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ABSTRACT 
Image data compression is used to reduce the transmission rates or the 

amount of informatipn to be sent or stored without greatly affecting the 
quality of the reconstructed images. Many techniques, such as vector 
quantization, have been used in'order to satisfy these requirements. Using the 
neural network techniques, rather than the traditional technique in this 
subject decreases the loss of image information and hence enhances its quality 
specially at low bit rates. 

Some of the neural network models proposed for image data compression 
still have some defects specially, when the actual images are not included in 
the training phase of the network. 

In this paper a new training set is proposed to be used in the training 
set of the Kohonen self-organizing map when it used in image data compression 
applications to increase its efficiency. This proposed training set is 
statistically dependent with all images independent of their types. A 
predictive vector quantization using both Kohonen self-organizing map and the 
adaptive differential pulse code modulation with the linear neural network 
predictor is also introduced.  

The simulation results':this paper show that the performance of the 
proposed techniques is much better than that used by others. 
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I. INTRODUCTION 

Digital coding of information is motivated 
by the need to compress 

information to improve the used rates of exiting 
transmission and storage 

devices without degrading the information quality 
after the coding process. 

Many techniques are used t reduce transmission rates by reducin 	the redundancy or the correlation within the image 
pixels and then this

g 
  new smaller uncorrelated set of data is 

transmitted. One of the effective 
techniques in image data compression is vector 

quantization (VQ) [1] . Vector quantization has been broadly considered for some 
coding in many digital 

communication systems due to the drastic bit 
rate reduction that it can 

achieve, while preserving image quality [ 2] . VQ 
is actually quantizing not 

just the parameters to be transmitted independently 
from each other, but a 

vector of them. VQ algorithms are then used to split 
the N-dimensional vector 

space to be quantized into L clusters and to choose 
the best representative 

codeword for each cluster. The codeword of this cluster 
is then transmitted. 

The receiver will take this codeword as a reproduction 
value of the original 

input vector X. Obviously, there will be an error between 
the original input vector and the reconstructed one, but, if the 

number of levels of the 
quantizer is controllable, and if it has been 

designed considering some 
distortion constraints, this error will be so small 

that it fulfills our needs. 

In order to achieve much less error, the 
codewords of the vector 

quantizer must be chosen perfectly. Vector Quantization 
algorithm may be based 

either on a known probabilistic distribution model 
of the data, or on a large 

training sequence of representative data. In most 
cases, no probabilistic 

model can be assumed because of the difficulties that 
it implies [ 3] 	and therefore, the second approach must be used. 

The more codewords of VQ the better chance 
to choose the best 

representative one for each cluster and therefore 
the less error will be. This 

is in the cost of the compression ratio, since 
the compression ratio is 

inversely proportional to the number of codewords. 
The generation of the 

codewords using the traditional methods is a slow and complex 
process. The neural network based systems seem to perform better than traditional 

vector quantizations in image data compression 
applications. A model for image 

data compression using neural networks in the sense of vector quantization was 
proposed in [4] ,[ 5] . They have used the self

-organizing map proposed by T. 
Kohonen [6] as a vector quantizer in image data compression. They have trained 
the network on a set of patterns chosen from the operational service images. 
The main disadvantage of these networks is that, the performance of the system 
degrades for images that are not statistically consistent 

with those used during training [7] . 

For this reason, a new methodology for selecting the training data 
set is proposed, the proposed training set is chosen from 

a limited number of patterns, mainly, consistent with any image such 
that, the Kohonen self-

organizing map can perform well for all images independent of their statistical 
properties. The training set consists of 

2N  equiprobable disjoint subimages which is the same number as that of the 
available gray levels, where N is the 

number of bits used during transmission. The 
size of each subimage is chosen t be MxM, her M cn take the 	lue 2, 4, or 8. Al 	Um pixels of each subi

o 
 mage have

w 
 the

e 
 same

a 
 gray 	

va
therefore there are

l 
 2 	blocks each carry only one gray level from the 2 gray levels set. 

Using the proposed training set in the training of the network, the 
network responses much better than other methods for the images which are not 
used during the training process in terms of the compression ratio. 

