MILITARY TECHNICAL COLLEGE

CAIRO - EGYPT

Operating LORAN-C Position Fix with Nonhyperbolic Position Lines

By : A.M.Hamad, M.A.Matar and A.A.Mohamed

Abstract

Hyperbolic navigation systems (LORAN-C, DECCA Navigator and OMEGA, represent a widely used class of position fixing systems.Most of their incorporated traditional receivers display position fixes in hyperbolic coordinates for plotting either by hand on navigation charts printed with hyperbolic overlays or they plot tracks automatically, often on distorted charts.This makes them expensive and/or manually operated. Moreover, it amplifies certain accuracy problems related to the angle of, cut of the Avionirs systems entails well as automatic vehicle location automatically and which display which operate wholly or largely geographical coordinates (latitude -longitude) measurements in distances to given waypoints and/or ingitude) or as headings and dead-reckoning sensors. Solution issues to some two published papers by the problems have been addressed in involve modifications in the authors.The underlying idea is to receivers. In essence, that modifocessing algorithms of on-board non-hyperbolic position lines :circles was based on generating originally designed hyperbolic sysem out of the that proposal was the subject of one the a the authors papers.

In the present a real ON-EARTH $O R A N-C$ station proposed modification is applied to Moreover, an algorithm as well as confirm the obtained results. presented. The proposals are presented with its algorithm and is highlighted.

[^0]
INTRODUCTION

Hyperbolic navigation systems are known to offer a superior combination of accuracy and range compared to any ground based systems [1-4] (LORAN-C, DECCA and OMEGA systems). As to the readout from the receiver itself,measured time differences are to be transfered to corresponding hyperbolic lines on a chart manually or with some form of automated plotting on hyperbolic map Digital computers are used to provide readout in latitude and longitude using one of the standard techniques for converting positions from hyperbolic to rectangular coordinates [8]. Most of these techniques are mainly implemented on mainframe computers and are usually inadequate for implementation in low cost navigation receivers for reasons of speeds, addressing space and memory sizes.
Solutions to such a problem as well as the accuracy problems (relevant to the geometric factors of hyperbolic lines) have been addressed in [5] and highlighted in our previous papers [6,7] . In this work, we present an algorithm that greatly simplifies the implementation of relevant receivers. The algorithm starts from the idea of modifying the processing algorithms employed in the on-board receivers. This modification enables generating nonhyperbolic position lines; namely: circles or ellipses out of the originally designed hyperbolic systems.
Improvement in position fixing systems was theoretically demonstrated in our paper [7] for the hyperbolic systems especially DECCA where distances among station are mainly confined within the "planification" of the earth surface . Such planification is, in essence, a utilization of the TANGENT PLANE coordinate system . Section II introduces theoretical evaluation procedure assuming the REFERENCE SPHERE(not ELLIPSOID)as the earth model. Calculations are done for real LORAN-C stations where station spans justify the use of this type of earth model. In section III, the practical implementation is outlined. Section IV considers the case of short base length ;i.e.the DECCA chains. Section V is reserved for conclusions and future work.

II. THEORETICAL BASES FOR PROPOSED LORAN FIX ALGORITHM

For the generalized spherical coordinates (Fig.l.), a point $P(x, y, z)$ on the earth-surface with longitude λ and latitude ϕ, the co-ordinate values x, y, z are given by :

```
x = R cos \phi cos \lambda
y = R cos \phi sin \lambda
z=R}\operatorname{sin}
```

with the earth radius $\quad \mathrm{R}=\left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right)^{1 / 2}$
$\phi=\sin ^{-1}(z / R), \lambda=\tan ^{-1}(y / R)$
Let us define the angle θ (see Fig.2.) :
$\theta=(\rho / R) \quad[$ radian $]$

Defining the unit vector:
$\vec{e}=\cos \phi \cos \lambda \vec{i}+\cos \phi \sin \lambda \vec{l}+\sin \phi \vec{k}$
Let $a=\cos \phi \cos \lambda$

$$
\begin{align*}
& b=\cos \phi \sin \lambda \\
& c=\sin \phi \tag{6}
\end{align*}
$$

