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ABSTRACT 

A unimodal stable adaptive recursive filter is introduced. 
The forward and the backward coefficients are jointly 
optimized such that two different performance indices are 
minimized. The performance criteria are quadratic functions 
of the filter coefficients. Moreover, the filter stability is 
always hyperstable during the adaptation process. This filter 
has less complexity than the direct form structure. 

INTRODUCTION 

The applications of the adaptive recursive digital filter 
(ARDF) in system identification, communication and control 
systems are attractive. This is due to the fact that the ARDF 
can match a physical system of poles and zeros with fewer 
number of coefficients than the adaptive transversal filter. 
Moreover, the recursive filter exhibits better frequency and 
dynamic responses over the transversal one (1,2). However, 
the adaptive recursive filter suffers from tendency to 
instability and the multimodality of the performance 
criterion [1-41. 

In this paper a proposed scheme of a unimodal stable adaptive 
recursive filter is presented. The forward and the backward 
filter coefficients are jointly optimized such that two 
different performance criteria are minimized. The forward 
performance criterion is the mean square error while the 
backward one is the mean square of the error function. The 
error function is derived from the filter error signal via an 
average processing. This scheme is always hyperstable during 
the adaptation process (5-7). 

This paper has seven sections. Section two explains the 
canonical implementation of the recursive filter. The 
unimodal performance criteria are analyzed in section three 
while the adaptation algorithm is illustrated in section 
four. Section five analyses the stability of the proposed 
scheme. Section six presents the evaluation of the proposed 
algorithm through the computer simulation. Conclusions of the 
whole paper are given in section seven. 
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THE CANONICAL STRUCTURE 

Generally, the recursive filter is described by the Mth order 
difference equation which is given by: 

N 	 M 

y = 1 a. 	x . + )1 bj 	y k 	,k k-1 	,k k-j 

i=0 	j=1 

(1) 

where 	aik  ) and { bjk  } are the forward and the backward 

coefficients respectively. Also, 	xk_i } and { yk_j) are the 
input and the output observations respectively. Furthermore, 
the filter structure can be expressed in the z domain as: 

N 

a. ,k z-i  
i=0 

Y(z) 

 

M 	 X(z) 	(2) 

 

1- 	bj,k z 

j=1 
One can rearrange eq. (2) to take the form : 

Y(z) = 	a.1,k z 	W(z) 	(3) 
i=0 

where W(z) is the output of an autoregressive processor that 
is defined by: 

X (z) 

W(z) - 

 

(4) 

 

1 - 	bj,k z-j 

j=1 

It is obvious that the canonical form of the recursive filter 
is well described by equations (3) and (4). 

THE PERFORMANCE CRITERIA 

The mean square error criterion is usually used in the 
adaptive filtering techniques. The output error signal is 
defined as: 
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ek = dk 	Yk 
	 (5) 

where dk is the desired response and yk 
is the filter output. 

The filter output in eq. (3) can be written in time 
representation as: 

N 

Yk = )1ai,k wk-i 
i=0 

Substituting eq. (6) in eq. (5) yields: 

N 

k = dk  - )i a.1,k wk-1 . k  
i=0 

Taking the expectation of the error square , the mean 
square performance criterion, t'k  is defined as (2]: 

k = E[e
2] = E[d2] - 2 AT Pd 	k + AT Rk  Ak 	(8) Ak   

where Akis the forward coefficient vector which is defined 

by: 

A  
T 
k = [a0,k a1,k 	aN,k] 	(9) 

and Pd is the cross-correlation vector that is written as: 

Pd = E[dkWk] 
	

(10) 

where the observation vector Wk is defined as: 

	

Wk 	[wk wk-1 	wk-N]  

The autocorrelation matrix, Rk is defined by: 

Rk = E[Wk k  WT] 	 (12) 

It is clear that is a quadratic function of the forward 

coefficient vector, Ak. Then, differentiating k  with respect 
to Ak and equating the derivative to zero yields: 

-1 
Ak = Rk Pd 
	 (13) 

(6)  

(7)  
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Equation (13) is known as the filter normal equation [1-3]. 
Substituting eq. (1) in eq. (6) and rearrange the resulting 
formula yields: 

N 
	

M 	 M 

6.k  = dk- )i a.1,k xk-1 . - ,k  dk-3 
. + )1 b.