A hybrid system, which is composed of both the vector quantization and 
the adaptive DPCM systems, is also used for much higher compression 

ratios. 
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2. VECTOR QUANTIZATION USING WHOM SELF-ORGANIZING MAP 
The Kohonen self-organizing 

map is a feedforward neural network with two 

layers as shown in Fig.(1). 
The first is the input layer which is fed by a set 

of subimages. Therefore, this layer 
consists of a number of neurons equal to 

the number of pixels in each subimage. The second 
layer is the best 

matching-score layer which activate 
the winner of all patterns. The inputs to 

this layer are received from 
the outputs of the input layer directly. In the 

network proposed in [ 5] , the image is 
divided into blocks of a fixed size nxn. 

Then, these subimages are used during training 
of the network. When the 

network is fed repeatedly by the input patterns, 
a spatial ordering in the 

weight vectors takes place corresponding to the input 
pattern. The spatial 

extent of this ordering process is usually 
limited to a finite number of 

surrounding nodes to the winner node [9] . 

Output 

         

  

Maximum network 

    

      

 

 

Fig.(1). The self-organizing map 

At each learning step, all 
the neighbors to the winner node are updated 

such that 

wk(i) 4- cik ( Xk(i)  
i e Nk

(c) 

(1) 

wk+l(i) 
 

wk(i)  

where w ,l(i) and wk(i) are 
the next and the current weight values 

k   

respectively, xk
(i) is the current input value, and 

skis the adaptation 

factor. The neighbors are set initially to cover the whole network 

then, it shrinks with the time. The ak 
 is also chosen to 

be a monotonically 

decreasing function of time. 

A fine tuning process is then required to 
improve the classification 

accuracy of the network. When the learning is completed, 
the weight vectors 

form the centroids of the partitioning of the input 
vector spade [ 9] . When 
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encoding an image, the codewords of the weight vector corresponding to the 
best matching vectors are stored. The more nodes in the second layer the more 
codewords of the network and the better classification performance is 
obtained, but the less compression ratio will be. The main disadvantage of 
this network is that it is greatly oriented to the images used during 
training, such that the classification performance of the system degrades for 
images that are not statistically consistent with those used during training. 

3. THE SELF-ORGANIZING MAP WITH A SPECIAL TRAINING SBT 
A special training set applied on the Kohonen self-organizing map is 

proposed to overcome the problem of orientating the weight vector of the 
network to the images which were used during training while misclassifying 
those which have not been used in the training process. 

3.1 Training the Map With a Special Constructed Set 
The training phase is critical in any neural network design because the 

training is largely influenced by the input vectors, the order of their 
selection, the rate of decrease of the adaptation parameter ak  and 
neighborhood size, and the topological formation of the output nodes [5] . As 
indicated above, the selected training set of data from some images makes the 
network orient to them such that the network may fail in recognition with an 
acceptable performance when it is used in service with an operational images 
which do not belong to the training set. 

For this reason, a new methodology fog selecting the training data set is 
proposed. The training set consists of 2 	equiprobable disjoint subimages 
which is the same number as that of the available gray levels, where N is the 
number of bits used during transmission. The size of each subimage is chosen 
to be MxM, where M can take the values 2, 4, or 8. Al] ,MxM pixels of each 
subimage have the same gray legel, therefore there are 2" blocks each carry 
only one gray level from the 2 gray levels set. 

The input vector of the training pattern, which consists of MxM 
components with essentially normalized values from 0 to 2-1, is presented at 
the input of the first layer of the network. The network incorporating the 
Euclidean distance between the input vector X and the weight vector W as a 
measure of similarity results in an acceptable accuracy of classification as: 

II X- W(c) II = mini( II X- W(i) 11 ) 	(2) 

where w(c) is the weight of the winner and w(i) is all the rest weights of the 
map. 

The input vector is used to organize the corresponding feature map. The 
weights are then adapted according to equation (1). Another input vector is 
then presented at the input of the network and the process is then repeated. 
The selection of the vector X from the training patterns takes place randomly 
until all 2 patterns are presented to the network then, the same set is used 
again and the process continues. The training continues until all weight 
vectors of the feature map converge to their final values and the training 
patterns are correctly separated. The set of weight vectors is then 
approximates the probability density function of the input vectors as a result 
of using the adaptation formula in equation (1) [6] . 