Now, we can write a plane equation in terms of this vector and the distance $d(d=R \cos \theta)$. From now on , let us use x, y, z and d as normalized values relative to the earth radius R. The plane equation is given as:

$$
\begin{equation*}
a x+b y+c z=d \tag{7}
\end{equation*}
$$

Writing such equations for the three involved planes smaster and secondaries, we have:
Master plane :

$$
\begin{equation*}
a_{0} x+b_{0} y+c_{0} z=d_{0} \tag{8}
\end{equation*}
$$

Secontary plame of S_{1} :

$$
a_{1} x+b_{1} y+c_{1} z=d_{1}
$$

Secondary plame of S_{2} :

$$
\begin{equation*}
a_{2} x+b_{2} y+c_{2} z=d_{2} \tag{10}
\end{equation*}
$$

The solution of this linear system of equations yields the intersection point P given by:(see Fig.z.)

$$
\begin{align*}
& x=d_{0} \alpha_{x}+d_{1} \beta_{x}+d_{2} \gamma_{x} \\
& y=d_{0} \alpha_{y}+d_{1} \beta_{y}+d_{2} \gamma_{y} \\
& z=d_{0} \alpha_{z}+d_{1} \beta_{z}+d_{2} \gamma_{z} \tag{11}
\end{align*}
$$

where :

$$
\begin{align*}
& \alpha_{x}=\left(b_{1} c_{2}-b_{2} c_{1}\right) / \operatorname{det}(a, b, c) \\
& \beta_{x}=-\left(b_{0} c_{2}-b_{2} c_{0}\right) / \operatorname{det}(a, b, c) \\
& \gamma_{x}=\left(b_{0} c_{1}-b_{1} c_{0}\right) / \operatorname{det}(a, b, c) \\
& \operatorname{det}(a, b, c)=a_{0} \alpha_{x}+a_{1} \beta_{x}+a_{2}{ }_{x} \tag{12}
\end{align*}
$$

and
similar definition for $\alpha_{y}, \beta_{y}, \gamma_{y}$ and α_{z}, β_{z} and γ_{z} are simple to obtain. As we are interested only on points on the earth surface or at low altitudes (relative to R), we use the following check :

$$
\begin{equation*}
x^{2}+y^{2}+z^{2}=1 \tag{13}
\end{equation*}
$$

To mechanize the solution in terms of the measurements $\Delta \rho_{1}$ and $\Delta \rho_{2}$, we make the transformation described in the appendix. This transformation replaces $\Delta \rho_{1}$ and $\Delta \rho_{2}$ by their relevant quantities $\Delta \theta_{1}$ and $\Delta \theta_{2}$ respectively. This transforms r^{2} to $=$

$$
\begin{align*}
r^{2}=A & +B+C+A \cos 2 \theta_{0}+B \cos 2\left(\theta_{0}+\Delta \theta_{1}\right) \\
& +C \cos 2\left(\theta_{0}+\Delta \theta_{2}\right)+D \cos \left(\Delta \theta_{1}\right)+D \cos \left(2 \theta_{0}+\Delta \theta_{1}\right) \\
& +E \cos \left(\Delta \theta_{2}\right)+E \cos \left(2 \theta_{0}+\Delta \theta_{2}\right)+F \cos \left(\Delta \theta_{2}-\Delta \theta_{1}\right) \\
& +F \cos \left(2 \theta_{0}+\Delta \theta_{1}+\Delta \theta_{2}\right) \tag{14}
\end{align*}
$$

Hence the algorithm for finding $P(x, y, z)$ boils down to :
-Given the specific master and secondary stations by their respective longitudes and latitudes λ and ϕ.

- Find the constant quantities A, B, C, D, E and F.
-Measurements Δp_{1} and Δp_{2} are transformed to $\Delta \theta_{1}$ and $\Delta \theta_{2}$.
-Select $\rho_{0}, \Rightarrow \theta_{0}$ then $d_{o}=\cos \theta_{0}$.
-Find all the cosines given above.
-Substitute in the above equation, and iterate upon the values of ρ_{o} or equivalently θ_{o}.
-Terminate the iteration when $J=r^{2}=1$.
- Find x, y and z corresponding to the value of $J=r^{2}=1$.
- Find the value of λ and Φ (instead of x, y and z) corresponding to the value of $J=r^{2}=1$, if needed.

This algorithm was implemented on an IBM-PC and Fig.3.gives a sample result for the LORAN-C chains in the Saudi Arabia . A more useful presentation of the same results is depicted on Fig. 4. In this figure, the logarithm of the quantity J is plotted .The required solution is attained at the point of crossing the horizontal Zero -line. This reduce the task to that of finding the zero crossing point .

