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A REALISTIC CONTROL AND STABILISATION STRATEGY FOR 

DAMPING POWER SYSTEM OSCILLATIONS 

** 	 *** 
F. Bendary , Medhat El-Singaby , F.A. Khalifa 

ABSTRACT 

This paper describes the application of a realistic proposed 

control strategy with feedback excitation together with those of 

conventional power system stabiliser (P.S.S.) and linear optimal 

control (L.O.C.). Digital simulation results have been obtained 

using a single machine infinite bus power system dynamic model. 
The results presented in this paper show that the application of 

the proposed technique leads to accurate solution, utilising a 
considerable computer time and less core requirement w.r.t. P.S.S 

and L.O.C. techniques. 

INTRODUCTION 

Power systems having long transmission distances often exhibit 

low frequency power oscillations. The problem known as dynamic 
instability may also be associated with fast acting high gain 
excitation systems. To overcome these low frequency oscillations 

power systems are equipped with supplementary excitation controls 

which are commonly referred to as power system stabilisers 

(P.S.S.) [1]. The input to these P.S.S. are normally the freque-

ncy, the rotor speed or electrical power output. 

Considerable emphasis has also been placed on optimal control of 

excitation for improvement of power system stability. The 
excitation control, which is optimal with respect to a given per-

formance index, has been studied by several authors [2-4] and has 

been shown to provide real advantages in stabilisation and opera- 

tion of power systems. 

Most of these optimisation techniques suffer from doubling the 

dimension of the system due to the solution of a two-point 

boundary value problem. 

In this paper, a realistic control and stabilization strategy is 

given and tested to a linearized model of single machine connect-
ed to an infinite bus system. The obtained results have been com-

pared with those obtained using optimisation techniques and also 

with those obtained using conventional power system stabilisers. 
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THE CONTROL STRATEGIES 

Optimal Linear State Regulator 

The linear state regulator control 	is well documented in the 

standard texts and is presented here briefly [1]. 

For the linear system corresponding to the power system model, 

the control law u (t) which minimises 

J = 1/2 f 	(X 1 Q X + urR u) dt 	 ( 1 ) 

t
o 

subject to 

X = Ax + Bu 

is given by the feedback control law in terms of states as: 

= -R
-1 
 B

T
K X (2) 

where 0 = A
T
K + KA - KBR

-1
B
T
K + Q (3) 

For a given A, B and Q matrices, a closed loop solution of Eqn. 
(3) is possible in terms of eigenvectors of the extended system 

equations. 

The Conventional Power System Stabiliser 

Power system stabilizers are presently being used in many power 
utilities to overcome the negative damping effect introduced in 
long lines. The transfer function of the stabilizer depends on 

the type of input. 

For an input proportional to the output power of the synchronous 
machine a transfer function of the following form [6] is used in 

this paper: 
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Fig. (1) : Conventional P.S.S. 

By choosing the output of the various blocks as y i(u), y2, y
3 

and 

y
4 
 , it is a simple matter to show that the three state equations 

 arising out of P.S.S. are: 
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The control u in terms of the state variables is 

K T 1  T3 	1 	z 	T3 	T 1  T3 z  

u = 

	

T 2 T 4 Pe 	T4 1 	T2 T4 
Z2 	T

o  T2 4 
T. 3 

The state equations (4) - (6) combined with equations represent-

ing the system give an augmented system of equations in the form 

X =AX +Bu 

	

where X is (6x1) vector. 	Pe  can be expressed in terms of the 

original state variables X. 

Proposed Control and Stabilisation Strategy 

In this section a realistic control design for linear systems is 

presented. The main idea of this method is to solve the optimisa-

tion problem without introducing by means of Lagrange multiplier 

the equality constraint which characterises the process. The 

optimisation problem of the dynamical system may be written as: 

K 
Min J = 1/2 E (X

T
ki.1 0 X10.1  + uk  R uk) 

u 	k=o 

(8) 

(5)  

(6)  

(7)  
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Xk+l 
= A xk  + B uk  

with 	 Q I= 0 ; 	R > 0 

The solution is now being made by a decomposition-coordination 

technique [9). 

Decomposition replaces the global problem by a number of sub-
problems which can be solved simultaneously and a coordination to 
push the solution to the optimal one. The global criterion may be 

now decomposed as: 

J = J
k 

+ T
k 
	 (9) 

J
k 

is the local criterion which is chosen arbitrarily 

Let 	Jk  = 1/2 [ 	Q Xk  + uk  R uk  ] 
	

(10) 

E X
T 

QX + 	R 	] -1/2 X
T 

= l/2[ 	 Q K
k 

-1/2 uk R u
k 

k k  
1 	 k+p 

+1  
(11) 

Applying stationarity condition for eqn. (9) we obtain 

0 J
k 	

0 T
k  _ 

+ 	0 	V k = 1, 	..., g 
a u

k 	
0 u

k 

(12) 

Assume that the second term is constant, pk 
= (aT

k
) / (auk' ) and 

has the same dimension as u1‹. 