3.2 Fine Tuning of the Network 

Initialization of weights with values chosen from an actual training set 
can also be done [ 6] . There can be a problem if some weights are initialized 
with values which are not representative of the training data. In this case, 
some nodes never win a competition and therefore are useless. In the fine 
tuning process, the learning rate a must start with a small value, say 

	0.02, 
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and decrease with time until it reaches zero by the end of the fine tuning 
process through a number of steps say 100,000 steps [4] . It can be seen from 
experimental results that, actual fine-tuning learning takes place in less 
than 1000 samples [9] . Further training will result in smoother textures. 

3.3 Actual Image Classification 
Once the network is trained, the weight vector will be the desired 

codewords of vector quantization and the position of each of them in the map 
has to be encoded. During the encoding process, an input vector representing 
the pattern is entered to the network and the weight vector which corresponds 
to this input pattern is then stored. Each output corresponding to each input 
will be known to the transmitter as well as the receiver and will be stored as 
fixed search-table. Upon this encoding process, the network is then ready for 
operational service. Each of the actual images is divided into subimages of 
the same size as those of the training patterns. These subimages are fed 
sequentially into the network. 

The code which represents the number of the best output node which 
consequently represents the input vector X, is then transmitted instead of 
transmitting the vector X. At the receiving end, the decoder has a table of 
weight vectors W, each defines its respective equiprobable subset. The decoder 
then emits the vector W as a substitute for the original vector X. The error 
made by the system is the distance between the vector X and the subset 
representation vector W. 

4. THE ADVANTAGES OF THE PROPOSED TRAINING SET. 
The proposed training set for .Kohonen self-organizing map as a vector 

quantizer bandwidth compression system has a number of good characteristics. 
First, the subsets are equiprobable and thus adjusted to the statistics of the 
X vectors. This fact makes the transmitted codewords equiprobable, which is a 
property of any good code. Second, they can be applied on virtually any type 
of data that is normalized between zero and one. Third, vector quantizer makes 
the quality of the image tend to degrade gracefully as the number of bits, N, 
is reduced. This offers the possibility of building systems with high 
compression ratios in situations where transition fidelity can be sacrificed. 
The simulated results will show the performance improvement of the map using 
the proposed training set. 

5. PREDICTIVE VECTOR QUANTIZATION 
The transmitted codewords can be further compressed. Since these 

codewords are correlated with each other, then using any of the waveform 
compression techniques, for example the adaptive differential pulse code 
modulation (DPCM), will satisfy these requirements. Instead of sending these 
codewords directly, they can be entered as inputs to the adaptive DPCM system 
using the linear neural network predictor as in [8] with only one bit per 
pixel achieving a very high compression ratio with an acceptable SNR. Then, 
the output of the adaptive DPCM system is sent through the communication 
channel. 

6. COMPUTER SIMULATION AND RESULTS;  

The Kohonen self-organizing map, like any other neural network operates 
in parallel. But since there is no available hardware chip, the neural network 
structure can be simulated on a sequential computer and the proposed training 
algorithm can be applied on it. The adaptation factor ak  in equation (1) 	is 

set to be 0.5 at the beginning of the training process [9] , whereas it starts 
with the value 0.002, in the beginning of the fine tuning process. It has been 
chosen to decrease linearly with time till it reaches zero by the end of the 
fine tuning process according to the formula: 
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ak r 0'5  [ 1  - jr 1r-  ] 

	
(3) 

where T is the total number of training steps. The values of the weight vector 

are initialized to a small different random values. The network will not 

behave well if the initial weight vector values are not different [6] . Each 

subimage of the proposed training set is applied at the input of the map. The 

network selects the winner node of the output, Then, the adaptation of the 

network according to equation (1) takes place. Another subimage is then fed 

into the input of the network and the process continues till the separation of 

the weights takes place. 
The adaptation process of the neighbors of the winner node has been 

chosen to be applied at the beginning on the whole network and then shrink 

linearly with time. It is even possible to end the process with adapting the 

best winner node only. The images of size 512x512 with 256 gray levels are 

used. But, since we have a restricted number of gray levels which depend on 

the display adapter (in our case, it was a VGA card with 64 gray levels), the 

images are quantized into only 64 gray levels. The blocks of sizes 2x2, 4x4, 

and 8x8 representing the actual subimages were used each in a separate run. 