III.LORAN-C ORIENTED IMPLEMENTATION PROPOSAL

To implement systems adequate for application in low cost navigation receivers enjoying convenient speeds,addressing space and memory sizes , algorithms should be tailored to suit such applications. The proposed algorithm implementation is shown in Fig. 5. A precomputed transformation for the coordinates of every Loran-c chain to the corresponding constants is stored in a read-only memory as a lock-up table addressable by the chain number This would surely reduce the on-line computations time . By the same token, the cosine as well as the logarithmic functions are stored with sufficient accuracy in other lock-up tables. This explains the presence of three ROMs. Thus , a good share of computations will be reduced merely to the addressing function of the relevant ROMs. Calculating the value J for an initial guess value θ_{o} then finding the sign of its logarithm. The iteration continues with an increase or decrease of that value by an increment according to the sign of the logarithm.Iteration stops at Zero-crossing point to deliver the position computed in terms of the longitude and latitude coordinates.
For frequent position changes updating, the coordinates along the trajectory is based upon utilizing the previous obtained value of
θ_{0} as seed for iteration for the new position . A minimum mean square error filtering algorithm may be also implemented for improving the LORAN-C system accuracy and delivering the the vehicle course through time recursion of the type shown in Fig. 6. Moreover , the other navigational quantities such as ground velocity, heading and dead-reckoning instrument errors can be calculated from successive values of found positions.

IV. DECCA ORIENTED IMPLEMENTATION PROPOSAL

As far as Decca navigation system is considered , distances among stations are reduced to about 100 km . The 3 -planes seen in LORAN-C chains degenerate totally to practically one plane . Hence for such conditions, a separately developed algorithm is to be used. We consider the limit case, where the whole chain lies in one plane. Such planification of the earth surface is ,in essence, a resort to the TANGENT PLANE coordinate system The idea of the following algorithm was outlined in our previous papers [6,7] and the derivation of the used algorithm is given in the appendix . On the basis of Fig.7, the iterative process is started by selecting the radius p_{0} for :

$$
\rho_{0}=\max \left\{\left(d / 2-\Delta \rho_{1}\right),\left(d / 2-\Delta \rho_{2}\right)\right\}
$$

(15)

For this value of ρ_{0}, we find $\rho_{1}=\rho_{0}+\Delta \rho_{1}$, and $\rho_{2}=\rho_{0}+\Delta \rho_{2}$, these circles intersect the master circle at point $P_{o 1}$ and point P_{oz} shown in the figure.
From these two points we find the angles θ_{0} and δ_{0} (as start point shown in the figure $\theta_{0}=z e r o$, as initial angles for the iteration process :

$$
\begin{align*}
& \rho_{k} \cos \theta_{k}-\rho_{k-1} \cos \theta_{k-1}=5 \Delta_{1} \tag{16}\\
& \rho_{k} \cos \delta_{k}-\rho_{k-1} \cos \delta_{k-1}=5 \Delta_{2} \tag{17}
\end{align*}
$$

where $S=(\Delta p / d)$ as defined in the appendix.
As far as $\theta_{0}+\delta_{0} \neq \Psi$, we increase the radius p_{1} by a step ($\Delta \rho$) and check $\theta+\delta=\Psi$, iteration stops at iteration k when

$$
\begin{equation*}
\theta_{k}+\delta_{k}=\Psi \tag{18}
\end{equation*}
$$

To implement this iteration, we have to simplify the computations and choose a sharp parameter to stop iteration.This is again realized by the logarithm function . Hence the algorithm is as follows :
-Select $\rho=\left(\rho_{0} / d\right)$, compute $\Delta_{1}=\left(\Delta \rho_{1} / d\right)$ and $\Delta_{2}=\left(\Delta \rho_{2} / d\right)$ -Using the iteration formula, Find $\rho_{k} \cos \theta_{k}$ and $\rho_{k} \cos \delta_{k}$ - Find $\rho_{k} \cos \left(\psi-\theta_{k}\right)$

$$
\left.\rho_{k} \cos \left(\psi-\theta_{k}\right)=\left(\rho_{k} \cos \theta_{k}\right) \cos \psi-\sin \psi \cos _{k}^{2}-\left(\rho_{k} \cos \theta_{k}\right)^{2}\right\}^{0.5}
$$

- Find $L=\log \left\{\rho_{k} \cos \left(\psi-\theta_{k}\right) / \rho_{k} \cos \delta_{k}\right\}$
-Find the zero crossing point of L, hence ρ_{k}
Implementation of this algorithmis given in fig $\quad 8$

V. CONCLUSIONS

The present work introduces an implementation proposal aiming at a solution to some long lasting problems inherent in the hyperbolic navigation systems (DECCA, LORAN-C and low-cost OMEGA). The proposed modification, while affording better position fixing, it is appended to the currently existing conventional systems simply as an "Add-on" product without any other modification . One of the very interesting merits of that implementation is that it offers a striking simplicity along with remarkably real time operability.We are working in an additional software for selecting best combination of the now-available lines (circles and hyperbolas) that would greatly improve the performance and open a survivability issue to DECCA, LORAN-C and low-cost OMEGA systems.