The local subproblems may be thought as 

Min C
k 

= J
k 	Pk uk 
	 (13) 

u
k 

subject to 	Xk+l 
= Ax' + Bu

k 

The solution in this case is given by 

u
k 

= -1/2 R
-1 

B
T
A
TP 

Q X
k 

+ 1/2 R
-1 p

k 
= F X

k 
+ A p

k 	(14) 

r= -1/2 R
-1 

B
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A
TP 

Q 
	A= -1/2 R

-1 
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  = B
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W 

0 Jk 	
(15) 
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with 	W
k-1 

= Q Xk  + F
T 
Ruk  + (A + Br)T  Wk 
	(16) 

W
K 

= Q X
K+1 

and 	

6 = 1/2 B
T (A + B r)

T(P) Q X
k 

It is found that the suitable choice of local criterion, as given 

in (10) achieves the stable operation of the system. This choice 

leads to stabilizing control laws given in (14). This control has 
great influence on the system state vector. The influence matrix 

(a X
k+ 	

u
k
) is considered as a measure for this effect. This 

p 

 

inturn depends on the value of p. 

For this reason, one can also use the proposed method [9] to find 

an exact value of p. It becomes necessary to build a global crit-
erion H(p) weighting the input-output couples. H(p) may be given 

as 
m 

H(p) = 	E n. I X. I 
i=1  

(17) 

th 
where ( X 	) represents the discrete slope function of i-- step 

response 
ik

(X
ik
). The positive weighting coefficient ni 

is selec- 

ted such that 	n
i 

= Q
i
. The integer p is chosen at the 	maximum 

of the slope criterion H. 

p = Arg Max H(n) 	 (18) 

n 

It has been found that the obtained value of p corresponds to 
that obtained by minimising the spectral radius 6 (p) of the res- 

ulting closed loop matrix 

A =A+Br 
P 
	

p 

The spectral radius 6 (p) of the matrix AP 
	i 
= Max II X. 

p 
 II, i = I,N 

where N is the number of the system eigenvalues. 

and 
	

11 Xip 	= /(Real part)
2 

+ (Imag part)
2 

POWER SYSTEM MODEL 

The model under investigation represents a 3
Ed 

order model of- a 

single machine connected to an infinite bus systems. This model 

is represented in the following state variable form: 
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X
1 
 = X

2 

X
2 

= B 1  - A 1 X2  - A2  sin X
1 	

X
3 

- B
2 
sin 2 X

1 

X
3 

= u
I 
- C 1 X

3 
+ C

2 
cos X 1 

 

X
1 
 = power angle 6 : X

2 
= rotor speed S 

X
3 

= field flux linkage Wf 
 

Details of this model are found in [7]. 

The system, initially in steady state, was disturbed by a step 
change in power input pi, which was brought down to 0.68 p.u. 
from 0.725 p.u., and was again brought back to the original magn-
itude after a time lapse of 0.35 sec. 

The resulting initial conditions of the state variables were 

X
1
(o) = 0.7347, 	X

2
(o) = 0.2151, 	X3  (o) = 7.7443 

The non-linear model given in eqn. (19-21) 	is 	linearized about 

the state values of system variables 

X
1
F 

= 0.7461 , 	X
2 

= 0.0 , 	X
3 

= 7.7438 

SIMULATION RESULTS 

The optimization problem was solved by the three presented techn-
iques for a final time T = 2.0 sec. The P.S.S. parameters were 
selected such that the transient response of the system in terms 
of over-shoot and settling time was optimised. 

Figs. (2-4) display the transient response of the machine with 
constant excitation and with control. With no control, the system 
is dynamically stable but with a low decay rate. From torque 
angle and rotor speed variation responses, it is observed that 
proposed strategy gives the best response following in descending 
order by the linear regulator-control and P.S.S. 

Figs. (2-4) also show that the proposed technique drives the exc-
iter to the ceiling more rapidly than other two stabilisers, and 
so it tries to bring frequency deviation and acceleration of the 
machine to zero in minimum time. The core requirements and compu-
ting time required for the proposed technique are much smaller 
w.r.t. other techniques. 

An application of the proposed method given in [9] for the purp-
ose of determination of the optimal value of p is carried out. 
From Fig. (5) it is found that this value of p equals 20. This 
value also found to be coincident with that obtained by minimis-
ing the spectral radius of the closed loop system of the matrix 
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A eigenvalues. This ensures that the proposed control action not 
only minimises the performance index but also has an efficient 

stabilizing effect. 
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CONCLUSIONS 

Results obtained with the proposed optimal excitation control 
strategy are compared with those of with conventional P.S.S. and 
L.O.C. 	It is observed that the proposed scheme provides better 
damping characteristics, for power system oscillations. The 
scheme is superior to both P.S.S. and regulator control in terms 
of transients. 

The application of the proposed technique to control synchronous 
machines shows its extensive possibilities 'to design efficient 
control laws resulting in well damped oscillations. 
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