Upon stopping the adaptation process, each subimage is presented at the input 

of the network and the network will choose the winner of all nodes and send 

its codeword to the receiver which searches for the corresponding subimage to 

this codeword in its table. 
Fig.(2) to Fig.(4) show the response of the Kohonen self-organizing map 

with the proposed training set when it is applied on a wide range of images. 

these images were chosen perfectly to be high-contrast images carrying much 
details and sharp edges. The performance of the proposed predictive vector 
quantization system is also shown. The corresponding compression ratios and 
signal to noise ratios are indicated on these figures. 
Fig.(2-a) shows the original Lenna picture. This picture caries much details 

and a wide range of gray levels. Fig.(2-b) shows the reconstructed image using 
the Kohonen self-organizing map with the proposed training set when the size 

of the subimage is 2x2. This reconstructed image achieves a compression ratio 

of 4, and the SNR is 22.2 dB. 
Note that, the performance of the network, when it uses the training set 

extracted from actual images, is better than that of the network when it uses 
the proposed training set if the reconstructed image was one of that used 
during training. The SNR of the reconstructed image of Lenna picture when the 
original picture is used during training is 25.6 dB [5] . Whereas, the network 
performance degrades greatly if this image was not one of those used in the 
training process, unless the picture has the same characteristics as the 
pictures used in the training process. When this image is statistically 

independent of those used during training, a loss of up to 10 dB in the SUR 

for these images is reported [ 10] . This will not occur if the network uses the 
proposed training set, since the network will treat all images almost the 
same. This is clear in the next reconstructed images. Fig.(2.c) shows the 

reconstructed image using adaptive DPCM, when the predictor proposed in [ 8] 

with one bit per pixel applied on the image in Fig.(2.b), achieving 

compression ratio of 32 and the SNR = 20.28 dB. The error between the final 

reconstructed image in Fig.(2.c) and the original image in Fig.(2.a), is shown 
in Fig.(2.d). Note that, in spite of the high compression ratio achieved in 

this reconstructed image, both the SNR and the visual appearance of it are 

considerably acceptable. This appears 'clearly in the error between the 
original and the reconstructed image. The error concentrates mainly at edges, 
but it can be eliminated to a great extent if a suitable low pass filter is 

used. 
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Fig.(3) shows the response of the Kohonen self-organizing map when it is 
applied on larger block sizes. Fig.(3.a) shows the original Lynda picture. 
This picture contains the face features as well as wide areas of the same gray 
levels. Fig.(3.b) shows the reconstructed image when the block size is 2x2 
with a compression ratio of 4 and the OR is 25.54 dB. Fig.(3.c) shows the 
response of the map when it is applied on 4x4 block-size subimogen. The 
compression ratio increased to 16 but the SNR decreased to 19.93 dB. This 
decrease in SNR is acceptable for the corresponding increase in the 
compression ratio. The blocking effect appears in this Figure can easily be 
extracted using a suitable low pass filter. An example of this process is 
.shown in Fig.(3.d), where the averaging low pass filter with a window of size 
3x3 is applied on the image shown in Fig.(3.c). The adaptive DPCM using the 
linear neural network is applied on the images in Fig.(3.b) and Fig.(3.c). 
Fig.(3.e) and Fig.(3.f) show the reconstructed images with only one bit per 
pixel with SNR 23.56 dB and 17.53 dB and compression ratios of 32 and 128 
respectively. 

More compression ratio can be obtained if the block size is increased to 
8x8. The compression ratio in this case is 64 but the SNR, produced for the 
reconstructed Lynda picture using 8x8 block-size subimage shown in Fig.(3.11), 
is 15.59 dB. Note that, in spite of the acceptable SNR for this compression 
ratio, the features of this reconstructed image began to disappear and the 
blocking effect appears clearly. Block sizes of 8x8, or larger, are used only 
in case of a wide area of the same gray level. 

From all the above reconstructed images it has been seen that the visual 
appearance of the reconstructed images of the self-organization map using the 
adaptive DPCM system with the technique proposed in ( 8) as well as the SUR 
were not greatly affected, while the compression ratios increased by a factor 
of 8. 

Fig.(5) shows the relation between the compression ratio and the SNR when 
both vector quantizer of Kohonen self-organizing map with the proposed 
training set is used alone and when the adaptive DPCM with the linear neural 
network predictor is applied on its output codewords. The relation indicates 
that, using this predictive vector quantization technique performs much better 
than using vector quantization only'since the adaptive DPCM can extract the 
correlation between codewords of vector quantization. 