Appendix

A. LORAN-C CHAIN RELATIONS

$$
\begin{align*}
r^{2}= & x^{2}+y^{2}+z^{2} \\
= & d_{0}^{2}\left(\alpha_{x}^{2}+\alpha_{y}^{2}+\alpha_{z}^{2}\right)+d_{1}^{2}\left(\beta_{x}^{2}+\beta_{y}^{2}+\beta_{z}^{2}\right)+d_{z}^{2}\left(\gamma_{x}^{2}+\gamma_{y}^{2}+\gamma_{z}^{2}\right) \\
& +2 d_{0} d_{1}\left(\alpha_{x} \beta_{x}+\alpha_{y} \beta_{y}+\alpha_{z} \beta_{z}\right)+2 d_{0} d_{z}\left(\alpha_{x} \gamma_{x}+\alpha_{y} \gamma_{y}\right. \\
& \left.+\alpha_{z} \gamma_{z}\right)+2 d_{1} d_{z}\left(\gamma_{x} \beta_{x}+\gamma_{y} \beta_{y}+\gamma_{z} \beta_{z}\right) \tag{A1}
\end{align*}
$$

Since $d_{0}=\cos \theta_{0}$, then $d_{0}{ }^{2}=0.5\left(1+\cos Z \theta_{0}\right)$. This is equally correct for d_{1} and d_{z}.
Let us transform d_{1} and d_{2} as follows:
$\rho_{1}=\rho_{0}+\Delta \rho_{1} \Rightarrow \theta_{1}=\rho_{1} / R=\theta_{0}+\Delta \theta_{1} \Rightarrow d_{1}=\cos \left(\theta_{0}+\Delta \theta\right)$
$\rho_{2}=\rho_{0}+\Delta \rho_{2} \Rightarrow \theta_{1}=\rho_{2}-R=\theta_{0}+\Delta \theta_{2} \Rightarrow d_{2}=\cos \left(\theta_{0}+\Delta \theta_{2}\right)$
Let

$$
\begin{array}{ll}
A=0.5\left(\alpha_{x}^{2}+\alpha_{y}^{2}+\alpha_{z}^{2}\right), & B=0.5\left(\beta_{x}^{2}+\beta_{y}^{2}+\beta_{z}^{2}\right) \\
C=0.5\left(\gamma_{x}^{2}+\gamma_{y}^{2}+\gamma_{z}^{2}\right), & D=\alpha_{x} \beta_{x}+\alpha_{y} \beta_{y}+\alpha_{z} \beta_{z} \\
E=\alpha_{x} \gamma_{x}+\alpha_{y} \gamma_{y}+\alpha_{z} \gamma_{z}, & F=\gamma_{x} \beta_{x}+\gamma_{y} \beta_{y}+\gamma_{z} \beta_{z}
\end{array}
$$

Substituting this transformation in the above equation, we have :

$$
\begin{aligned}
r^{2}= & A+B+C+A \cos 2 \theta_{0}+B \cos 2\left(\theta_{0}+\Delta \theta_{1}\right) \\
& +C \cos 2\left(\theta_{0}+\Delta \theta_{2}\right)+D \cos \left(\theta_{0}-\theta_{1}\right)+D \cos \left(\theta_{0}+\theta_{1}\right) \\
& +E \cos \left(\theta_{0}-\theta_{2}\right)+E \cos \left(\theta_{0}+\theta_{2}\right)+F \cos \left(\theta_{2}-\theta_{1}\right) \\
& +F \cos \left(\theta_{2}+\theta_{1}\right)
\end{aligned}
$$

(A3)
Substituting for θ_{1} and θ_{2} in terms of $\theta_{0}, \Delta \theta_{1}$ and $\Delta \theta_{2}$, we have:

