..., Xn. 	For 

anyrandortivectorXinRk,letEnMandVar.(X) be 

respectively the conditional mean and the variance of X 

given Y
n 



CU 

E n
-1 

c
n < n=1 

Co 

E n-2 c-2 < 	, 	(3.9) 
n=1 

o , 
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Given 3"
n' 

Y
n
, D

n and vn are conditionally independent. Let 

E11( n)= 0 	(3.3) = Yn 	Mn+1(xn);  

Let 

Fn = En(Fn) 	 (3.4) 

d 	= F 	- T 	 (3.5) n 	n 	n 

and assume that 

En(V11 11 2) 	(52 < 	 (3.6) 

En(ildne) 	k c 2 
(3.7) 

and 

HT - 1 
D 41  (x) 	k cl.l 	 (3.8) 

3 2 : 
11 

> 0;
n 	0 and assume tha 

4 	THE MAJN PE.MLT 

Theorem 4.1. : If the assumptions 2.1-3.2 hold. Then X - e--40. n n  

Proof : Using (2.1) and (3.1) we obtain 

t 
Yn. 

X
n+1 

- e
n+1 = 

gn(Xn) - gn(en) - vn - an-1  Fn 
	(4.1) 

Let 

n+1 	
t = X

n+1 
-

n+1' Zn 
= g

n
(X

n
) - g

n(0n) and An = an
-1 
 F

n Yn 

Then (4.1) can be written as 

* 
Z
n+1 

=
n 

- V
n 

A
n 	 (4.2) 

and there is r? in (0,1) such that 

1114(2n4.1 )11 2 
= 1114(%)112

t * 	* - 2<V
n 

+ A
n, D (2n

)M(Z
n
)> +2 1  <V

n 
+ A

n
, 

* 
H(Zn  - r(Vn  + An))(Vn  + A

n)>. 

Using 2.3 and (3.3)-(3.5) we get 
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*  
En(0M2(2n+1)0

2) = H M (2 n)11 2   

 

- 2En(An

-

)

- 

, D 

t 

 (* 
n)M(

* 
n)> -2

*  

<En(Vn), 

Dt(*n)M(
*n p + f Ej<Vn 

 

 + An, H(Zn  - 

r,(Vn  + An))(Vn  + An)>] 

* 	 - - 
..-C. HM(2 )0 

2 	1 
n 	

- 2an 	11Dt (Z )M(Z * 	* 
)0

2 
- 2 n 	n 	

an1  <[Fa
t  - 

Dt(Zn)]M(%), Dt(%)M(2n)> + 0( pin11)11Dt(%)M(%)11)+ 

t 	 t 
0 (n

-2En(11Fn  Yng 2  )) + 0(11VnIl 2) + 0(HVJEnHEn  Yn11). 

(4.3) 

Hence 
5 

2 	, 	2 	-1 t * 	* 	2 
E (DMZn+1)11 ) = 1111(Z II

)11 	- 2an 	HD (2n)M(2 )11 	4-  E Ti 	(4.4) 
n 	 n 1=1 

where T. 	i = 1,2,...,5 are the corresponding, terms respectively 

in (4.3) By (3.8) we have 

* 	2 C1111(211 )11 ) 1T11 = 0(n-1 

t * )
1 A

•  IT-1 - 0(rj 	(2.D 1(7n)111 ") 	111 Vnfl ri t 

(4.5) 

(4.6) 

By (3.3) - (3.8) we have 

* 	* 	 * 
En(HF2 

tYn)H
2) = HDt  (2n)M(2n)H

2  + Mt  (Z n  4Fn  Fn
t- D(Zn)D

t(Zn) M(2n) 

+ E n  [Hd
t 
n HI 	

+ En[oFn trn0
2] t 

HDt(211)M(Zn)11
2 + 0[ cn  + cn

2  )11M(2n)11 2  I 

+ 0(1 + cn + cn
2). 

Thus 

- 	* * 	-2 2 H  1,1 2 1T31 = 0(n
2  HDt  (Zn )M(Z1.1)0

2 
 ) 	0  (n

-2cn + n cn 
)M(2)11 

+ 0(n-2 + n-2cn + n
-2  cn

2  ) 	(4.7) 

From which it follows also that 

IT51 = o(fivd Enfied) = 0(fivd + fivd IT31) 
	

(4.8) 
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Substituting (4.5)-(4.8) in (4.5) and using (2.3) we get 

* 	* En(pn+111 2)< DM(Zn)11 
2
(1 + pn) - 2an-1  (1 + 0(1))1IDt  (Zn)M(Zn)11 2  +en  

(4.9) 

where 

and 

- - p
n 

= 0(n
-1

c
n 

+ n 2  c
n
2 
 + y

n 
- 1)

+ 

en  = 0(11Vnil + n
-2 

 cn
2 
 ) 	 

(4.10) 

(4.11) 

From (2.2), (2.4) and (3.9) it follows that E pn< co and E en  < 00. 

Therefore by Therem 1 of Robbins and siegmund (1971) 	lim M(Z
n
) 

nec,  

exists End is finite and 

n=1 
E 	n 	

t 
 ( zn)m ( zn)11

2 
 < 

CU 	
* 	* 

By 2.2(11) and (2.5) Xn  - en -4 0, which completes the proof of 

the theorem. 
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