7. CONCLUSION 
In this paper a proposed training set for Kohonen self-organizing map was 

introduced. Then, this map with the proposed training set was used in image 
data compression as a vector quantizer. The reconstructed images when Kohonen 
self-organizing map with the proposed training set was used, show that, the 

• performance of the network from the signal to •noise ratio as well as the 
visual appearance points of view is much better than that of the network when 
the training set was extracted from the actual images if the used image was 
not one of those used during training. 

The predictive vector quantizer, which is a hybrid system of both the 
vector quantization and the adaptive DPCM systems, was achieved. In this 
system, the adaptive DPCM system with the linear neural network predictor is 
applied on the codewords of the vector quantizer of Kohonen self-organizing 
map when the proposed training set is used. 

Using this hybrid system, the overall performance was greatly improved 
over that if either the vector quantization or adaptive DPCM is used 
individually. The signal to noise ratio improvement in the proposed predictive 
vector quantization is in the order of 4-c dB over each of vector quantization 
and the adaptive DPCM systems. This is a good improvement in the performance 
of image data compression systems. 
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ABSTRACT 
The Fast Fourier Transform (FFT) is frequently used in various fields of science and 
engineering such as tomography, speech recognition, image processing, digital signal 
processing, coding theory, etc. There are many versions of the FFT algorithms which are 
cononic. The most powerfull versions are based either on the Cooley-Ttikey algorithm or on 
the Sande-Tukey algorithm. Also, the Radix-2 is most common in the applications of the FFT 
algorithms. Therefore, the parallel implementation of the FFT is considered very important 
for minimizing the execution time. This implementation should be on a parallel architecture. 
This paper describs a parallel implementation of the Radix-2 FFT using a transputer array as 
the underlying parallel architecture and the developed code is written in OCCAM language 
where the partitioned algorithm is used in this implementation. The Radix-2 FFT is 
implemented using three methods. These are; the single track method, the double track 
method and the overlapping method. Results for a variety of different number of data samples 
and number of processes are included in this paper. Comparisons are made among the three 
methods with the sequential one from the speed up points of view. 

1- INTRODUCTION 
High performance computers are increasingly in demand in many areas of computer 
applications such as engineering design and automation, energy resources, medical fileds, 
artificial intelligence, remote sensing, military and basic research areas [1],[2]. For higher 
throughput and ability to handle very large amount of data, the parallel processing should be 
used. However, there are three fundamental techniques to express parallelism. These are; 
pipelined algorithm, partitioned algorihm and relaxed algorithm [2]. The choice of any of 
these techniques depends on the features and characteristics of the applications, as well as on 
the type of the underlying parallel architecture. More details about parallel architectures and 
parallel processing can be found in [1], [3], [4] and [5]. 
On the other hand, the transputer based systems are considered to be MIMD (Multiple 
Instruction Multiple Data stream) machine. The transputer [6] is a single-chip microprocessor 
(we can say, it is a microcomputer). It has a processor, a memory and four links to connect 
one transputer to others, all in a single VLSI chip. Many versions of transputers have been 
produced, such as T212 16-bit processor, T414 32-bit processor and finally T800 32-bit 

* Dept. of Computer Science & Eng., Faculty of Electronic Eng., Menoufia University, 
Menouf 
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processor with 64-bit floating-point processor as shown in Fig. (1). The T800 transputer is the 
avaiable type in our faculty and the parallel implementation of the FFT has been devloped 
using it. A transputer array can be easily constructed by identical transputers in fixed or 
reconfigurable topologies [6]. On the other hand, the OCCAM language reflects the way in 
which transputers are constructed to be multiprocessor systems [6]. Programming in 
OCCAM [7] enables an application to be described as a collection of processes, where such 
processes can be executed concurrently, and communicate with each other through soft or 
hard channels. More detials about transputer and it's OCCAM language are found in [8], [9], 
[10] and [11]. On the other hand, the Fourier transform is used in many fields of science and 
engineering. The Discrete Fourier Transform (DFT) is easy to implement on digital 
computers and has wide applications in the areas of speech transmission, coding theory, 
image processing and digital signal processing [12]. The Fast Fourier Transform (FFT) is a 
computer algorithm which has been devloped to compute the DFT using minimum number of 
operations, then it reduces the computing time. The Radix-2 FFT goes back to Runge and 
Koeing in 1924 and Stumpff in 1937 but nobody has noticed that because of the way they 
were described. In 1965 Cooley and Tukey published the first definitive paper in this subject, 
which was titled as "An algorithm for machine calculation of complex fourier series". The 
work in this paper presents an implementation of Radix-2 FFT on N.2n  data points using 
P=2m  processes executed in parallel on T800 transputer. The Radix-2 FFT is implemented 
using three methods. These methods are; the single track method, the double track method 
and the overlapping method. 