FIFTH ASAT CONFERENCE

$$
\begin{align*}
r^{2}= & A+B+C+A \cos 2 \theta_{0}+B \cos 2\left(\theta_{0}+\Delta \theta_{1}\right) \\
& +C \cos 2\left(\theta_{0}+\Delta \theta_{2}\right)+D \cos \left(\Delta \theta_{1}\right)+D \cos \left(2 \theta_{0}+\Delta \theta_{1}\right) \\
& +E \cos \left(\Delta \theta_{2}\right)+E \cos \left(2 \theta_{0}+\Delta \theta_{2}\right)+F \cos \left(\Delta \theta_{2}-\Delta \theta_{1}\right) \\
& +F \cos \left(2 \theta_{0}+\Delta \theta_{1}+\Delta \theta_{2}\right) \tag{A4}
\end{align*}
$$

B. DECCA CHAIN RELATIONS

The relation between ρ_{1} and θ is given by :

$$
\begin{equation*}
\rho_{1}^{2}=\rho_{0}^{2}+d^{2}+2 \rho_{0} d \cos \theta \tag{A5}
\end{equation*}
$$

$$
\begin{align*}
\text { but : } & \rho_{1}^{2}=\rho_{0}^{2}+2 \rho_{1} \rho_{0}+\Delta \rho_{1}^{2} \\
\text { so }: 2 \rho_{1} \rho_{0}+\Delta \rho_{1}^{2} & =d^{2}+2 \rho_{0} d \cos \theta^{2} \\
2\left(\rho_{0} / d\right) \cos \theta & =\left[\left(\Delta \rho_{1} / d\right)^{2}-1\right]+2\left(\Delta \rho_{1} / d\right)\left(\rho_{0} / d\right) \tag{A6}
\end{align*}
$$

Let $\quad\left(\rho_{0} / d\right)=\rho \quad$ and $\left(\Delta \rho_{1} / d\right)=\Delta_{1}$
and at the start point $\theta=\theta$

$$
\begin{equation*}
\text { then } \therefore 2 p \cos \theta_{0}=\left(\Delta_{1}^{2}-1\right)+2 \Delta_{1} \rho \tag{A7}
\end{equation*}
$$

iterate by $S=(\Delta p / d)$ then

$$
\begin{align*}
\rho_{k} & =\rho_{k-1}+S \tag{A8}\\
2 \rho_{k} \cos \theta_{k} & =\left(\Delta_{1}^{2}-1\right)+2 \rho_{k} \Delta_{1} \\
2 \rho_{k-1} \cos \theta_{k-1} & =\left(\Delta_{1}^{2}-1\right)+2 \rho_{k-1} \Delta_{1} \tag{A9}\\
\therefore \rho_{k} \cos \theta_{k} & -\rho_{k-1} \cos \theta_{k-1}=S_{1}
\end{align*}
$$

Similar relations are obtained for the other stations i.e.:

$$
\begin{equation*}
\rho_{k} \cos \delta_{k}-\rho_{k-1} \cos \delta_{k-1}=S \Delta_{2} \tag{Al0}
\end{equation*}
$$

References
[1] G.E.Beck," Navigation Systems ", Chap. 4,Van Nostrand Reinhold, London, 1971 .
[2] M.Kayton and W.R.Fried," Avionics Navigation Systems ", John Wiley and sons, New York,1969, Chap.5.
[3] J. Powell," Aircraft Radio Systems ", Chap 6. Pitman, London, 1981,
[4] A.Helfric," Modern Aviation Electronics ", Chap 4 ., Printice-Hall,N.J., 1984.
[5] R.L. Frank, "Current development in Loran C", proc. of IRLL. vol.71, No. 10 October 1983. page 1127-1139.
[6] A.M.Hamad and M.A.Matar,"Operability Improvement of Hyperbolic Position fixing Systems" Proc.of 8-th URSI conf.19-21 Feb. 1991., Cairo , Egypt.
[7] A.A.Mohamed ,A.M.Hamad and M.A.Matar "Towards better Position Fix with Hyperbolic Navigation Systems" 4-th ASAT conf.,14-16 May, 1991
[8] D.Last and C.Scholefield,"Coordinate Conversion Techniques In Microprocessor-based Receivers for Hyperbolic Radio Navigation Systems", Journal of Navigation , Vol.40, pp.81-95,1987.

Fig.l. Genelarized spherical coordinate system

Fig. 2. Generation and intersection of the three planes

Fig.3.Sample Result for S.Arabia Chain

Fig.4. Zero crossing of the Logathimic function

4-6 May 1993, CAIRO

Fig.5.Implementation of the algorithm

Fig. 6. Updatind with least-square filtering

Fig.7.Iteration Algorithm for DECCA System

Fig. 8. Implementation of the algorithm for DECCA System

[^0]: Authors are Staff members of Avionics Dept ,MTC.