3,k (dk-3 
.-y 

 k-3 .)(14) 

i=0 	3=1 	j=1 
One can write eq. (14) in the form of: 

p
k 

= rk - Bk
T  
 Dk 	 (15) 

where pk  is defined as the error function and it is defined 

by : 

Pk = 6.1c 	Zbj,k 
	 (16) 

j=.1. 
and rk is given as : 

N 

rk - dk - 	a. 	x . 	(17) 1,k k-1 
i=0 

Bk is the backward coefficient vector that is expressed as: 

BT 

	

k = [b1,k b2,k 	bM,k 	(18)  

Moreover, Dk is known as the observation vector of the 

previous desired responses which is expressed by : 

DT = [dk-1 dk-2 k-M 	(19) 

Consequently, the mean square of the error function is 
described by: 

k = E[r
2] -2 BT P + BT H Bk 	(20) 

where the autocorrelation matrix, H is defined as : 

H = E[DkDk] 	(21) 

and Pr is the cross-correlation vector that is given by : 

Pr  E[rkDk] 	(22) 

Differentiating eq. (20) with respect to the backward 
coefficients and equating the derivative to zero yields the 
normal equation for the backward coefficients: 
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Bk  = H
1P 
	

(23) 

THE ADAPTATION ALGORITHM 

The well known least mean square (LMS) adaptation algorithm 
is employed to update the forward and the backward 
coefficients (1,2). The forward coefficients are updated such 

	

that the mean square error, 	is minimized while, the 

backward coefficients are updated to minimize the mean square 
of the error function criterion, rk. The LMS adaptation 

algorithm for the forward coefficients can be expressed as: 

a. 	= a 	+ 2 p ek 1,k+1 	i,k 	8 a 

° ek 

i,k 

	(24) 

	

i=0,1 	 

where p is the step size that controls the adaptation speed 
and the stability of the adaptation algorithm. Substituting 
eq. (7) in eq. (24) the forward adaptation algorithm becomes 

ai,k+1 	
ai,k + 2 	ek wk-i 
	(25) 

i - 0,1 , 	 

Similarly, the backward coefficients are updated according to 
the following algorithm: 	

Pk 
+ 2 p p

k bj,k+1 = bi,k  

 

(26) 
8 bi,k  

Substituting eq. (15) in eq. (26) yields the LMS adaptation 
algorithm for the backward coefficients as: 

bj,k+i  = bi,k  + 2 p pk  dk_j 	(27) 

j=1,2 	 

THE FILTER STABILITY 

The stability of the canonical structure is ensured according 
to the hyperstability theorem [6,71. Equation (14) can be 
represented diagrammatically by an unforced nonlinear 
feedback system as shown in Figure 1. The forward loop 
transfer function G(z) is defined by: 
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G(z) - 

 

(28) M 

1 - y., b
j,k 

j =1 

It is clear from eq. (16) that the error function , pk is 
generated from the error signal, 	via an average processor 

whose coefficients are identical to the filter backward 
coefficients. consequently the resultant forward loop 
transfer function will be unity which is always positive real 
for all z. Hence, the error function, pk  tends to zero as k 

tends to infinity and the filter stability is always ensured 
according to the hyperstability theorem [6,7). 

SIMULATION RESULTS 

The proposed canonical form of the adaptive recursive filter 
is demonstrated in Fig. 2. The performance of the proposed 
scheme is evaluated in the transient and the steady state 
modes when the filter is utilized in system modeling. 
The model in this paper is represented by a second order 
transfer function as: 

1-1.8z-1+1.1 z-2 

H(z) - 

  

(29) 
1-1.2 z-1  +0.6 z-2 

The adaptive filter order is chosen to be identical to 
model system. The input signal is chosen to be a white 
with a zero mean. 
The transient response is described by the learning curve 
illustrated in Fig. 3. It is clear that the filter 
to - 50 db after 10000 iterations. 
The steady state response is explained by the 
square error of the misalignment vector 
coefficients after convergence . The residual mean square 
error is -200 dB after 30000 iterations. Moreover, the filter 
coefficients converge to the same values as those of the 
model. Table 1 demonstrates the steady state values of the 
filter coefficients. 
Furthermore, it is found that the proposed filter has 
same computation requirements (2 N + 3 M operations) as 
SHARF filter that is presented by Larimore and the others 
[6]. Moreover, the proposed algorithm requires a 
memory storage than the SHARF algorithm. In addition 
precedings, the output mean square index , 	is a 

function and has a unique optimal solution while that of the 
SHARF one is a multimodal function which has local minima in 
addition to the global minimum solution. 
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CONCLUSIONS 

The proposed canonical structure of the adaptive recursive 
filter has a unimodal error surfaces and it is always 
hyperstable which overcomes the main drawbacks of the direct 
form structure. The least mean square adaptation algorithm is 
derived to update the forward and the backward coefficients. 
The proposed algorithm can be implemented efficiently in real 
time with moderate complexity using the available digital 
signal processors. 
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Fig.1 The unforced feedback system 
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Fig.2 A unimodal adaptive recursive filter 



FIFTH ASAT CONFERENCE 
4 — 6 May 1993, CAIRO CM-1 437 

60 

0 

-50 

-100 

a 	10 	15 	20 	25 

Iteration number (Thousands 
30 

c. 

0 

Fig. 3 The learning curve of the adaptive recursive filter 

Table 1 The forward and the backward coefficients of the adaptive 

recursive identifier after 28888 iterations 

Coefficient Model Identifier 

ac 1.0 0.999999 

al -1.8 -1.8 

a2 1.1 1.1 

bt  1.2 9.2 

ba -0.6 -8.59999 
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