2- THE FAST FOURIER TRANSFORM 

The Discrete Fourier Transform (DFT) can be expressed as 

N-1 

X(n) = 	x(k) Wn 	; n=0,1„N-1 	 (1) 
k=0 

Where N= Number of complex data points, and 
W= exp (-j2n/N). 

The direct computation of this equation requires N2  complex multiplications and N(N-1) 
complex additions. When N is a power of 2, there is more efficient method known as the 
Radix-2 Fast Fourier Transform (FFT) that can be used instead. The Radix-2 FFT requires 
only (N/2)LOG2(N/2) complex multiplications and (N/2)LOG2N complex additions. The 

computation of Radix-2 FFT is broken into butterflies [13]. When N=211, the computational of 
Radix-2 FFT consists of n stages or computation levels with each stage consists of N/2 
butterflies. Each butterfly consists of two data points. To compute the butterfly; the weighting 
factor Wn  is generated first and then multiplied by the two data points to get the butterfly. 
Thus, each butterfly consists of one multiplication, one addition and one subtraction. There 
are many versions of the FFT algorithms which are canonic. The most powerful algorithms 
are the Cooley-Tukey algorithm and the Sande-Tukey algorithm [12]. Each algorithm can be 
implemented in two modes; in the first mode the initial data is in natural order (so the output 
data is in reversed-bit order) and in the second mode the initial data is in bit-reversed order 
(so the output data is in natural order). 
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3- HARDWARE FOR PARALLEL IMPLEMENTATION OF 
THE FFT 

The hypercube topology is considered the best known topology for the parallel 
implementation of the FFT [14]. On the other hand, the transputer provides four 
communication links to construct the network. These links provide communication with up to 
four transputers which make it easy to develope a parallel architecture with any number of 
transputers. In this work, the transputer array constructed as a hypercube network is used to 
implement the FFT algorithm in parallel. This hypercube network for the FFT implementation 
is proposed by Khan and it's known as Khan's FFT engine [14]. The Khan's FFT engine for 
various dimensions is shown in Fig. (2). Because only one T800 transputer is available for the 
authors, we have implemented the parallel Radix-2 FFT with the parallelism on the processes 
level not on processors level. Because of the structure of the OCCAM language, the 
implementation on transputer array can be done by using the same code of the 
implementation on a signle transputer but with some changes only in the mapping 
declarations. 

4- SERIAL IMPLEMENTATION OF THE RADIX-2 FFT 
The Radix-2 FFT using the Cooley-Tukey and the Sande-Tukey alogrithms has been 
implemented in serial. Each algorithm can be implemented in two modes; one mode with the 
initial data is in natural order (so the output data is in reversed-bit order) and the second mode 
with the initial data is in bit-reversed order (so the output data is in natural order). The 
implementation of the two algorithms are the same, the only difference between the two 
algorithms is in the computation of the butterflies. In the case of Cooley-Tukey butterfly, the 
weights are multiplied before the application of 2-point DFT, while the weights are multiplied 
after the application of 2-point DFT in the case of Sande-Tukey butterfly. The realtion 
between the two butterflies is described in equation (2). 

XO = x0 + x1 Wk X0 = ( xo  + xi  ) Wk 

X1 = ( xo 	x1 ) Wk 
X1 = x0 - x1 Wk 

(a)Cooley-Tukey butterfly 	 (b) Sande-Tukey butterfly 

Comparison between these two algorithms has been made, it clears that the computation time 
of the Cooley-Tukey algorithm is faster than that of the Sande-Tukey algorithm because of 
the recursive generation of the weights. The comparision between these algorithms is shown 
in Fig. (3). 

5- PARALLEL IMPLEMENTATION OF RADIX-2 FFT 

The parallel implementation of Radix-2 FFT depends upon the distribution of data among the 
processes or the sequence of computations. There are three methods have been used to 
implement the Radix-2 FFT in parallel. These methods are; the single track method, the 
double track method and the overlapping method. 

(2) 
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5.1- The Single Track Method 

In this method, the vector of data x of length N=2n  (n is an integer) is distributed among 
P=2m  (m is an integer) processes. By using consecutive storage technique, the first N/P data 
points are split into the first process and the second N/P data points are split into the sceond 
process and so on. The mapping of data vector of length N=16 (when the input data is in 
natural order or in bit-reversed) among P=4 processes is described bellow in table 1. 

Table 1 Mapping of 16 data points among P=4 processes in the single track method. 

PROCESSES 
PO P1 P2 P3 

(1 

[
  

-71-  
in

 
∎.
0

 S
 

8 12 
1 9 13 
2 10 14 
3 11 15 

a) Mapping of natural order data 

PROCESSES 
PO P1 P2 P3 

0 2 1 3 
8 10 9 11 
4 6 5 7 
12 14 13 15 

B) Mapping of bit-reversed data 

When the FFT of N=2n  data points is computed on P=2m  processes (where n> m), the 
algorithm consists of n stages with each stage consists of N/2 butterflies. For the n stages, 
there are m stages with each butterfly in these stages is distributed among two processes 
where communication between them is needed to compute this butterfly. Therefore, these m 
stages are called distributed stages because they need communication between the processes. 
The rest (n-m) stages are called local stages because the butterfly in each stage is held by only 
one process. Hence, each process can compute part of the rest (n-m) stages without 
communication with any other processes. The single track method has many disadvantages. 
The first one, an extra buffer of the same length of data vector x is needed for the 
communication between processes in the distributed stages. The second disadvantage is the 
imbalance of workload between the processes which computes the butterflies. The last 
disadvantage is that each process in the network is in either communication mode or 
computation mode. Because the capability of the transputer to communicate and compute 
simultaneously, it can possible to make use this capability in improving the implementation. 
This will be explained later. The comparision between the Cooley-Tukey and Sande-Tukey 
algorithms for P=4 processes is shown in Fig. (4). 

5.2- The Double Track Method 

According to this method, the data vector x of length N is divided into two equal halves to 
form subvectors xl and x2. The first subvector xl is distributed among the P=2m  processes as 
in the single track method. Similarly, the second subvector x2 is distributed among the P 
processes. The mapping of natural order and bit-reversed data for N=16 is described in table 
2. As in the single track method, there are n stages with each stage contains N/2 butterflies. 
These n stages consists of m distributed stages and (n-m) local stages. In the distributed stages 
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when the data is in natural order, each process computes, in parallel, it's porition of distributed 
butterflies and then exchanges it's lower or upper half data with the appropriate process. 
Since, the communication occurs after (or before) the computation depending upon the order 
of the data being computed. Therefore, there is no need for extra buffering as in the case of 
single track method. The load balance between the processes has been improved because each 
process has to compute it's own porition of distributed butterflies. The computation time of 
the double track method is less than that of the single track method because there is no need 
for extra buffer for communication and the better load balance between the processes. The 
comparision between the Cooley-Tukey and Sande-Tukey algorithms is shown in Fig. (5). 

Table 2 Mapping of 16 data points among P=4 processes in the double track method. 

PROCESSES 
PO P1 P2 P3 

0 2 4 6 
1 3 5 7 
8 10 12 14 
9 11 13 15 

a) Mapping of natural order data 

PROCESSES 
P1 P2 P3 

0 2 1 3 
8 10 9 11 

4 6 5 7 
12 14 13 15 

B) Mapping of bit-reversed data 

5.3- The Overlapping Method 

The overlapping method depends on the overlap of the computation and the communication 
in each process. According to this method, the data are distributed among P processes as in 
the case of the double track method. Then, the data in each process preprocessed such that it 

is divided into 2H (where H is an integer) data hops. As an example, the data preprocessed 
such that it is divided into two data hops (H=1) for N=32 on P=4 processes is shown in table 
3. During the distributed stages, all processes computes it's porition of butterflies for the 0th 
data hop. Then, when each process computes the butterflies for 1st data hop, it also exchanges 
the data of 0th data hop in the same time and so on. At any time, each process computes the 
FFT of the (i+1) data hop and exchanges the data of i hop simultaneously. At last, each 
process exchanges the data of the (2H-1) data hop. At this point, we must note that the 
transputer is the only processor which has gotten the possibility for implementing 
computations and communications simultaneously. Accordingly the overlapping method can 
be implemented on transputer. The comparision between the Cooley-Tukey and 
Sande-Tukey algorithms is shown in Fig. (6). 
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Table 3 Preprocessed data for N=32, H=1 and P=4 processes. 

PROCESSES 

CA-4 502 

PO P1 

0 4 
1 5 
2 6 
3 7 
16 20 
17 21 
18 22 
19 23 

P2 P3 

8 12 
9 13 
10 14 
11 15 
24 28 
25 29 
26 30 
27 31 

Initial data 

PO 
	

P1 	 P2 
	

P3 

 

1-hop 2-hop 

  

1-hop 2-hop 

 

0 

1 
16 
17 

 

2 
3 

18 
19 

   

4 
5 

20 
21 

 

6 
7 
22 
23 

 

         

           

           

1-hop 2-hop 

12 14 
13 15 
28 30 
29 31 

Data after preprocessed 

6- THE RESULTS 

From our expermintal results of the execution time, it has been noticed that the double track 
method is better than the single track method because it overcomes the load imbalance 
between the processes and does not need extra buffer for communication which has happened 
in the single track method. Also, the execution time of the overlapping method is shorter 
relative to the double track method because it overlapes the computation and the 
communication operations, while in the single track method and the double track method 
each process could be in only computation mode or in only communication mode. On the 
other hand, The best execution time in the overlapping method is obtained when the number 
of data hops is minimum. This is due to the communication latency. The comparision of the 
serial implementation of the Radix-2 FFT and the three parallel algorithms is dipected in Fig. 
(7) and Fig. (8). 
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7- CONCLUSIONS 
By using the transputer and it's OCCAM language, we can easily construct a parallel 
architecture from a collection of transputers which operate concurrently and communicate 
through their links. This paper describes the parallel implementation of the Radix-2 FFT on 
the transputer array. The T800 transputer array is used simulated on one transputer (which is 
available) as the underlying parallel architecture. On the other hand, the Radix-2 FFT has 
been implemented using three methods. These methods are; the single track method, the 
double track method and the overlapping method. Comparisons are made among these three 
methods and the serial algorithm. It can be concluded from our comparision that the 
overlapping method is much better from the execution time point of view relative to the other 
methods. Also, it has been made clear that the overlapping method can be implemented only 
on transputers. Finally, we can state that using the transputers as the underlying parallel 
architecture is considered to be the best one for implementing the FFT algorithms in parallel. 
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a) 4 transputers (2-dimensional) Khan's FFT engine connected with the host. 

b) 8 transputers (3-dimensional) Khan's FFT engine connected with the host. 

 

Host 

c) 16 transputers (4-dimensional) Khan's FFT engine connected with the host. 

Fig. (2) Khan's engines FFT of various dimensions connected with the host. 
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Fig. (3) The execution time of the Radix-2 FFT using four serial algorithms. 

No. of data points N 
Fig. (4) The execution time of the Single Track method of the Radix-2 FFT 

using four algorithms and P = 4 processes. 
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Fig. (6) The execution time of the Overlapping method of the Radix-2 1-1-1 
using four algorithms and P = 4 processes and number of data Hops = 2. 



FIFTH ASAT CONFERENCE 

4 - 6 May 1993 , CAIRO 

0 	 10000 	 20000 	 30000 

No. of data points N 
Fig. (7) Comparsion between Radix-2 serial algorithm and parallel algorithms 

(for p = 4 processes) for Cooley-Tukey (Natural Order Inputs) technique. 
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Fig. (8) Comparsion between Radix-2 serial algorithm and parallel algorithms 
(for p = 4 processes) for Sande-Tukey (Bit-Reversed Inputs) technique. 

E
xe

cu
tio

n  
tim

e  
(  

m
  s

ec
.  )

  
E

xe
cu

tio
n  

tim
e  

(  
m

  s
ec

.  )
  

40000 

40000 30000 

CA-4 508 

8000 
Serial algorithm 
Single Track 
Double Track 
Overlapping (No. of data Hops = 2 ) 6(X)0 - 

4000 - 

2000 - 

0 


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22

